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Leading terms of Artin L-functions at s = 0 and s = 1

Manuel Breuning and David Burns

Abstract

We formulate an explicit conjecture for the leading term at s = 1 of the equivariant
Dedekind zeta-function that is associated to a Galois extension of number fields. We show
that this conjecture refines well-known conjectures of Stark and Chinburg, and we use
the functional equation of the zeta-function to compare it to a natural conjecture for the
leading term at s = 0.

1. Introduction

In this paper we continue the study of the leading terms at integer points of equivariant Dedekind
zeta-functions that was initiated in [Bur01].

To be more specific we fix a Galois extension of number fields L/K and a sufficiently large finite
set S of places of K which in particular includes all archimedean places and all places which ramify
in L/K. We set G := Gal(L/K) and write ζL/K,S(s) for the S-truncated equivariant zeta-function
of L/K which takes values in the centre Z(C[G]) of the group ring C[G]. The function ζL/K,S(s)
can be considered as the vector consisting of the S-truncated Artin L-functions for all irreducible
characters of G. For each rational integer m the element ζ∗L/K,S(m) which is given by the leading
non-zero coefficients in the Taylor expansions of these Artin L-functions at s = m lies in the unit
group of Z(R[G]).

In this paper we shall formulate an explicit conjectural formula for the image of ζ∗L/K,S(1) under

the canonical homomorphism ∂̂ from the unit group of Z(R[G]) to the relative algebraic K-group
K0(Z[G],R). Our formula involves the Euler characteristic (in the sense of [BrB05]) of a natural
perfect complex of Z[G]-modules that is constructed by using methods that are both explicit and
comparatively elementary. The explicit nature of this formula allows us to prove rather easily that it
simultaneously refines both the ‘main conjecture’ of Stark at s = 1 (as described by Tate in [Tat84])
and the ‘Ω1-conjecture’ formulated by Chinburg in [Chi85].

In a subsequent paper we will show that our formula is equivalent, under certain hypotheses,
to the ‘equivariant Tamagawa number conjecture’ of [BF01], as applied to the pair (h0(SpecL)(1),
Z[G]). The latter comparison result is interesting for several reasons: it will allow us to deduce
the validity of our conjectural formula for ∂̂(ζ∗L/K,S(1)) in the case that L is an abelian extension
of Q, it answers a question raised by Flach and the second named author in [BF96], and it also
establishes the link between our explicit conjecture and the very general (and rather abstract) ‘main
conjecture of non-commutative Iwasawa theory’ that was recently formulated by Fukaya and Kato
in [FK05]. Indeed, this comparison result combines with the philosophy described by Huber and

Received 10 June 2005, accepted in final form 19 January 2007, published online 8 October 2007.
2000 Mathematics Subject Classification 11R42 (primary), 11R33, 11R34 (secondary).
Keywords: Artin L-functions, equivariant zeta-functions, leading terms, functional equation.

The first author was supported by EPSRC grant GR/S91772/01. The second author was supported by a Leverhulme
fellowship.
This journal is c© Foundation Compositio Mathematica 2007.

https://doi.org/10.1112/S0010437X07002874 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X07002874


M. Breuning and D. Burns

Kings in [HK02, § 3.3] (and by Fukaya and Kato in [FK05, § 2.3.5]) to suggest that the validity of
our conjectural formula for ∂̂(ζ∗L/K,S(1)) for all Galois extensions L/K could itself provide a pivotal
step in proving the conjecture of Fukaya and Kato in full generality.

The main result in the present paper concerns the compatibility of our conjecture with the
explicit conjectural formula for ∂̂(ζ∗L/K,S(0)) that is studied in [Bur01]. Using the functional equation
of the equivariant zeta-function, we prove that the mutual compatibility of these conjectures is
equivalent to the validity of the ‘epsilon constant conjecture’ formulated in [BlB03]. This result
allows us to interpret results in [BlB03, Bre04a] and [Bre04b] as evidence for our conjecture. For
example, by these means we deduce that the conjectural formulas for ∂̂(ζ∗L/K,S(0)) and ∂̂(ζ∗L/K,S(1))
are mutually compatible whenever L/K is tamely ramified or L is either an abelian extension of Q

with odd conductor or a non-abelian extension of Q of degree 6.

In this regard, we also prove that the validity of the epsilon constant conjecture of [BlB03] would
imply that epsilon constants of symplectic characters are uniquely characterized by a natural alge-
braic invariant of L/K. This result shows that the epsilon constant conjecture implies an affirmative
answer to a question that has been open ever since Cassou-Noguès and Taylor proved in [CT83a]
and [CT83b] that symplectic epsilon constants of tamely ramified Galois extensions of number fields
are characterized by algebraic invariants.

When taken together with the results of [Bur01, BlB03] and [Bur05] the present paper demon-
strates that the use of equivariant zeta-functions and of the Euler characteristic formalism of [BrB05]
provides a universal framework of leading term conjectures which incorporates as consequences a
wide variety of seemingly unrelated theorems and explicit conjectures ranging from Hilbert’s Theo-
rem 132 to the ‘Ω-conjectures’ of Chinburg, the explicit Galois structure results on units and ideal
class groups proved by Fröhlich in [Frö89] and [Frö92], the refinement of Stark’s conjecture formu-
lated by Rubin and the ‘refined class number formulas’ conjectured by both Gross and Tate. In turn,
such a universal approach gives new insight into various long-standing questions and conjectures.
For example, in the setting of the present paper, the results we prove in §§ 3 and 5 show that Chin-
burg’s ‘Ω1-conjecture’ and ‘Ω3-conjecture’ are consequences of leading term conjectures at s = 1
and s = 0 respectively, whereas his ‘Ω2-conjecture’ is most naturally interpreted as a consequence of
the compatibility of these leading term conjectures with respect to the relevant functional equation.
From a philosophical perspective, this qualitative distinction neatly accounts for the fact that the
Ω2-conjecture is much easier to study than either of the Ω1-conjecture or Ω3-conjecture and also
provides a satisfactory answer to a problem emphasized by Fröhlich in both [Frö89] and [CCFT91,
§ 3]. Indeed, in [Frö89, Introduction] Fröhlich writes of the ‘amazing analogy’ between the Galois
structure theories of, on the one hand, unit groups and ideal class groups and, on the other hand,
rings of algebraic integers, and he stresses that providing a natural explanation of this analogy is
‘an outstanding problem – possibly connected with a new interpretation of the functional equa-
tion’. The results we prove in §§ 3 and 5 now provide just such an explanation of this analogy (see
Remark 5.5 for further details in this regard).

In a little more detail, the basic contents of this paper are as follows. In § 2 we review some basic
algebraic K-theory and give a new (and more conceptual) description of the ‘extended boundary
homomorphism’ ∂̂ that was introduced in [BF01]. We also review relevant facts concerning homolog-
ical algebra and the Euler characteristic construction of [BrB05] and recall the definition and basic
properties of equivariant Dedekind zeta-functions. In § 3 we formulate our conjectural description
of ∂̂(ζ∗L/K,S(1)), prove some of its basis properties and describe its relation to the conjectures of
Stark and Chinburg. In § 4 we review the conjectural description of ∂̂(ζ∗L/K,S(0)) that is formulated
in [Bur01]. In § 5 we use the functional equation of the equivariant zeta-function and the ‘additivity
criterion’ proved in [BrB05] to investigate the compatibility of the conjectures of §§ 3 and 4 with the
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conjecture of [BlB03]. We also prove that, if the central conjecture of [BlB03] is valid, then epsilon
constants of symplectic characters are uniquely characterized by natural algebraic invariants.

The present paper incorporates updated versions of the unpublished manuscripts [Bur98] and
[BrB03].

2. Preliminaries

In this section we summarize the necessary background from algebraic K-theory and homological
algebra. Furthermore we recall the definition of the equivariant zeta-function.

2.1 Algebraic K-theory
We recall the definition of the relativeK0-group and describe the extended boundary homomorphism
which takes values in such a group.

2.1.1 Relative K0-groups. For any integral domain R of characteristic 0, any extension E of
the field of fractions of R and any finite group G let K0(R[G], E) denote the relative algebraic K-
group associated to the ring homomorphism R[G] → E[G]; a description of K0(R[G], E) in terms of
generators and relations is given in [Swa68, p. 215]. Writing K0(R[G]) for the Grothendieck group
of the category of finitely generated projective R[G]-modules and K1(R[G]) for the Whitehead
group there is a long exact sequence of relative K-theory

K1(R[G]) −→ K1(E[G])
∂1
R[G],E−−−−→ K0(R[G], E)

∂0
R[G],E−−−−→ K0(R[G])

∂R[G],E−−−−→ K0(E[G]) (1)

(cf. [Swa68, ch. 15] or [Bur04] for more details). The exact sequence (1) is functorial in the pair
(R,E). The projective class group Cl(R[G]) of R[G] is defined to be the kernel of ∂R[G],E and is in
fact independent of E. In the case R = Z and E = R we will often write ∂iG for the map ∂i

Z[G],R.

