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BEZOUT DOMAINS AND RINGS WITH A 
DISTRIBUTIVE LATTICE OF RIGHT IDEALS 

H. H. BRUNGS 

0. It is the purpose of this paper to discuss a construction of right 
arithmetical (or right Z)-domains in [5] ) domains, i.e., integral domains R 
for which the lattice of right ideals is distributive (see also [3] ). Whereas 
the commutative rings in this class are precisely the Prufer domains, not 
even right and left principal ideal domains are necessarily arithmetical. 
Among other things we show that a Bezout domain is right arithmetical if 
and only if all maximal right ideals are two-sided. 

Any right ideal of a right noetherian, right arithmetical domain is 
two-sided. This fact makes it possible to describe the semigroup of right 
ideals in such a ring in a satisfactory way; [3], [5]. 

However, very little is known about the corresponding question in the 
non-noetherian case. 

We will construct right arithmetical rings in which the maximal right 
ideals and their intersections, R and (0) are the only two-sided ideals and 
where it is still possible to describe the lattice of right ideals in various 
cases. The construction begins with a left Ore right Bezout domain R and 
a monomorphism o of R. We show that R can be localized at those 
maximal right ideals Ni9 i in an index set A, of R which are two-sided and 
for which o(Nt) is contained in Nt. 

The intersection 

*° =
 <QA R N > 

the localization of R at TV-, is a right Bezout, left Ore and right arithmetical 
ring to which o can be extended. The quotient ring Rx of the Ore poly­
nomial ring R0[x, o] with respect to the Ore set S consisting of all polyno­
mials which have content equal to R0 can be formed. The right ideals of 
this ring can be studied via the right ideals of 

R0 = Ux~nR0x
n, 

the smallest extension of R0 which has an automorphism as an extension 
of a (see [8] ). The ring Rx is a right Bezout, left Ore domain and a right 
arithmetical ring R2 can be obtained from it in the same fashion as R0 was 
constructed from R. The ring R2 is neither right noetherian nor are all its 
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BEZOUT DOMAINS 287 

right ideals two-sided as long as A is not empty and there exists an 
element r in R0 with o(r)R0 Ç rR0. 

1. We consider right Bezout domains. These are integral domains in 
which all finitely generated right ideals are principal. 

LEMMA 1. Let R be a right Bezout domain, N a maximal right ideal of R. 
Then N is a two-sided ideal of R if and only if S = R\N is a right 
Ore-system. 

Proof If S = R\N is a right Ore-system then 

RN = RS~} = {as~]; ainR,s in S} 

exists and is a local ring with NRN as the only maximal right ideal in RN. 
This right ideal is therefore a two-sided ideal in RN and N = R C\ RN is a 
two-sided ideal in R. 

If conversely TV is a two-sided ideal in R and sl9 s2 are in S then 

SXX\ + nx = 1, 52*2 + n2 = 1 

for some xt in R and ni in N. We obtain 

sxs2x2xx + ^ l^^i + ^ i = l 

which shows that sxs2 is again in S. If s is in S and r is in R we have 

r£ + sR = dR 

for some din R and s = dsx, r = d^ with 

sxR + d}R = R and 5! in S. 

Therefore 

s J* + r^y = 1 for some x, y in R and 

^ ( X Î ! - 1) = ~rxysx, rx(yrx - 1) = - ^ x r j 

are elements in sxR n r ^ . Either j is in TV and JTJ — 1 in S or >> is in S 
and hence 75x is in 5. This shows that S is a right Ore system after 
multiplying the appropriate equation from the left by d. 

Remark. The ring RN is a right chain ring if it exists. 

Proof. The ring RN is a local right Bezout domain. If a, b are elements in 
RN, then 

aRN + 6 % = d % 

for some d in i ^ and 

« = dax, b = dbx, axx -f bxy = 1 

for some ax, bx, x, y in R. It follows that at least one of ax or bx is a unit in 
RN and either 
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aRN = dRN 3 bRN or bRN = dRN 3 aRN. 

COROLLARY. A right Bezout domain R is a right arithmetical ring if and 
only if all maximal right ideals of R are two-sided. 

This follows from Lemma 1 and [3]. 

A right semifir is a ring in which all right ideals are free as right 
i^-modules with unique rank. This notion is left-right symmetric ( [6], 
p. 43), which implies that a right Bezout domain which is also left Ore is 
also a left Bezout domain. 

THEOREM 1. Let R be a right Bezout, left Ore domain. Let {Nt}, / in 
A, be a set of maximal right ideals of R that are two-sided ideals. Then 
D = C)RN., i in A, is a right Bezout, right arithmetical left Ore domain. 

Proof We know that the rings RN, i in A, exist and that the ring D is a 
ring between R and its field of quotients K = Q(R). We just observed that 
R is a right and left Bezout domain and this implies that the overring D 
of R is of the form D = RM~X for a right Ore set M of R ( [1] ). We can 
see this directly in the following way: An element in D has the form 
ba~x with a, b in R. We can assume that Ra + Rb = R, since other­
wise a = axd, b = bxd, ba~ = bxax~ and Rax + Rbx = R if 
Ra + Rb = Rd. 

Elements x, y exist therefore in R with 

xa + yb = 1 

and x + yba~l = a~x in D follows. 
Let M be the set of units in D that are elements in R, i.e., M = 

U(D) n R with U(D) the group of units of D. Let a be an element in M. 
Then 

aD = D and aRN = RN 

and a is in R\(UNt), i in A. Conversely, if a is in R\(UNt), i in A, 
then 

aRN = RN and aD = D, 

a is in M. 
We conclude that 

D = RM~X = {bm~l; b in R, m in M) 

and M is a right Ore system using the familiar argument: If m is in M, 
r in R, then m~ r = rxmx~ for rx in R, m2 in M and rmx = mrx. The ring 
D = RM~1 is a right Bezout domain that is left Ore with NtD, i in A, as its 
maximal right ideals. These right ideals are two-sided, since 

NtD = D H NtR 
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We need one more result concerning the symmetry of our basic 
conditions. 

LEMMA 2. If R is a right Bezout, left Ore domain whose maximal right 
ideals are two-sided then the following hold: 

i) 2 Rat = R if and only z / 2 atR = Rfor elements flb . . . , a„ in R. 
ii) All maximal left ideals of R are two-sided and equal maximal right 

ideals. 
iii) R is left arithmetical. 

Proof. If 

L = 2 Rat = R 

it is impossible that 

2 atR = K # R, 

since K is contained in a maximal right ideal N in this case and L = 
R Q N would follow. 

Conversely, if 

2 atR = R and 2 Rat = L ¥= R 

we obtain L = Rd with d not a unit in R and therefore 0 ¥= d is contained 
in a maximal right ideal TV of R. This implies az = a\d for elements #• in R, 
i = 1, . . . , «, and 

2 flf-i? = 2 a\dR Ç jV, 

a contradiction. To prove ii) let L be a maximal left ideal of i?. 
Then either L7? ¥= R and Li? is contained in some maximal right ideal N 

or LR = R. We have L Q LR Q N for the left ideals L and N in the first 
case and L = N by the maximality of L. 

If Li? = R then 2 fl^ = 1 for at in L, rz in i?, / = 1, . . . , n. But then 

R = 2 i?flz Ç L, 

using i), a contradiction. 
iii) follows from ii) and the corollary to Lemma 1. 

2. The construction which we will now consider in detail corresponds to 
the construction of the Kronecker function ring, [7] Section 32 in the 
commutative case, see also [4], [9] and [10]. 

Let RQ be a right Bezout, left Ore domain with a monomorphism a from 
Ro to R0. 

Let {Nj}, i in A, be the set of those maximal right ideals of R0 which are 
two-sided and satisfy o(Ni) Q Nt. Let 

S = R0\(UNt) i in A. 
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Using Theorem 1 we can form the ring R0S~ which is a right Bezout, 
right arithmetical left Ore domain. The monomorphism a can be extended 
from R0 to R0S~\ since s in S = #0\(UAT-), z m A, implies a(>) in S. To 
see this, we observe that sR0 + Nt = R for every / in A, and hence 

srt + ni = 1 for some rt in i?, «z in A,-. 

Applying o to this equation shows that o(s) is not contained in Az- and 
therefore o(s) is an element of S. 

Replacing R0 by R0S~] we can therefore assume that R0 is a right 
Bezout, right arithmetical left Ore domain with a monomorphism a such 
that o(N) ç TV for all maximal right ideals A of R0. 