Let Z(E[G])× denote the multiplicative group of the centre of E[G]. The reduced norm map
induces a homomorphism nr : K1(E[G]) → Z(E[G])× and we denote its image by Z(E[G])×+. In
this paper E will always be either R or an algebraically closed field or a finite extension of Q or
Qp for some prime number p. In all these cases the homomorphism nr : K1(E[G]) → Z(E[G])× is
injective (cf. [CR87, Theorem (45.3)]) and we will always identify K1(E[G]) and Z(E[G])×+ via nr.
In particular we will consider ∂1

R[G],E as a map Z(E[G])×+ → K0(R[G], E). If E is algebraically
closed or a finite extension of Qp then Z(E[G])×+ = Z(E[G])×.

We recall that in the case R = Z and E = Q the canonical maps K0(Z[G],Q) → K0(Zp[G],Qp)
induce an isomorphism

K0(Z[G],Q) ∼=
⊕
p

K0(Zp[G],Qp), (2)

where the direct sum is over all prime numbers p.
Our main interest will be the case R = Z and E = R. For every prime number p and every

embedding j : R → Cp (where Cp denotes the completion of an algebraic closure of Qp) we obtain
induced maps j∗ : K0(Z[G],R) → K0(Zp[G],Cp) and j∗ : Z(R[G])× → Z(Cp[G])×.

Lemma 2.1. The map

K0(Z[G],R) →
∏
p,j

K0(Zp[G],Cp)

is injective. Here the product runs over all prime numbers p and all embeddings j : R → Cp.

Proof. We consider the exact sequence (1) for the pairs (R,E) = (Z,Q), (Z,R), (Zp,Qp) and
(Zp,Cp) and the maps between these sequences which are induced by the obvious inclusions and by
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an embedding j : R → Cp. An easy diagram chase shows that there is a commutative diagram of
short exact sequences as follows.

0 �� K0(Z[G],Q) ��

��

K0(Z[G],R) ��

��

K1(R[G])/K1(Q[G]) ��

��

0

0 �� K0(Zp[G],Qp) �� K0(Zp[G],Cp) �� K1(Cp[G])/K1(Qp[G]) �� 0

Therefore it suffices to show that the maps

K0(Z[G],Q) →
∏
p,j

K0(Zp[G],Qp) (3)

and
K1(R[G])/K1(Q[G]) →

∏
p,j

K1(Cp[G])/K1(Qp[G]) (4)

are injective. The injectivity of (3) follows immediately from (2).
Let x ∈ K1(R[G]) be such that j∗(x) ∈ K1(Qp[G]) ⊆ K1(Cp[G]) for all p and j. Using the

isomorphism nr : K1(R[G])
∼=−→ Z(R[G])×+ we have x =

∑
g∈G cgg ∈ Z(R[G])×+ such that

j∗(x) =
∑
g∈G

j(cg)g ∈ Z(Qp[G])×. (5)

We claim that
∑

g∈G cgg ∈ Q[G]. Let g ∈ G and consider the coefficient cg. If cg was transcendental
over Q then there would be an embedding j : R → Cp such that j(cg) �∈ Qp contradicting (5).
Therefore cg is algebraic over Q. Now j(cg) ∈ Qp for all p and embeddings j implies that all primes
are completely split in the number field Q(cg) and therefore Q(cg) = Q. Hence

x ∈ Z(R[G])×+ ∩ Q[G] = Z(Q[G])×+ ∼= K1(Q[G]).

This shows the injectivity of (4).

2.1.2 The extended boundary homomorphism. We give a conceptual description of the ‘extended
boundary homomorphism’ introduced in [BF01, Lemma 9].

Lemma 2.2. There is a unique homomorphism ∂̂1
G : Z(R[G])× → K0(Z[G],R) such that for every

prime number p and every embedding j : R → Cp the diagram

Z(R[G])×
∂̂1
G ��

j∗
��

K0(Z[G],R)

j∗
��

Z(Cp[G])×
∂1
Zp[G],Cp �� K0(Zp[G],Cp)

commutes. The restriction of ∂̂1
G to Z(R[G])×+ is the map ∂1

Z[G],R.

Proof. To define ∂̂1
G(x) for x ∈ Z(R[G])× we choose λ ∈ Z(Q[G])× such that λx ∈ Z(R[G])×+ and

set
∂̂1
G(x) := ∂1

Z[G],R(λx) −
∑
p

∂1
Zp[G],Qp

(λ).

Here the sum is over all prime numbers p, and ∂1
Zp[G],Qp

(λ) means the following: Consider λ as an
element of Z(Qp[G])× via the inclusion Z(Q[G])× ⊆ Z(Qp[G])× then apply ∂1

Zp[G],Qp
and consider the

result as an element of K0(Z[G],R) by the inclusion K0(Zp[G],Qp) ⊆ K0(Z[G],Q) ⊆ K0(Z[G],R).
One easily checks that ∂̂1

G is well defined and a homomorphism. Obviously ∂̂1
G(x) = ∂1

Z[G],R(x)
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for x ∈ Z(R[G])×+. The diagram commutes for every embedding j : R → Cp because for all
prime numbers q �= p one has j∗(∂1

Zq [G],Qq
(λ)) = 0 in K0(Zp[G],Cp). The uniqueness assertion is a

consequence of Lemma 2.1.

Remark 2.3. The construction of the map ∂̂1
G in the proof of Lemma 2.2 shows that this map is the

same as the homomorphism δ̂1
Z[G],R introduced in [BF01, Lemma 9].

2.1.3 Change of group. Let R, E and G be as in § 2.1.1 and let H be a subgroup of G. Since
R[G] is free as R[H]-module, restriction of scalars is a functor from projective R[G]-modules to
projective R[H]-modules and similarly from E[G]-modules to E[H]-modules. Therefore one obtains
canonical restriction maps resGH for all K-groups in the exact sequence (1). Using the identification
via the reduced norm we also obtain a restriction map resGH : Z(E[G])×+ → Z(E[H])×+.

The functor M �→ R[G]⊗R[H]M from projective R[H]-modules to projective R[G]-modules and
the corresponding functor from E[H]-modules to E[G]-modules induce induction maps indGH for all
K-groups in the exact sequence (1). Again one also obtains an induction map indGH : Z(E[H])×+ →
Z(E[G])×+.

If H is a normal subgroup of G then the functor M �→ MH from projective R[G]-modules to
projective R[G/H]-modules and the corresponding functor from E[G]-modules to E[G/H]-modules
induce quotient maps qGG/H for all K-groups in the exact sequence (1). Again one also obtains a
quotient map qGG/H : Z(E[G])×+ → Z(E[G/H])×+.

The extended boundary homomorphism is compatible with the restriction, induction and quo-
tient maps. More precisely, the map resGH : Z(C[G])× → Z(C[H])× restricts to a homomorphism
resGH : Z(R[G])× → Z(R[H])×, and one has ∂̂1

H ◦resGH = resGH ◦ ∂̂1
G as maps Z(R[G])× → K0(Z[H],R).

Similarly ∂̂1
G ◦ indGH = indGH ◦ ∂̂1

H : Z(R[H])× → K0(Z[G],R) and ∂̂1
G/H ◦ qGG/H = qGG/H ◦ ∂̂1

G :
Z(R[G])× → K0(Z[G/H],R) if H is normal in G.

2.1.4 Involutions. We recall the definition of the involution ψ∗
G of K0(Z[G],R) that is defined

in [Bur01, p. 217]. If P is a projective Z[G]-module then HomZ(P,Z) is a projective Z[G]-module
when endowed with the contragredient G-action. Every element in K0(Z[G],R) is represented by
a triple [P1, ϕ, P2] where P1, P2 are finitely generated projective Z[G]-modules and ϕ : P1 ⊗Z R →
P2 ⊗Z R is an isomorphism of R[G]-modules. The involution ψ∗

G is defined by

ψ∗
G([P1, ϕ, P2]) := [HomZ(P1,Z),HomR(ϕ,R)−1,HomZ(P2,Z)].

One can show that ψ∗
G is compatible with the change of group homomorphisms defined in § 2.1.3,

i.e. for a subgroup H of G one has resGH ◦ ψ∗
G = ψ∗

H ◦ resGH , indGH ◦ ψ∗
H = ψ∗

G ◦ indGH and qGG/H ◦ ψ∗
G =

ψ∗
G/H ◦ qGG/H if H is normal in G.

Let Z(C[G]) denote the centre of C[G] and note that there is a canonical isomorphism Z(C[G]) =∏
χ∈Irr(G) C where we write Irr(G) for the set of irreducible C-valued characters of G. On Z(C[G])

there exists a natural involution x �→ x# which is induced by the C-linear anti-involution of C[G]
which sends each element of G to its inverse. If x = (xχ)χ∈Irr(G) under the isomorphism Z(C[G]) =∏
χ∈Irr(G) C then x# = (xχ)χ∈Irr(G). This involution of Z(C[G]) restricts to an involution of Z(R[G])×

which is compatible with the change of group homomorphisms from § 2.1.3.