Next, consider the Ore polynomial ring 

R = R0[x, o] = { 2 atx
l\ at in i^} 

with xa = o(a)x defining the multiplication. 
Since R0 is left Ore, it follows from Proposition 8.4 in [6] that R is left 

Ore; i.e., for elements 0 ¥= f g in R there exist elements 0 ¥= / l 5 g] in R 
with/ ,g = g,/ . 

We denote with S the set 

{ 2 fl-jc1' in 7?; 2 ^ 0 = ^o) 

of all those polynomials fin R which have right content R0. Here, the right 
content of an element/ in R is the right ideal c(f) of R0 generated by the 
coefficients off. 

We want to show that S is a left Ore system of R. To show that S is 
multiplicatively closed let 

^ 1 = 2 atx
l and ^ = 2 bjXJ 

be elements in S with slks2 = p(x) as their product. 
For any maximal right ideal N of R0 there exists an index z0 minimal 

with the property that at is not in N. Similarly, a lowest coefficient b-
exists with h- not in N. Using the fact that o(r) is in N if and only if r is in 
N for r in R0 and that A is two-sided it follows that the coefficient of x/o+7° 
inp(x) is not contained in A. Hence, p(x) is in S. 

Let s(x) be in S a n d / ( x ) in R. It was observed earlier that elements 
h(x) and 0 =£ g(x) exist in R with 

A (*>(*) = g(x)f(x). 

M h(x) is factored as c • h}(x) with c in R0, hx(x) in 51 and similarly g(x) = 
Û? • g\(x) with J in ,R0, gx(x) in 51 we conclude that h](x)s(x) is again in S 
and c = dr for some r in i?0. Therefore, 

^ i ( ^ M ^ ) = g\(x)f(x) with gj(A;) in S. 

This s-hows that 5" is a left Ore system in R and the ring of quotients 
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Rx = S~]R = {s(x)~]f(x);f(x) in R, s(x) in S} 

exists. 

We have proved the first part of the following theorem. 

THEOREM 2. Let R0 be a right Bezout, left Ore domain such that all 
maximal right ideals Ni9 i in A, are two-sided. Let o be a monomorphism 
of R0 such that o(Nt) is contained in Nt for every maximal right ideal. 
Then Rx = S~ R exists and is a right Bezout left Ore domain, where 
R = RQ[X, O] is the Ore polynomial ring and S is the set of polynomials with 
R0 as their right content. 

Proof. It remains to prove that Rx is a right Bezout left Ore domain. One 
can write two arbitrary elements in Rx with a common denominator in S 
and it is sufficient to show that 

f-\x)g(x)Rl +f-\x)h(x)Rl = I 

is a principal right ideal. 

However, g(x)Rx = aRx and h(x)Rx = bRx for certain elments a, b in 
R0 and I = f~ (x)dRx if aR0 + bR0 = dR0 for some d in R0. 

The fact that Rx is left Ore follows from the earlier observation that R is 
left Ore. 

We would like to obtain more information about one-sided and 
two-sided ideals in Rx. It is useful to introduce the subring 

R0= n R^ 

of Rx where 

4") = x-
nR0x

n. 

Since 

4" + 1> = x-
(n + ])R0x

n + ] 2 * - ( " + 1) a(R0)x
n + ] = x~nR0x

n = R$\ 

it follows that R0 is indeed a subring of Rx and again a right Bezout left 
Ore domain containing R0. 

By defining 

a(x~naxn) = x~no(a)xn 

we see that ô is an extension of o and is the restriction to R0 of the in­
ner automorphism of Rx that sends / in Rx to xfx~x. Both this inner 
automorphism and its inverse map R0 to i?0 and ô is therefore 
an automorphism of R0. The ring R0 and the element x, which remains 
algebraically independent over R0, are both contained in Rx. Therefore, 

R = R0[x9 ô] = { 2 âtx
l\ ~âi in R0], 
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the Ore polynomial ring in x over R0 with the automorphism â, is 
contained in Rx. 

We consider the set 

S = { 2 âtx
l in R; 2 âz#0 - R0} 

and want to prove that S is a right and left Ore system in R with 

S~lR = ^ S " 1 = i^ . 

We begin with showing that S is multiplicatively closed. If 

f(x) = 2 ^ and g(x) = 2 ^ 

are elements in S then their coefficients are also contained in R^ for a 
sufficiently large n which can be chosen such that 

2 â,R^ = 4") and 2 W > = Ron)-

This implies (observe that ô(R^) is contained in /?Q ) that f(x)g(x) has 
coefficients in R^ that generate R^ as a right ideal; using the fact that 
R^ is a right Bezout, left Ore domain whose maximal right ideals are 
two-sided. We know that R0 is a right and left Ore domain and that ô is an 
automorphism of R0. It follows as in Section 2 that RQ[X, a] = R is a 
right and left Ore domain. We use this fact to show that S is a left Ore 
system. 

Given f(x) in S, g(x) in R then there exist f\(x)9 g\(x) in R with 

fx(x)g(x) = gx(x)f(x). 

We can write 

f\(x) = C\fiM, g\(x) = dxg2(x) 

with cx, dxm RQ and/2(x), gji*) m $• 
As in the above argument, there exists an n such that the coefficients of 

/Ox), g(x),/2(x), g2(x) a n d ci> ^i a r e elements of R^\ 
The product g 20O/0O *s m $ anc^ ^ follows that dx = cxd2 for 

an element d2 in RQ7\ Therefore, 

f2(x)g(x) = d2g2(x)f{x) 

with/2(x) in S shows that S is a left Ore system. 
We need Lemma 2 to prove that S is also a right Ore system. From the 

fact that ô is an automorphism we conclude that 

k 

f(x) = 2 atx
l 

i = 0 

in S can also be written as 

f(x) = 2 Jô-%) 
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and the elements {o~l(ât), i = 0 , . . . , k} will still generate R0 as a right 
ideal. This follows by working again in a ring R^ that contains all the at 

and ô~l(ât) and observing the fact that the maximal right ideals of R^ are 
exactly the right ideals x~nNxn where TV is a maximal right ideal of R0. For 
every such right ideal there exists an i with ~ài not in x~nNxn. This implies 
that ô~l(âi) is not in x~nNxn, since o(r) is in N if and only if r is in TV for r 
in R0. We get 

S = {2 âj>è\ 2 âtR0 = R0} 

= {2 xlât\ 2 âtR0 = R0} 

= {2 A ; 2 ^ = *o} 
by Lemma 2 and it follows that S is a right Ore system because of the 
symmetry of our assumption and the fact that ô is an automorphism. 

We saw above that R is contained in Rx and for every element f(x) in S 
there exist an n such that xnf(x)x~n is in R and hence in S. This implies 
that the inverses of the elements in S are in R{ and 

R} Q S~lR = RS~] ç i^1 

shows the equality of these rings. 
We use this to describe the right ideals in R]t 

LEMMA 3. The right ideals of Rx are in one-to-one correspondence with the 
right ideals of R0. If I is a right ideal of Rx then (I Pi RQ)R\ = I and if J0 

is a right ideal of R0 then I0R} Pi R0 = I0. 

Proof A principal right ideal in R^ has the form 

f-\x)g(x)R] = T 

with/(x) in S and g(x) in R. However, 

f-\x)g(x) = h(x)s-\x) 

with h(x) in R and J(x) in S. Further, 

h(x) = aT(x) for â~ in R0 and t(x) in S. 

This implies T = aRx. If aRx = bRx for elements ô, b in R0 then 

asx(x) = bs2(x) for elements ^ (x) , ^OO i n ^* 

Since both the principal right ideals aR0 and bR0 are the content of the 
element âY^x) in R, they are equal and it follows that aRx = Z? ĵ if and 
only if aR0 = bR0. 

With a similar argument, using the content again, one shows that 
aRx Q bR} if and only if aR0 Q bR0. 

The proof of the lemma follows easily from what has been said, but we 
consider the proof of the containment 
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I0R} n R0Q J0. 

Let â be in 70 and c = âf(x) J(x)~] be in R0 with f(x)I(xy] in Rx. Then 
cs(x) = af(x) and a content argument shows that ~c = ab for some b in 
#0, since J(x) is in 5. 

We can describe the principal right ideals in Rx even further, see also 
Theorem 2 in [4], 

LEMMA 4. A principal right ideal in Rx has the form x~naRx for some 
non-negative integer n and a in R0. Two such right ideals x naRx and 
x~mbRx are equal if and only if 

am(a)R0 = on(b)R0. 