Up to sign the involutions on K0(Z[G],R) and Z(R[G])× are compatible with the extended
boundary homomorphism. More precisely, if x ∈ Z(R[G])× then one has ψ∗

G(∂̂1
G(x)) = −∂̂1

G(x#) in
K0(Z[G],R).
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2.2 Homological algebra
We fix the sign conventions used for the homological algebra constructions in this paper. Further-
more we prove an important lemma concerning extension classes and recall the notion of an Euler
characteristic with values in a relative algebraic K-group.

2.2.1 Complexes. Let R be a ring. By a complex we mean a cochain complex of left R-modules.
For any complex A we write A[1] for the shifted complex that is given by A[1]i = Ai+1 with
differential dA[1](a) = −dA(a). The mapping cone cone(ω) of a map of complexes ω : U → V is the
complex defined by cone(ω)i = V i ⊕ U i+1 with differential dcone(ω)(v, u) = (dV (v) + ω(u),−dU (u)).
Let D(R) denote the derived category of the abelian category of R-modules. A triangle

A
α−→ B

β−→ C
γ−→ A[1]

in D(R) is called distinguished if it is isomorphic to a triangle of the form

U
ω−→ V

ι−→ cone(ω) π−→ U [1],

where ω is a map of complexes, ι : V → cone(ω) is the canonical inclusion ι(v) = (v, 0), and
π : cone(ω) → U [1] is the negative of the canonical projection, i.e. π(v, u) = −u. For typographic

reasons we often write a distinguished triangle as A α−→ B
β−→ C

γ−→.

For every short exact sequence of complexes 0 → A
α−→ B

β−→ C → 0 there exists a canonical map
γ : C → A[1] in the derived category such that A α−→ B

β−→ C
γ−→ A[1] is a distinguished triangle. Our

choice of triangulation guarantees that the cohomology sequences of the short exact sequence and
of the distinguished triangle are the same, i.e. that the map on cohomology induced by γ coincides
with the connecting homomorphism of the short exact sequence.

2.2.2 Yoneda extensions. We always use injective resolutions of the second variable to identify
Yoneda Ext-groups (as defined in [HS97, IV, § 9]) with derived functor Ext-groups. For a natural
interpretation of the connecting homomorphism for derived functor Ext-groups in terms of Yoneda
extensions see [BF98, Lemma 3].

We will frequently interpret certain complexes in the derived category in terms of Yoneda ex-
tension classes as in [BF98, p. 1353]. To a complex E which is acyclic outside degrees 0 and n � 1
one associates the class e(E) ∈ Extn+1

R (Hn(E),H0(E)) which is given by the truncated complex

E′ := τ�nτ�0E with the induced maps H0(E)
∼=−→ H0(E′) → (E′)0 and (E′)n → Hn(E′)

∼=−→ Hn(E)
considered as a Yoneda extension.

Lemma 2.4. Let E and F be complexes which are acyclic outside degrees 0 and n � 1. Let
α : H0(E) → H0(F ) and β : Hn(E) → Hn(F ) be homomorphisms of R-modules inducing
maps α∗ : Extn+1

R (Hn(E),H0(E)) → Extn+1
R (Hn(E),H0(F )) and β∗ : Extn+1

R (Hn(F ),H0(F )) →
Extn+1

R (Hn(E),H0(F )). There exists a morphism ϕ : E → F in D(R) which induces α on H0 and
β on Hn if and only if α∗(e(E)) = β∗(e(F )). If in addition ExtnR(Hn(E),H0(F )) = 0, then the
morphism ϕ with this property is unique.

Proof. Without loss of generality we can assume that Ei = 0 and F i = 0 unless 0 � i � n. By
interpreting the maps α∗ and β∗ in terms of Yoneda extensions and by the definition of equivalence
of Yoneda extensions it is easy to see that α∗(e(E)) = β∗(e(F )) implies the existence of a morphism
E → F in the derived category with the required property. Conversely, if ϕ : E → F is such
a morphism in D(R) then there exists a complex G with Gi = 0 unless 0 � i � n, a quasi-
isomorphism λ : G → E and a map of complexes µ : G → F such that ϕ = µ ◦ λ−1. This easily
implies α∗(e(E)) = β∗(e(F )).
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To show the uniqueness it suffices to prove that if ϕ : E → F induces the zero map on H0 and
Hn then ϕ = 0 in D(R). We first observe that there is a distinguished triangle

Hn(F )[−n− 1] −→ H0(F )[0] −→ F −→ Hn(F )[−n], (6)

which on cohomology induces the canonical maps. Indeed, if F̃ denotes the complex F 0 → F 1 →
· · · → Fn → Hn(F ) with F 0 in degree 0 then (6) arises from the short exact sequence of complexes
0 → Hn(F )[−n− 1] → F̃ → F → 0 and the quasi-isomorphism H0(F )[0] → F̃ . From (6) we obtain
an exact sequence of abelian groups

HomD(R)(E,H
0(F )[0]) −→ HomD(R)(E,F ) −→ HomD(R)(E,H

n(F )[−n]).

The image of ϕ in HomD(R)(E,Hn(F )[−n]) = HomR(Hn(E),Hn(F )) is trivial, thus ϕ is the image
of a map ψ ∈ HomD(R)(E,H0(F )[0]). There is a distinguished triangle for E similar to (6) which
gives an exact sequence

HomD(R)(H
n(E)[−n],H0(F )[0]) −→ HomD(R)(E,H

0(F )[0]) −→ HomD(R)(H
0(E)[0],H0(F )[0]).

The image of ψ in HomD(R)(H0(E)[0],H0(F )[0]) = HomR(H0(E),H0(F )) is trivial and by
assumption HomD(R)(Hn(E)[−n],H0(F )[0]) = ExtnR(Hn(E),H0(F )) = 0. Thus ψ = 0 and hence
also ϕ = 0.

2.2.3 Euler characteristics. Let G be a finite group. For any object C of D(Z[G]) we write
Hev(C) and Hod(C) for the direct sums

⊕
i even H

i(C) and
⊕

i oddH
i(C) where i runs over all even

and all odd integers respectively.

We write Dperf(Z[G]) for the full triangulated subcategory of D(Z[G]) consisting of those com-
plexes that are perfect (i.e. isomorphic in D(Z[G]) to a bounded complex of finitely generated
projective Z[G]-modules). Let C be an object in Dperf(Z[G]) and t a trivialization of C (over R),
that is, an isomorphism of R[G]-modules t : Hev(C)⊗ZR

∼=−→ Hod(C)⊗ZR. We write χG(C, t) for the
Euler characteristic in K0(Z[G],R) that is defined in [BrB05, Definition 5.5] (where it is denoted by
χZ[G],R[G](C, t)). This Euler characteristic depends on C only up to isomorphism. More precisely, if
ϕ : C → C ′ is an isomorphism in Dperf(Z[G]) and t′ is the composite isomorphism of R[G]-modules

Hev(C ′) ⊗ R
Hev(ϕ−1)⊗R−−−−−−−−→ Hev(C) ⊗ R

t−→ Hod(C) ⊗ R
Hod(ϕ)⊗R−−−−−−→ Hod(C ′) ⊗ R

then χG(C, t) = χG(C ′, t′).

To compute certain Euler characteristics and to compare our constructions to related results in
the literature we will occasionally use the explicit approach described in [Bur04] and [BrB05, § 6]. By
this approach we obtain an element χold

G (C, t−1) ∈ K0(Z[G],R) for a complex C and trivialization
t as above. For the precise relation of χG(C, t) and χold

G (C, t−1) see [BrB05, Theorem 6.2].

Finally we recall the relevant case of the additivity criterion for Euler characteristics [BrB05,
Corollary 6.6].

Lemma 2.5. Let A
α−→ B

β−→ C
γ−→ A[1] be a distinguished triangle in Dperf(Z[G]) and let tA, tB and

tC be trivializations of A, B and C over R. The long exact cohomology sequence of the distinguished
triangle gives rise to exact sequences of R[G]-modules

0 → ker(Hev(α) ⊗ R) → Hev(A) ⊗ R → Hev(B) ⊗ R → Hev(C) ⊗ R → ker(Hod(α) ⊗ R) → 0,

0 → ker(Hod(α) ⊗ R) → Hod(A) ⊗ R → Hod(B) ⊗ R → Hod(C) ⊗ R → ker(Hev(α) ⊗ R) → 0.
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We consider the R[G]-modules and isomorphisms in the following (in general non-commutative)
diagram

Hev(B) ⊗ R ⊕ ker(Hev(α) ⊗ R) ⊕ ker(Hod(α) ⊗ R) sev ��

tB⊕id⊕(−id)
��

Hev(A) ⊗ R ⊕Hev(C) ⊗ R

tA⊕tC
��

Hod(B) ⊗ R ⊕ ker(Hev(α) ⊗ R) ⊕ ker(Hod(α) ⊗ R) sod
�� Hod(A) ⊗ R ⊕Hod(C) ⊗ R

where sev and sod are obtained from the exact sequences above by choosing splittings. If the auto-
morphism (tB⊕id⊕(−id))−1◦(sod)−1◦(tA⊕tC)◦sev ofHev(B)⊗R⊕ker(Hev(α)⊗R)⊕ker(Hod(α)⊗R)
has reduced norm equal to 1 then

χG(B, tB) = χG(A, tA) + χG(C, tC)

in K0(Z[G],R).

2.3 The equivariant Dedekind zeta-function

We fix some basic notations for number fields which are used in the rest of this paper and define
the equivariant zeta-function of a Galois extension of number fields.

2.3.1 Notation for number fields. Let L be a number field. We write OL for the ring of integers
of L and S(L) for the set of all places of L. For any place w ∈ S(L) we denote the completion of L
at w by Lw. For a non-archimedean place w we write Ow for the ring of integers of Lw, mw for the
maximal ideal of Ow, λ(w) := Ow/mw for the residue field and Nw := |λ(w)| for the cardinality of
the residue field. Furthermore for i � 1 we let U (i)

Lw
denote the group of ith principal units in Lw,

i.e. U (i)
Lw

:= 1 + mi
w.

If L is an extension of K and v ∈ S(K) then Sv(L) is the set of all places of L above v. This
applies in particular to K = Q where either v = p is a prime number or v = ∞ is the archimedean
place. We also use the notation Sf (L) for the set of all non-archimedean places, SR(L) for the set
of real archimedean places and SC(L) for the set of complex archimedean places.

From now on let L/K be a Galois extension of number fields with Galois group G. For w ∈ S(L)
we write Gw for the decomposition group of w. For a non-archimedean place w we denote the
inertia group by Iw and we let σw ∈ Gw be any lift of the (arithmetic) Frobenius in Gw/Iw. For
any place v ∈ S(K) we set Lv :=

∏
w∈Sv(L) Lw and (if v ∈ Sf (K)) OL,v :=

∏
w∈Sv(L) Ow and

mL,v :=
∏
w∈Sv(L) mw. Note that Lv, OL,v and mL,v are G-modules in an obvious way.

Let S be a finite subset of S(K). The G-stable set of places of L that lie above a place in
S will be denoted by the same letter S. This should not cause any confusion because places of K
will be called v and places of L will be called w. For a finite subset S of S(K) which contains all
archimedean places we let OL,S be the ring of S-integers in L. Note that OL,S is again a G-module
and that in the case S = S∞(K) one has OL = OL,S .

2.3.2 The equivariant zeta-function. As in § 2.1.4 we denote the set of all irreducible C-valued
characters of a finite group G by Irr(G) and identify the centre Z(C[G]) of C[G] with

∏
χ∈Irr(G) C.

Recall that a meromorphic Z(C[G])-valued function is a function of a complex variable s of the
form s �→ g(s) = (g(χ, s))χ∈Irr(G) ∈ ∏

χ∈Irr(G) C = Z(C[G]) where each function s �→ g(χ, s) is
meromorphic.

From now on let L/K be a Galois extension of number fields with Galois group G. The equivari-
ant Dedekind zeta-function of L/K is a meromorphic Z(C[G])-valued function which is first defined
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on a right half plane as a product of equivariant Euler factors and then extended to the whole
complex plane by meromorphic continuation.

Let v ∈ S(K). Choose a place w ∈ Sv(L) and denote its decomposition group by Gw. We define
a meromorphic Z(C[Gw])-valued function LLw/Kv(s) by

LLw/Kv(s) := (LLw/Kv(ψ, s))ψ∈Irr(Gw).

Here for each ψ ∈ Irr(Gw) (and more generally for each not necessarily irreducible character ψ) the
meromorphic function LLw/Kv(ψ, s) is defined as follows. First we choose a C[Gw]-module Vψ with
character ψ. In the case v ∈ Sf (K) we then define

LLw/Kv(ψ, s) := detC(1 − σw(Nv)−s|V Iw
ψ )−1,

where (as in § 2.3.1) Iw denotes the inertia group of w, σw ∈ Gw is a lift of the arithmetic Frobenius
in Gw/Iw and Nv is the cardinality of the residue field of v. In the case v ∈ S∞(K) we set
nψ := dimC(Vψ), n+

ψ := dimC(V Gw
ψ ) and n−ψ := nψ − n+

ψ , and define

LLw/Kv(ψ, s) :=

{
[2(2π)−sΓ(s)]nψ if v ∈ SC(K),

[π−s/2Γ(s/2)]n
+
ψ [π−(s+1)/2Γ((s+ 1)/2)]n

−
ψ if v ∈ SR(K).

We note that LLw/Kv (ψ + ψ′, s) = LLw/Kv(ψ, s) · LLw/Kv(ψ′, s) for two characters ψ,ψ′; thus one
can in fact define LLw/Kv(ψ, s) for any virtual character ψ of Gw.

Let indGGw : Z(C[Gw]) → Z(C[G]) be the map

(αψ)ψ∈Irr(Gw) �→
( ∏
ψ∈Irr(Gw)

α
〈ψ,χ|Gw 〉
ψ

)
χ∈Irr(G)

,

where 〈ψ,χ|Gw〉 denotes the usual inner product of the characters ψ and χ|Gw of Gw. The restriction
of this map to Z(C[Gw])× is the induction map indGGw : Z(C[Gw])× → Z(C[G])× defined in § 2.1.3
so that using the same name for these maps is justified. The meromorphic Z(C[G])-valued function
s �→ indGGw(LLw/Kv(s)) depends only on the place v and not on the choice of w ∈ Sv(L).

For a finite subset S of S(K), the S-truncated equivariant Dedekind zeta-function ζL/K,S(s) is
the meromorphic Z(C[G])-valued function which for Re(s) > 1 is defined by the product

ζL/K,S(s) :=
∏

v∈S(K)\S
indGGw(LLw/Kv(s)). (7)

For S = ∅ the empty set we also write ZL/K(s) := ζL/K,∅(s).

Remark 2.6. In the past various names and notations have been used for the equivariant Dedekind
zeta-function of L/K. The function ZL/K(s) defined above agrees with the ‘completed equivariant
Artin L-function’ Λ(s) in [BlB03, § 3.1], and the function ζL/K,S(s) defined in (7) agrees with
the function LS(s) in [Bur01]. For simplicity we will sometimes abbreviate ‘equivariant Dedekind
zeta-function of L/K’ to ‘zeta-function of L/K’.

2.3.3 The functional equation. One has ZL/K(s) = (ΛL/K(χ, s))χ∈Irr(G) where ΛL/K(χ, s) is the
completed Artin L-function of the character χ as defined for example in [Frö83, ch. I, § 5] (where it is
denoted by L̃(s, L/K,χ)). This implies that the function ZL/K(s) and more generally the functions
ζL/K,S(s) for any finite set S have meromorphic continuations to the whole complex plane.

We recall that ΛL/K(χ, s) satisfies the functional equation

ΛL/K(χ, s) = εL/K(χ, s)ΛL/K(χ, 1 − s),

where εL/K(χ, s) := W (χ) · (|dK/Q|deg(χ)Nf(χ))1/2−s with W (χ) denoting the Artin root num-
ber, dK/Q the discriminant of the extension K/Q, deg(χ) the degree of the character χ and f(χ)
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the conductor of χ (cf. [Frö83, ch. I, p. 38]). We define a Z(C[G])-valued epsilon function by
εL/K(s) := (εL/K(χ, s))χ∈Irr(G). From the functional equations for ΛL/K(χ, s) one obtains the equiv-
ariant functional equation

ZL/K(s)# = εL/K(s)ZL/K(1 − s), (8)

where # denotes the involution from § 2.1.4.

2.3.4 The leading terms. For a meromorphic C-valued function g(s) of a complex variable s
which has algebraic order d at a point s0 we set g∗(s0) := lims→s0(s − s0)−dg(s) ∈ C×. For a
meromorphic Z(C[G])-valued function g(s) = (g(χ, s))χ∈Irr(G) we set g∗(s0) := (g∗(χ, s0))χ∈Irr(G) ∈
Z(C[G])×.

Lemma 2.7. Let L/K be a Galois extension of number fields with Galois group G. Let s0 ∈ R.

(i) For each v ∈ S(K) and w ∈ Sv(L) one has L∗
Lw/Kv

(s0) ∈ Z(R[Gw])×+.

(ii) Let S be a finite subset of S(K). Then ζ∗L/K,S(s0) ∈ Z(R[G])× and moreover ζ∗L/K,S(s0) ∈
Z(R[G])×+ if s0 � 1.