The first part of the lemma follows from Lemma 3 and the fact that 
every element â in R0 has the form x~naxn for a suitable n and an a in R0. 
The second part follows if we prove that 

U(R0) n Q(R0) = U(R0) 

where Q(R0) is the field of quotients of i?0 and U(R0), U(R0) are the 
groups of units of R0 and R0 respectively. To see this we use an argument 
similar to one used in the proof of Theorem 1. The overring 0 = R0 n 
Q(R0) of R0 is of the form 6 = RQT~] for some Ore system T of JR0. 

Let a, b be elements in R0 with aR0 + bR0 = R0 and a~]b in U(R0) n 
Q(R0). It follows that a~l is in 0 and hence in U(R0) n Q(R0), and a~l is 
therefore a unit in R^ for a suitable «. 

However, the maximal right ideals of R^ are of the form x~nNxn, N a 
maximal right ideal of R0 and unless a is a unit in ,R0 and not contained in 
any maximal right ideal N it is not possible that a is not contained in any 
x~uNxr\ This implies 

U(R0) n Q(R0) = U(R0). 

If we now assume that aR0 = bR0 for a, b in # 0 then dû = b for a unit 
Î7 in R0. But w = a~ b is an element in 

U(R0) n 0(/Jo) = U(R0) 

and #JR0 = èjR0. 
The lemma follows if we observe that 

x~naR] = x ~ m ^ , 

if and only if 

xmaRx = am{a)Rx = xnbRx = ^ ( f t )* , . 

We saw in Lemma 3 that a right ideal / of Rx is determined by the right 
ideal I = I C\ R0 of R0. Such a right ideal is uniquely determined by the 
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sequence {/(„)} of right ideals 

/ n 4") = 7 n 4") = l(n) 

of i ? ^ . This is obvious since 1 = 1 implies I^n) = J^n) and I^n) = J^n) 

implies 

7 = u / ( n ) = vj(n) = 7. 

4. We discuss maximal right ideals and two-sided ideals of R} in this 
section. 

Let / be a two-sided ideal in R{. We begin with the observation that the 
two-sided ideal I = I D R0 of R0, satisfies o(I) = I, since 

xlx~] Q 7 and x~]lx Q 1 

It follows that 

is a two-sided ideal of R0 with the property that o(r) is in 7(0) if
 a n d o n ly if 

r is in 70 for r in i^0. 

LEMMA 5. The two-sided ideals I in Rx are of the form I = IRX with 

1 = Ux~nI0x\ 

n a non-negative integer, where I0 is a two-sided ideal in R0 such that o(r) is 
in 7Q if and only if r is in I0. Two such ideals I and J are equal in Rx if and 
only if I0 = I n R0 is equal to J0 = J n R0 in R0. 

Proof Let / be a two-sided ideal in Rx. We know that / is uniquely 
determined by I = I n R0 and that I0 = I n R0 is a two-sided ideal of R0 

such that o(r) is in I0 if and only if r is in I0 for r in R0. 
Consider Ln, = I n R^ and we want to show that 

/ — Y~nT xn 

1(n) — x 20X • 

Since I0 is in / , we see that x~nI0x
n is contained in Lny Conversely, 

since 1^ is contained in R^ it follows that xnI^n)x~n is contained in 
R0 Pi / = I0. This shows that 

/ = (Ux~nI0x
n)R] for I0 = I n R0. 

To finish the proof we now consider any two-sided ideal I0 in R0 with the 
property that o(r) is contained in IQ if and only if r is in I0 for r in R0. 

We form I = lR} with 

7 = U J C ~ % / , 

n runs through the negative integers, and must show that / is a two-sided 
ideal in R} with I Pi R0 = I0. 

We observe that / is a two-sided ideal of R0 with the property o(I) = I. 
To see this, let x~naxn, a in I0, be an element in / . Then 
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ô(x~naxn) = x~no(a)xn 

is in I and 

x~naxn = x~{n + X)o{a)xn + x 

is in ô(I). 
We want to show now that 7 is a two-sided ideal. Let a be an element in 

7 and 

/ ( x ) = 2 oitx
l 

be in R. Then 

f{x)a = 2 ata
l{a)xl = 2 a'pc1 

with a- in 7, and / (x )a in I follows. 
If s(x) is an element in S, a in 7, then 

s(x)~ a = f}s2(x)s3 (x) 

for /? in i?0, ^ (x) , s3(x) in 5 . 
We obtain 

as3(x) = s(x)fts2(x). 

It follows from this equation that 

yto
l(fi) = ouot for i = 0, . . . , n 

if 

n 

s(x) = 2 ytx
l 

7 = 0 

for certain co- in JR0, since ai^0 is the content of as3(x) as well as of 

From this we conclude that o l(yt)P is in 7 for all / and the elements 

{a-\yiy9i = 0 , . . . , / ! } 

generate R0 as a right as well as a left ideal. We use Ry for a suitable «, 
Lemma 2 and the fact that s(x) is in S for these arguments. Hence, there 
exist elements ut in R0 with 

2 uÂ~l(yt) = 1 and 

jB = 2 ufl'Xy^P is in 7. 

This proves that 7 as defined above is a two-sided ideal in Rx. 
It remains to prove that I n R0 = 70. We pick an element r in 7 n R0 

and write 

r = 2 a ^ C x ) ^ - 1 ^ ) 
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where the a-s are elements in / , theft(x) are in R and s(x) is in S. 
Hence, 

rs(x) = 2 a[xl 

for certain elements a\ in 7. For 

s(x) = 2 y,*' 

we obtain ry- = a- in / and elements w, exist in R0 with 

2 y,ut = 1 

and r = 2 a-W; in / follows. 

THEOREM 3. Let RQi a and R\ be as in Theorem 2 and write Mt = NjR^, 
i in A, with 

Ni = U i - V 

w/zere /7ze A, are z7ze maximal right ideals in R0. The Mz-, / /« A, are max­
imal right ideals in Rh they are two-sided ideals in R] and every 
maximal right ideal M of Rx, with ô(M Pi R0) Q M is a member of the 
set {Mt\ i in A}. 

Proof. The first two statements follow from Lemma 3 and Lemma 5 and 
the comment made at the end of Section 3. 

To prove the last statement we write 

M = M n R0 and M{n) = M n R$\ 

Claim: 

M(B) = x-"N,x" = NW 

for a suitable N- . 
If this is not true we have 

M{n) ç x~nNxn = N{n) 

for a suitable maximal right ideal N of R0. 
An element y exists in A ^ \ M , , with 

y/#> + M{n) ç tfOO 

but 

y£0 + M = R0. 

It follows from the last equation that there exists an index t and elements 
a in Rfi\ /x in M,t^ with y a + /x = 1. 

We can assume that / = n + 1 and obtain 

1 = 0(1) = ô(y)ô(a) + â(ju) ç JV(W) + M ( W ) Ç A(,7), 
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a contradiction. This proves our first claim: 

It remains to show that in = im for all n, m. We assume 

MlH) = N\* and M(n+]) = N ^ \ 

However, 

â(M(n + ,}) = âN^ = N^QN^ 

which is impossible because JVj ¥= N2 in R0. Hence, 

M = UN{n) = Ux~nNxn 

for a certain maximal right ideal TV of R0. 

COROLLARY 1. All maximal right ideals M of Rx that are two-sided are of 
the form M = (UN^)Rh N a maximal right ideal in R0. 

We only need to observe that xMx~] is contained in M if M is 
two-sided. This implies ô(M) Q M. 

COROLLARY 2. Let R0 have the additional property that o(aR0) Q aR0 for 
every a in R0. Then every maximal right ideal in R} is two-sided. 

Proof We must show that ô(M n R0) Q M for every maximal right 
ideal M of /£,. Let x~nmxn be an element in M Pi R0 with m in ^ 0 . We 
have 

â(x'nmxn) = x~no(m)xn = X-nmxnx~nrxn 

if o(m) = mr for r in R0. 

COROLLARY 3. Let R0 be a principal right and left ideal domain whose 
maximal right ideals are two-sided. Then every maximal right ideal in R} is 
two-sided. 

This follows immediately from Corollary 2 if we observe that every 
element a ¥= 0, not a unit, can be written as a = P\ • • • pn with ptR0 

maximal right ideals with R0pi Q P^RQ. 

LEMMA 6. Let the notation and assumptions be as in Theorem 3. We 
assume further that the index set A is finite, i.e., R0 has only finitely many 
maximal right ideals. Then the Mi9 i in A, are exactly the maximal right 
ideals of Rx. 