Proof. Recall that an element x = (xχ)χ∈Irr(G) ∈ ∏
χ∈Irr(G) C× = Z(C[G])× belongs to Z(R[G])×,

respectively Z(R[G])×+, if and only if xχ = xχ for all χ, respectively x ∈ Z(R[G])× and xχ is a
positive real number whenever χ is symplectic.

To prove claim (i) we first note that LLw/Kv(ψ, s) = LLw/Kv(ψ, s) which implies L∗
Lw/Kv

(s0) ∈
Z(R[Gw])× for s0 ∈ R. In the case v ∈ S∞(K) the groupGw has no irreducible symplectic characters.
If v ∈ Sf (K) and ψ ∈ Irr(Gw) is an irreducible symplectic character then V Iw

ψ = 0 and therefore
L∗
Lw/Kv

(ψ, s0) = 1 > 0.

One has ζL/K,S(s) = (LL/K,S(χ, s))χ∈Irr(G) where LL/K,S(χ, s) denotes the usual S-truncated
Artin L-function of the character χ. The statement ζ∗L/K,S(s0) ∈ Z(R[G])× for s0 ∈ R in claim (ii)

therefore follows from LL/K,S(χ, s) = LL/K,S(χ, s) as above. Now let χ ∈ Irr(G) be a symplectic
character. For s0 > 1 one has indGGw(LLw/Kv(s0)) = indGGw(L∗

Lw/Kv
(s0)) ∈ Z(R[G])×+ by part (i) and

the fact that indGGw maps Z(R[Gw])×+ to Z(R[G])×+. (This holds because indGGw : Z(C[Gw])× →
Z(C[G])× corresponds to the induction map indGGw : K1(C[Gw]) → K1(C[G]) defined in § 2.1.3
and therefore restricts to the induction map indGGw : Z(R[Gw])×+ → Z(R[G])×+ corresponding
to indGGw : K1(R[Gw]) → K1(R[G]).) Since the product (7) converges for s0 > 1 this implies
L∗
L/K,S(χ, s0) = LL/K,S(χ, s0) > 0. It is well known that LL/K,S(χ, s) has no zero or pole at

s = 1, hence it follows that L∗
L/K,S(χ, 1) = lims→1,s>1LL/K,S(χ, s) > 0. This shows the result for

s0 = 1.

3. The leading term at s = 1

Let L/K be a Galois extension of number fields with Galois group G. Let S be a finite subset of
S(K) which contains all archimedean places and all places which ramify in L/K and is such that
Pic(OL,S) = 0. In this section we formulate an explicit conjectural description of ∂̂1

G(ζ∗L/K,S(1)), and
then describe some of its basic properties.

3.1 Statement of the conjecture
Recall that for a place v ∈ S(K) we write Lv :=

∏
w∈Sv(L) Lw and for v non-archimedean OL,v :=∏

w∈Sv(L) Ow and mL,v :=
∏
w∈Sv(L) mw. For each v ∈ S∞(K) we let exp : Lv → L×

v denote the
product of the (real or complex) exponential maps Lw → L×

w for w ∈ Sv(L). If v ∈ Sf (K), then for
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sufficiently large i the exponential map exp : mi
L,v → L×

v is the product of the p-adic exponential
maps mi

w → L×
w for w ∈ Sv(L).

To state our conjecture we need to choose certain lattices. For each v ∈ Sf := S ∩ Sf (K), with
residue characteristic p, we choose a full projective Zp[G]-lattice Lv ⊆ OL,v which is contained in a
sufficiently large power of mL,v to ensure that the exponential map is defined on Lv. Let L be the
full projective Z[G]-sublattice of OL which has p-adic completions

L ⊗Z Zp =
( ∏
v∈Sp(K)\S

OL,v

)
×

( ∏
v∈Sp(K)∩S

Lv
)
. (9)

We set LS :=
∏
v∈S Lv and LS :=

∏
v∈S Lv (where Lv := Lv for each v ∈ S∞(K)) and we let expS

denote the map LS → L×
S that is induced by the product of the respective exponential maps. We

also write ∆S for the natural diagonal embedding from L× to L×
S .

Following the notation of [NSW00, ch. VIII] we write IL for the group of idèles of L and regard
L× as embedded diagonally in IL. The idèle class group is CL := IL/L

× and the S-idèle class group is
CS(L) := IL/(L×UL,S), where UL,S :=

∏
w∈S{1}×

∏
w/∈S O×

w . We remark that since Pic(OL,S) = 0,
the natural map L×

S → CS(L) is surjective with kernel ∆S(O×
L,S).

There exists a canonical invariant isomorphism

invL/K,S : H2(G,CS(L))
∼=−→ 1

|G|Z/Z.

Indeed, since UL,S is cohomologically trivial the short exact sequence 0 → UL,S → CL → CS(L) → 0
induces an isomorphismH2(G,CL)

∼=−→ H2(G,CS(L)), and from class field theory one has a canonical
invariant isomorphism invL/K : H2(G,CL)

∼=−→ (1/|G|)Z/Z (as defined, for example, in [NSW00,
p. 379]). We let eglobL/K,S (or eglobS when L/K is clear from context) denote the global canonical class,
i.e. the element of Ext2Z[G](Z, CS(L)) = H2(G,CS(L)) that is sent by invL/K,S to 1/|G|.

Let ES be a complex in D(Z[G]) which corresponds (via § 2.2.2) to eglobS . By Lemma 2.4 there
exists a unique morphism αS : LS [0] ⊕ L[−1] → ES in D(Z[G]) for which H0(αS) is the composite
LS expS−−−→ L×

S → CS(L) and H1(αS) is the restriction of the trace map tr : L → Q to L. Let ES(L)
be any complex which lies in a distinguished triangle in D(Z[G]) of the form

LS[0] ⊕ L[−1] αS−−→ ES
βS−→ ES(L)

γS−→ . (10)

To describe the cohomology of ES(L) we use the following notation. Let L∞ :=
∏
w∈S∞(L) Lw

and define tr∞ : L∞ → R by (lw)w∈S∞(L) �→ ∑
w∈S∞(L) trLw/R(lw). We set L0∞ := ker(tr∞) and

L0 := ker(tr : L → Q), and observe that one has a commutative diagram of short exact sequences
of R[G]-modules

0 �� L0 ⊗Q R
⊂ ��

µL
��

L⊗Q R
tr⊗QR ��

µ′L
��

R �� 0

0 �� L0∞
⊂ �� L∞

tr∞ �� R �� 0

where µ′L denotes the canonical isomorphism and µL its restriction to L0 ⊗Q R. We also use the
notation exp∞ : L∞ → L×∞ for the product of the exponential maps and ∆∞ : L× → L×∞ for
the diagonal embedding. Finally we set log∞(O×

L ) := {x ∈ L∞ : exp∞(x) ∈ ∆∞(O×
L )}. Using the

proof of Dirichlet’s unit theorem (see [Neu92, Kapitel I, § 7, in particular Satz (7.3)]) it is not difficult
to show that log∞(O×

L ) is a full lattice in L0∞.
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Our conjectural formula for ∂̂1
G(ζ∗L/K,S(1)) uses the Euler characteristic defined in part (iii) of

the following lemma. In the sequel we shall abbreviate ‘cohomologically trivial’ to ‘c-t’.

Lemma 3.1. The complex ES(L) defined by the distinguished triangle (10) has the following prop-
erties.

(i) ES(L) is a perfect complex of Z[G]-modules.

(ii) ES(L) ⊗ Q is acyclic outside degrees −1 and 0, and there exist canonical identifications of
Q[G]-modules H−1(ES(L)) ⊗ Q ∼= {x ∈ LS : expS(x) ∈ ∆S(O×

L )} ⊗ Q ∼= log∞(O×
L ) ⊗ Q and

H0(ES(L)) ⊗ Q ∼= L0.

(iii) The identifications from claim (ii) and the canonical isomorphism log∞(O×
L ) ⊗ R ∼= L0∞ allow

us to consider µL as a trivialization of ES(L). The Euler characteristic χG(ES(L), µL) in
K0(Z[G],R) depends only upon L/K and S.

Proof. Since eglobS is a generator of H2(G,CS(L)), cup-product with eglobS induces isomorphisms
between the (Tate) cohomology groups of Z and CS(L) (with a dimension shift of 2) and hence in
D(Z[G]) the complex ES is isomorphic to a bounded complex of G-modules each of which is c-t.
Since this is also obviously true for LS[0]⊕L[−1], the triangle (10) implies that ES(L) is isomorphic
to a bounded complex of G-modules each of which is c-t. We will show that the cohomology of ES(L)
is finitely generated. Claim (i) then follows because a bounded complex of c-t Z[G]-modules with
finitely generated cohomology is perfect by a standard argument (similar to the constructions in the
proofs of [Lan02, ch. XXI, Propositions 1.1 and 1.2]). The exact cohomology sequence associated to
(10) implies that ES(L) is acyclic outside degrees −1, 0 and 1 and that there is an exact sequence

0 → H−1(ES(L)) → LS → CS(L) → H0(ES(L)) → L tr−→ Z → H1(ES(L)) → 0.

This immediately shows that H1(ES(L)) is finite and H1(ES(L)) ⊗ Q = 0. The map LS → CS(L)
in the exact sequence is the composite LS expS−−−→ L×

S → CS(L) whose cokernel is easily seen to be
finite; hence H0(ES(L)) is finitely generated and there is an identification H0(ES(L)) ⊗ Q ∼= L0.
Finally H−1(ES(L)) ∼= {x ∈ LS : expS(x) ∈ ∆S(O×

L )} and the projection map LS → L∞ induces
an isomorphism between this set and log∞(U) := {x ∈ L∞ : exp∞(x) ∈ ∆∞(U)}, where U is a
subgroup of finite index in O×

L . Since log∞(U) is a full lattice in L0∞ we see that H−1(ES(L)) is
finitely generated, which completes the proof of claim (i). Moreover log∞(U)⊗Q = log∞(O×

L )⊗Q,
which completes the proof of claim (ii).

The element χG(ES(L), µL) does not depend on the choice of ES or of the distinguished triangle
(10) because up to isomorphism in D(Z[G]) the complex ES(L) is independent of these choices.
It remains to prove that χG(ES(L), µL) is independent of the choice of L. For each v ∈ Sf we
let L′

v ⊆ OL,v be lattices giving rise to a lattice L′ ⊆ OL as above. We assume (as we may) that
L′
v ⊆ Lv for all v ∈ Sf so L′ ⊆ L. We set L′

S :=
∏
v∈S L′

v and consider the following commutative
diagram of distinguished triangles in D(Z[G]) (the existence of such a diagram follows for example
from [BBD82, Proposition 1.1.11]).

L′
S [0] ⊕ L′[−1] ��

⊆
��

ES �� ES(L′) ��

��
LS[0] ⊕L[−1] ��

��

ES ��

��

ES(L) ��

��
LS/L′

S [0] ⊕ L/L′[−1] ��

��

0 ��

��

LS/L′
S[1] ⊕ L/L′[0]

��
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In this diagram the first two rows are distinguished triangles as in (10) and the first column is
induced by the obvious short exact sequence. Now the G-modules LS/L′

S and L/L′ are c-t, finite
and isomorphic. Hence the zero map is a trivialization of LS/L′

S [1]⊕L/L′[0] and the associated Euler
characteristic is χG(LS/L′

S [1]⊕L/L′[0], 0) = 0 ∈ K0(Z[G],R). Upon applying [BrB05, Theorem 5.7]
to the third column of the above diagram we thus deduce that χG(ES(L′), µL) = χG(ES(L), µL),
as required.

Remark 3.2. It is occasionally convenient to give an explicit representative of ES(L) in the following

way. Fix an extension 0 → CS(L) ⊆−→ A
d−→ B → Z → 0, which represents eglobS ∈ Ext2Z[G](Z, CS(L))

and in which the G-modules A and B are c-t. Then ES can be taken to be the complex A d−→ B in
degrees 0 and 1, and the morphism LS [0] ⊕ L[−1] → ES in D(Z[G]) is represented by the map α

of complexes which in degree 0 is LS expS−−−→ L×
S → CS(L) ⊆ A and in degree 1 is any lift L tr′−→ B of

L tr−→ Z through the given surjection B → Z.
The complex ES(L) can be taken to be the mapping cone of this map α of complexes, that is

LS (d−1,0)−−−−→ A⊕ L d0−→ B,

where LS is placed in degree −1, d−1 : LS → A is as above and d0 = (d, tr′). Note that for these
complexes the distinguished triangle (10) which gives rise to the identification of the cohomology of
ES(L) ⊗ Q in Lemma 3.1(ii) is

LS [0] ⊕ L[−1] α−→ ES
β−→ ES(L)

γ−→ LS [1] ⊕ L[0],

where α is as described above, β is the identity on A and B, and γ is minus the identity on LS
and L.

We now formulate our conjectural description of ∂̂1
G(ζ∗L/K,S(1)).

Conjecture 3.3. In K0(Z[G],R) one has ∂̂1
G(ζ∗L/K,S(1)) = −χG(ES(L), µL).

3.2 Basic properties
To describe some basic properties of Conjecture 3.3 it is convenient to set

TΩ(L/K, 1) := ∂̂1
G(ζ∗L/K,S(1)) + χG(ES(L), µL) ∈ K0(Z[G],R).

Proposition 3.4. The element TΩ(L/K, 1) depends only upon L/K.

Proof. Since χG(ES(L), µL) depends only upon L/K and S (by Lemma 3.1(iii)) it suffices to prove
that TΩ(L/K, 1) is unchanged if one replaces S by S′ := S∪{v′} where v′ is any element of S(K)\S.
But ζ∗L/K,S(1) = ζ∗L/K,S′(1) · indGGw(L∗

Lw/Kv′
(1)) where as in § 2.3.2 we fix w ∈ Sv′(L) and let Gw be

the decomposition group of w. Hence we must show that

χG(ES′(L′), µL) − χG(ES(L), µL) = ∂̂1
G(indGGw(L∗

Lw/Kv′
(1))). (11)

To simplify the notation we set O′ := OL,v′ , U ′ := O×
L,v′ and, for each integer i � 1, U ′(i) :=∏

w∈Sv′(L) U
(i)
Lw

. Let Ov′ be the ring of integers in the completion Kv′ and let π be a uniformizing
parameter for Ov′ . We choose a lattice L′ ⊆ L for S′ such that L′

v = Lv for v ∈ S and L′
v′ = πmO′

where m is a sufficiently large integer. Note that πmO′ is a projective Zp[G]-lattice since v′ is
unramified in L/K and that exp(L′

v′) = exp(πmO′) = U ′(m).
There is a canonical short exact sequence 0 → U ′ → CS′(L) → CS(L) → 0, and since the G-

module U ′ is c-t one obtains an isomorphism H2(G,CS′(L))
∼=−→ H2(G,CS(L)). This isomorphism
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maps eglobS′ to eglobS and hence Lemma 2.4 implies the existence of a morphism κ : ES′ → ES in
D(Z[G]) which induces the identity on H1 and the map CS′(L) → CS(L) on H0. We consider the
following commutative diagram of distinguished triangles in D(Z[G]).

L′
v′ [0] ⊕ (L/L′)[−2] ��

��

L′
S′ [0] ⊕ L′[−1] ��

αS′
��

LS[0] ⊕L[−1] ��

αS

��
U ′[0] ��

��

ES′
κ ��

βS′
��

ES ��

βS
��

��

(U ′/U ′(m))[0] ⊕ (L/L′)[−1] ��

��

ES′(L′) ��

γS′

��

ES(L) ��

γS

��

In this diagram the upper row is induced by the obvious short exact sequences 0 → L′
v′ → L′

S′ →
LS → 0 and 0 → L′ → L → L/L′ → 0; the first column is the distinguished triangle induced by
the exact sequence 0 → L′

v′
exp−−→ U ′ → U ′/U ′(m) → 0; and the second and third columns are the

distinguished triangles defined as in (10). The existence of the diagram follows by applying [BBD82,
Proposition 1.1.11] to the upper right square, then rotating the resulting diagram and observing
that the arrow L′

v′ [0] ⊕ (L/L′)[−2] → U ′[0] is indeed as stated. Now the complex (U ′/U ′(m))[0] ⊕
(L/L′)[−1] has finite cohomology groups and so by applying [BrB05, Theorem 5.7] to the third row
of the diagram we find that

χG(ES′(L′), µL) − χG(ES(L), µL) = χG((U ′/U ′(m))[0] ⊕ (L/L′)[−1], 0). (12)

To compute further we recall that any finite c-t G-module M gives rise to a canonical element
(M) of K0(Z[G],Q) ⊆ K0(Z[G],R) and that if we consider M [−i] as an object of Dperf(Z[G]), then
χG(M [−i], 0) = (−1)i+1(M). Hence one has

χG((U ′/U ′(m))[0] ⊕ (L/L′)[−1], 0) = −(U ′/U ′(m)) + (L/L′)

= −(U ′/U ′(1)) − (U ′(1)/U ′(m)) + (O′/πO′) + (πO′/πmO′).