Proof. Let M be any maximal right ideal in Rx and M = R fï M. We 
must show that M = Nt for a suitable / in A. If 

M(n) = M n R(
0
n) = N^ = x-nNtx

n 

for a certain / and n, then 
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M(m) = N\m) for m^n, 

otherwise 

#(") C M, , c N{m\ 

a contradiction for /' ^ 7. Hence, we must show that M^n) = A ^ for a 
certain / and n. 

Let M ^ S J V ^ for a certain n. Then there exists c in Nf\ not in 
M(wx and c is not in M. Hence, there exists an index m > n with 

C0Lm + Mm = ! 

with am in T^^ and jum in M^m .̂ It follows that for all s = m the 
inequality 

M(s) ç Nf> 

is impossible since otherwise 

1 = cam + Mm e tf<"> + M(s) Q N<fK 

We repeat the above argument for indices s > m and obtain after a 
finite number of steps the equality M,t^ = N^ for a certain 7 in A and 
a certain positive integer t. 

5. We illustrate the results of the earlier sections with some examples. 
Consider the field F = Z//?Z with p elements, p a prime, and the 
polynomial ring R0 = Fp[t] in one indeterminate t over i^. This ring has a 
monomorphism a defined by 

o(m)=f(ty. 
The ring i?0 together with a satisfies the condition of Theorem 2. The ring 
Rx exists and its only two-sided ideals ^ 1^, (0) are the ideals 

(Ux-npl(t)...ps(t)R0*r)Rl 

where {p\(t)9... ,ps(t)} is any finite set of distinct irreducible elements 
in R0, using Lemma 5. The maximal right ideals of Rx are exactly the 
ideals 

(Ux~np(t)R0x
n)Rx 

wherep(t) is irreducible in R0, illustrating Theorem 3 and corollary. These 
maximal right ideals are two-sided ideals and they are not finitely 
generated as right ideals of Rx. 

We will now consider the case p = 2 in order to compute the set W of 
all principal right ideals of Rx, and 

//(flj) = {?; 0 * r in Rh7(aRx) = raRx for aR in W), 

the generalized semigroup of divisibility of Rx. The elements of H(RX) 

https://doi.org/10.4153/CJM-1986-014-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-014-2


300 H. H. BRUNGS 

are the mappings7from Wto Wwith7(aRx) = raRx for r ¥= 0 ¥^ a in Rx. 
The operation in H(RX) is defined by 77' = rr'. 

It follows immediately from Lemma 4 that 

W = {x~naxnRx for 0 ^ a in R0 = F2[t] } 

with the equality 

x~naxnRx = x~mbxmRx 

holding if and only if 

am(a)R0 = a"(b)R0. 

We order the set {pt(t)\ i in A}, of irreducible polynomials of R0 and 
writepx(t) = t9p2(t) = t2 4- / + l,p3(t), . . . , / ? , ( / ) , . . . , etc. With each 
principal right ideal 

x-npx{tr...ps(t)
msxnRx 

we associate the element 

(TiTi ^ o o ) 
\2n' 2n"" 2n' ' ""/ 

in the direct sum W = 2 Li9 i = 1, 2, 3, . . . where 

{ #? 1 

— ; rn, n non-negative integers ? for all /. 
It follows from the condition for equality that every principal right ideal 

of Rx is uniquely determined by its associated element in W. We point out 
that the set W of principal right ideals of Rx can not be made into a 
semigroup by using multiplication of right ideals as operation; as it is 
possible in the commutative and right invariant case. 

We must now study the mapping 7 for an element r on W. We will 
interpret such a mapping as a mapping r from W to W. The elements r 
in Rx have the form 

r = ( 2 f l J . ( 0 x , " r 1 ( 2 i / / y " ) 

with at{t\ bj(t) in i^ . It appears to be the easiest to explain this by an 
example. Let 

r = t(t2 + t + l)x2 + t\t2 + / + \fx + t\t2 + t + l)5. 