From the isomorphisms U ′(i)/U ′(i+1) ∼= πiO′/πi+1O′ for all i � 1 one deduces (U ′(1)/U ′(m)) =
(πO′/πmO′). In addition, writing λ(w) for the residue field of Ow, one has the isomorphisms
O′/πO′ ∼= Z[G] ⊗Z[Gw] λ(w) and U ′/U ′(1) ∼= Z[G] ⊗Z[Gw] λ(w)×, and so the last displayed formula
implies that

χG((U ′/U ′(m))[0] ⊕ (L/L′)[−1], 0) = indGGw(−(λ(w)×) + (λ(w))), (13)

where (λ(w)×) and (λ(w)) are considered as elements of K0(Z[Gw],R). Now the exact sequence

0 → Z[Gw] Nv ′−σw−−−−−→ Z[Gw] → λ(w)× → 0

implies

(λ(w)×) = ∂̂1
Gw((detC(Nv′ − σw | Vψ))ψ∈Irr(Gw)),

where Nv ′, σw and Vψ are as in § 2.3.2. Also, if v′ has residue characteristic p and residue degree f
(i.e. Nv ′ = pf ) then λ(w) is a free (Z/p)[Gw]-module of rank f and so

(λ(w)) = [Z[Gw]f , ·p,Z[Gw]f ]

= [Z[Gw], ·Nv ′,Z[Gw]] = ∂̂1
Gw((detC(Nv ′ | Vψ))ψ∈Irr(Gw)).
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It follows that

−(λ(w)×) + (λ(w)) = ∂̂1
Gw((detC(1 − σw(Nv ′)−1 | Vψ)−1)ψ∈Irr(Gw))

= ∂̂1
Gw(L∗

Lw/Kv′
(1)). (14)

Equations (12), (13) and (14) imply (11) which completes the proof.

We next describe the behaviour of TΩ(L/K, 1) under the maps discussed in § 2.1.3.

Proposition 3.5. Let M be an intermediate field of L/K and H = Gal(L/M). Then we have the
following:

(i) resGH(TΩ(L/K, 1)) = TΩ(L/M, 1); and

(ii) if H is normal in G, then qGG/H(TΩ(L/K, 1)) = TΩ(M/K, 1).

Proof. Let S = SK be a finite set of places of K satisfying all conditions necessary to formulate
Conjecture 3.3 for L/K. Then the set SM consisting of all places of M lying above a place in S
satisfies the corresponding conditions with respect to L/M . Further, if v ∈ Sf has residue char-
acteristic p, then one can choose a full projective Zp[H]-lattice Lu ⊂ OL,u for every u ∈ Sv(M)
such that Lv :=

∏
u∈Sv(M) Lu ⊆ ∏

u∈Sv(M) OL,u = OL,v is a full projective Zp[G]-lattice. We thus
obtain the same lattice L ⊆ OL for the extensions L/K and L/M , and also LSK = LSM . Now
eglobL/M,SM

is the image of eglobL/K,SK
under the restriction map H2(G,CS(L)) → H2(H,CS(L)) and so

the complex EL/M,SM can be taken to be equal to EL/K,SK with the group action restricted from G
to H. It follows that the trivialized complex (EL/M,SM (L), µL) for the extension L/M can be taken
to equal (EL/K,SK (L), µL) for the extension L/K (again with the group action restricted from G to
H) and so

resGH(χG(EL/K,SK (L), µL)) = χH(EL/M,SM (L), µL) ∈ K0(Z[H],R).
Under the identifications Z(C[G])× =

∏
χ∈Irr(G) C× and Z(C[H])× =

∏
ψ∈Irr(H) C×, the restriction

map resGH : Z(C[G])× → Z(C[H])× is given by

(αχ)χ∈Irr(G) �→
( ∏
χ∈Irr(G)

α
〈χ,indGH(ψ)〉
χ

)
ψ∈Irr(H)

,

where indGH(ψ) denotes the induced character (see [Bre04c, Lemma 2.4]). Furthermore one has
ζ∗L/K,SK (1) = (L∗

L/K,SK
(χ, 1))χ∈Irr(G) and ζ∗L/M,SM

(1) = (L∗
L/M,SM

(ψ, 1))ψ∈Irr(H). Hence the in-
duction property of truncated Artin L-functions (which is similar to the non-truncated version
in [Neu92, Kapitel VII, Satz (10.4)]) implies that resGH(ζ∗L/K,SK (1)) = ζ∗L/M,SM

(1) ∈ Z(R[H])×, and

that therefore resGH(∂̂1
G(ζ∗L/K,SK (1))) = ∂̂1

H(ζ∗L/M,SM
(1)) ∈ K0(Z[H],R). From this, claim (i) follows.

To prove claim (ii) we fix a finite set S of places of K containing all archimedean places and all
places which ramify in L/K (and hence all which ramify in M/K) and which is sufficiently large
to ensure that both Pic(OL,S) = 0 and Pic(OM,S) = 0. Set Q := G/H. One has qGQ(ζ∗L/K,S(1)) =

ζ∗M/K,S(1) ∈ Z(R[Q])× and hence qGQ(∂̂1
G(ζ∗L/K,S(1))) = ∂̂1

Q(ζ∗M/K,S(1)) ∈ K0(Z[Q],R). In addition,
if we have chosen lattices Lv ⊆ OL,v and L ⊆ OL as in (9) with respect to (L/K,S), then LHv ⊆
OH
L,v = OM,v and LH ⊆ OM satisfy (9) with respect to (M/K,S), and so we need only show that

qGQ(χG(EL/K,S(L), µL)) = χQ(EM/K,S(LH), µM ) ∈ K0(Z[Q],R).
We first make the following general observation which follows easily from the description of

Euler characteristics given in [BrB05, § 6]. If C ∈ Dperf(Z[G]) is a complex of c-t G-modules and
t : Hev(C⊗R) → Hod(C⊗R) a trivialization of C then qGQ(χG(C, t)) = χQ(CH , tH) in K0(Z[Q],R)
where CH ∈ Dperf(Z[Q]) is the complex of H-invariants and tH is the trivialization Hev(CH ⊗R) ∼=
(Hev(C ⊗ R))H t−→ (Hod(C ⊗ R))H ∼= Hod(CH ⊗ R).
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To apply this we note first that if we represent eglobL/K,S by an extension of Z[G]-modules

0 → CS(L) ⊆−→ A
d−→ B

κ−→ Z → 0 (15)

in which A and B are c-t, then eglobM/K,S is represented by the induced extension of Z[Q]-modules

0 → CS(M) ⊆−→ AH
d−→ BH κ′−→ Z → 0, (16)

where κ′ := (1/|H|)κ. Indeed, since the injective inflation map H2(Q,CS(M)) → H2(G,CS(L))
sends eglobM/K,S to |H| · eglobL/K,S , to conclude that (16) represents eglobM/K,S it is enough to note that there
is an equivalence of Yoneda extensions between the extension obtained by first regarding (16) as an
extension of G-modules and then taking the push-out under the inclusion CS(M) → CS(L) and the
extension obtained by taking the pull-back of (15) under the ‘multiplication by |H|’ homomorphism
Z → Z. (It is a straightforward exercise to prove the claimed equivalence of Yoneda extensions
and so we omit details.) Thus we can take the complexes EL/K,S and EM/K,S to be A

d−→ B

and AH
d−→ BH respectively (where in both cases the modules are placed in degrees 0 and 1).

When combined with the fact that trM/Q = (1/|H|)trL/Q (on M) and the explicit construction of
EL/K,S(L) and EM/K,S(LH) in Remark 3.2 we see that EM/K,S(LH) = (EL/K,S(L))H and µM =
(µL)H . This gives the required equality qGQ(χG(EL/K,S(L), µL)) = χQ((EL/K,S(L))H , (µL)H) =
χQ(EM/K,S(LH), µM ).

3.3 The conjectures of Stark and Chinburg
We show that Conjecture 3.3 refines both Stark’s conjecture at s = 1 (as discussed by Tate in [Tat84,
ch. I, Conjecture 8.2]) and also Chinburg’s ‘Ω1-conjecture’ (as formulated in [Chi85, Question 3.2]
and [CCFT91, § 4.2, Conjecture 3]).

Proposition 3.6. Let TΩ(L/K, 1) be the element of K0(Z[G],R) defined in § 3.2 (so Conjecture 3.3
is equivalent to an equality TΩ(L/K, 1) = 0). Then both of the following assertions are valid:

(i) TΩ(L/K, 1) ∈ K0(Z[G],Q) if and only if Stark’s conjecture at s = 1 is valid for L/K;

(ii) TΩ(L/K, 1) ∈ ker(K0(Z[G],R)
∂0
G−−→ K0(Z[G])) if and only if Chinburg’s ‘Ω1-conjecture’ is valid

for L/K.

Proof. Since the R[G]-modules L0 ⊗Q R and log∞(O×
L ) ⊗ R are isomorphic we may choose an

isomorphism κ : L0
∼=−→ log∞(O×

L ) ⊗ Q of Q[G]-modules. Then χG(ES(L), κ ⊗Q R) ∈ K0(Z[G],Q)
and so TΩ(L/K, 1) ∈ K0(Z[G],Q) if and only if χG(ES(L), κ ⊗Q R) − TΩ(L/K, 1) ∈ K0(Z[G],Q).
But [BrB05, Proposition 5.6.2] implies that

χG(ES(L), κ⊗Q R) − χG(ES(L), µL) = ∂1
G([L0 ⊗Q R, λ])

with λ := µ−1
L ◦ (κ ⊗Q R). Since Z(Q[G])× is the full pre-image of K0(Z[G],Q) under the map

∂̂1
G : Z(R[G])× → K0(Z[G],R) and ∂1

G([L0 ⊗Q R, λ]) = ∂̂1
G(nr(λ)), it follows that TΩ(L/K, 1) ∈

K0(Z[G],Q) if and only if ζ∗L/K,S(1)−1 · nr(λ) ∈ Z(Q[G])×.