If we compute 

r p ï - . . P Z
S

S 

with 
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in L and fi = x'^x"; 

obtain 
J + 4 z , l+4z2 4z3 
Pi ^ 2 P3 • • v̂ 

, 4 + 2z, 2 + 2z2 2z3 
+ P i ^ 2 P3 ...p^x 

4- n 6 + z i n 5 + z 2 n z 3 ^ P i P2 P3 • • •pz/-

This element will generate the principal right ideal in Rx that corresponds 
to the following element in W\ 

r(z„ . . . ,z5, 0, . . .) = (min{l + 4zl5 4 + 2zl9 6 + z j , 

min{l -f 4z2, 2 -f 2z2, 5 + z2}, z3, z4, z5 , . . . , zs, 0, . . .) 

= (4>l(zl)> 4>2<>2X *3(z3)» ' ' •)• 

The first component <}>\(zx) is therefore equal to the following: 

3 

4 > i ( z i ) = • 

1 + 4z, for 0 ^ zx ^ 

4 + 2z, for - ^ zi ^ 2 
1 2 * 

6 -f zx for 2 = zv 

Similarly, one obtains the function <f>2 defined on L2 through 

1 

<J>2(z2) = 

1 + 4z2 for 0 ^ z2 ^ 

2 4- 2z9 for - ^ z7 ^ 3 
2 2 2 

5 -h z2 for 3 ^ z2. 

Finally we have <^(zz) = zz for all / > 2. The element r is completely de­
scribed by the element (<J>,, <J>2, <J>3, . . . , <j>i9 . . .) operating on W and we 
write 

r = (<$>,, <J>2, . . .)• 

The elements fy can be represented by graphs consisting of finitely many 
linear pieces described by equations of the form g(z) = b + 2mz for z in 
L/9 Z> in ± Lz. An operation on this set of elements (<J>1? <j>2,. . .) is defined 
through the operation 7{f2 = rj>2 as the component wise composition of 
mappings, i.e., 

(*l9 <f>2, . . .)*(*i, <l>2> . . 0 = (*i o *i, 4>2 o <&, . . .) 

where </>,. o <J>- is the composition of mappings on Lt. 
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An element r = (<j>l, <£2, • • •) has an inverse if <J>Z(0) = 0 for every /, i.e., 
if the graph of every <J>Z- goes through the origin. 

The inverse of such an element is equal to 

and the graph of <j>~l is the reflection of the graph of ty on the graph of 

f(zt) = zt. If ^ ( z ) = a + 2mz for cx ^ z ^ c2 then 

$7\z) = ~a2'm 4- 2~wz for ^.(c,) S z g <t>x(c2). 

In this final example let F = Q[t]9 the polynomial ring in one 
indeterminate over the field Q of rational numbers, and let a be defined 
by 

a(2 q/) = 2 <?/'. 
We can not use the pair F, o as a pair for .RQ, a in Theorem 2. The image 
a( (/ + \)F) of the maximal right ideal (t + l)F is not contained in 
(t + 1)^. It is obvious that the maximal right ideal N0 = /F satisfies the 
condition o(N0) Q N0 and it follows from [2] that the maximal right ideals 
pn(t)F = JVW also satisfy o(Nn) Q Nn where pn(t)F is the w^ cyclotomic 
polynomial and n is odd. We form R0 = FM~ with M = F\(UNt) where 
/ = 0 or odd. The monomorphism o can be extended to R0 and we can 
now apply Theorem 2 to obtain a ring Rx. It follows as in the previous 
examples that the ideals 

(Ux"Nix
n)R] for / = 0 or odd positive are the maximal right ideals 

of Rx. 
The set of principal right ideals of Rx corresponds to the set 

W = { (z0, z„ z3, z5, . . .) } 

where z0 is in the set 

fn \ 
\—,n,m non-negative integers t 

but where the remaining z/s are just non-negative integers, almost all 
zt = 0. To see this we point out that 

x~Xpn(t)x = pn{t)x~xpn(-t)~
xxcn, cn ^ 0 in £>, 

where x~xpn( — t)x is a unit in R}9 sincepn( — t) is a unit in R0; its roots 
are the negatives of the primitive nth roots of unity. 

The elements in the semi group H(RX) correspond to elements of the 
form (<J>0, 0J, 03, <J>5, . . .) where the graph of <J>0 is again piecewise linear 
with the pieces defined by equations of the form 

4>0(z0) = a + 2mz. 
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The functions <j>t, i positive odd, are all equal to the identity except for 
finitely many which are of the form 

4>,(z,) = at + zt 

for some integer at. 
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