Now Z(Q[G])× is equal to the subgroup of elements (zψ)ψ∈Irr(G) of Z(C[G])× =
∏
ψ∈Irr(G) C×

with the property that ω(zψ) = zω◦ψ for all ω ∈ Aut(C) and all ψ ∈ Irr(G). Since for each ψ ∈ Irr(G)
one has ζ∗L/K,S(1)ψ = L∗

L/K,S(ψ, 1) and nr(λ)ψ = detC(λ | HomC[G](Vψ, L0 ⊗Q C)), where we write
λ for the C-linear automorphism of HomC[G](Vψ, L0 ⊗Q C) that is induced by λ ⊗R C, we deduce
that TΩ(L/K, 1) ∈ K0(Z[G],Q) if and only if for each ψ ∈ Irr(G) and each ω ∈ Aut(C) one has

ω

(
detC(λ | HomC[G](Vψ, L0 ⊗Q C))

L∗
L/K,S

(ψ, 1)

)
=

detC(λ | HomC[G](Vω◦ψ , L0 ⊗Q C))
L∗
L/K,S

(ω ◦ ψ, 1) .

1442

https://doi.org/10.1112/S0010437X07002874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002874


Leading terms of Artin L-functions

To show that this condition is equivalent to the validity of [Tat84, ch. I, Conjecture 8.2] for each
ψ ∈ Irr(G) one need only mimic the proof of [Tat84, ch. I, Proposition 6.1]. Indeed, the last displayed
equality is the variant of [Tat84, ch. I, Conjecture 8.2] that is alluded to in [Tat84, top of p. 35].
This proves claim (i).

Chinburg’s ‘Ω1-conjecture’ asserts the vanishing of the element Ω(L/K, 1) of Cl(Z[G]) that is
defined in [Chi85, Definition 3.1]. Since Lemma 2.7(ii) implies that ∂0

G(∂̂1
G(ζ∗L/K,S(1))) = 0, claim

(ii) will follow if ∂0
G(χG(ES(L), µL)) = Ω(L/K, 1). After enlarging S if necessary, we may assume

that L is a free Z[G]-module (indeed one can take L to be a suitable integer multiple of any free

OK [G]-submodule of OL, and then define Lv by (9)). We choose an extension 0 → CS(L) ⊆−→ A
d−→

B → Z → 0 representing eglobS as in Remark 3.2 but with the additional condition that B is a finitely
generated free Z[G]-module. We set Lf :=

∏
v∈Sf Lv, we write exp(Lf ) for the image of Lf ⊂ LS

under the composite LS expS−−−→ L×
S → CS(L) and note that the induced map exp : Lf → exp(Lf ) is

an isomorphism. We also consider exp(Lf ) as a submodule of A and set AL := A/exp(Lf ). Then
one has a short exact sequence of complexes (with vertical differentials) of the form

0 �� 0 �� B B �� 0

0 �� exp(Lf ) ��

��

A⊕ L ��

d0

��

AL ⊕ L ��

��

0

0 �� Lf ⊂ ��

exp

��

LS ��

(d−1,0)

��

L∞ ��

(d′,0)

��

0

where the central column is the representative of ES(L) described in Remark 3.2. Since the left
complex is acyclic this sequence implies that χG(ES(L), µL) = χG(ES(L)′, µL) whereES(L)′ denotes
the complex given by the right column of the diagram. From [BrB05, Proposition 5.6.1] we may

therefore deduce that ∂0
G(χG(ES(L), µL)) ≡ χZ[G](L∞

d′−→ AL) mod F (Z[G]) where we write χZ[G]

for the Euler characteristic with values in K0(Z[G]) and F (Z[G]) for the subgroup of K0(Z[G])
which is generated by the class [Z[G]].

For each v ∈ S∞(K) we now fix a place w of L above v and a finitely generated Z[Gw]-submodule
Wv of L×

w which satisfies the conditions of [Chi85, Lemma 2.1(i), (ii)]. We let W∞ denote the Z[G]-
submodule

∏
v∈S∞(K) Z[G] ⊗Z[Gw] Wv of L×∞. Both ∆S(O×

L,S) and expS(Lf ) lie in the subgroup

W∞ × ∏
w∈Sf L

×
w of L×

S , and we set CfL,S := (W∞ × ∏
w∈Sf L

×
w)/(∆S(O×

L,S) · expS(Lf )). Then we
may construct a commutative diagram of the following form.

0

��

0

��
0 �� CfL,S

��

⊂
��

A′ ��

��

B �� Z �� 0

0 �� CS(L)/exp(Lf ) e ��

��

A′
L ��

��

B �� Z �� 0

L×∞/W∞

��

L×∞/W∞

��
0 0

(17)
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In this diagram the exactness of the left-hand column is clear and hence, since (by definition of
W∞) the G-module L×∞/W∞ is c-t, this column induces an isomorphism ι : Ext2Z[G](Z, C

f
L,S) ∼=

Ext2Z[G](Z, CS(L)/exp(Lf )). The upper row is chosen to be a representative of the pre-image under
ι of the element corresponding to the exact sequence

0 → CS(L)/exp(Lf ) → AL
d−→ B → Z → 0, (18)

and the second row of (17) is then constructed via the push-out of the given maps CfL,S → A′ and

CfL,S → CS(L)/exp(Lf ). The second column of (17) is thus exact and hence, since AL and L×∞/W∞
are both c-t, the G-module A′, respectively A′

L, is finitely generated and c-t, respectively c-t. Now
the complexes L∞

d′−→ AL and L∞
d′′−→ A′

L (where d′′ is the composite of L∞
exp∞−−−→ L×∞ → CS(L)/

exp(Lf ) and the map e from (17)) are isomorphic in Dperf(Z[G]) since (18) and the second row of
(17) represent the same element of Ext2Z[G](Z, CS(L)/exp(Lf )), and hence χZ[G](L∞

d′−→ AL) = χZ[G]

(L∞
d′′−→ A′

L). In addition, by its very definition, Ω(L/K, 1) ≡ χZ[G](A′ → B) ≡ χZ[G](A′[0]) mod
F (Z[G]). From the exact sequence of perfect complexes (with vertical differentials)

0 �� A′ �� A′
L �� L×∞/W∞ �� 0

0 �� 0 ��

��

L∞

d′′
��

L∞ ��

exp∞

��

0

(where the upper row comes from (17)) we may therefore deduce that

∂0
G(χG(ES(L), µL)) ≡ χZ[G](L∞

d′−→ AL)

= χZ[G](L∞
d′′−→ A′

L)

= χZ[G](A
′[0]) + χZ[G](L∞

exp∞−−−→ L×
∞/W∞)

≡ Ω(L/K, 1) +
∑

v∈S∞(K)

indGGw(χZ[Gw ](Lw
exp−−→ L×

w/Wv)),

where, for each v ∈ S∞(K), indGGw is the natural induction map K0(Z[Gw]) → K0(Z[G]). But
χZ[Gw](Lw

exp−−→ L×
w/Wv) ≡ 0 mod F (Z[Gw]) for every v ∈ S∞(K) because Cl(Z[Gw]) = 0 (since

|Gw| � 2). So the last displayed formula implies that ∂0
G(χG(ES(L), µL)) ≡ Ω(L/K, 1) mod F (Z[G]),

and since both sides lie in Cl(Z[G]) this shows that ∂0
G(χG(ES(L), µL)) = Ω(L/K, 1) as required.

4. The leading term at s = 0

As in § 3 we consider a Galois extension L/K of number fields with Galois group G and a finite
set S of places of K containing all archimedean places, all places ramified in L/K, and for which
Pic(OL,S) = 0. In this section we formulate a conjectural description of ∂̂1

G(ζ∗L/K,S(0)) in terms
of a natural Euler characteristic. An equivalent form of this conjecture has already been studied
in [Bur01], see Remark 4.3 below.

We shall use the following standard notation. If T is any finite set of places of K then YT denotes
the G-module YT :=

∏
w∈T Z where the product is over all places w of L lying above a place in T .

There is a natural augmentation map aug : YT → Z and we define XT to be its kernel.
Let PS be a complex in D(Z[G]) which corresponds to Tate’s canonical extension class in

Ext2Z[G](XS ,O×
L,S) that is defined in [Tat66] (see also [Chi85] and [Tat84, ch. II] for a discussion of

this class). Then PS is a perfect complex which is acyclic outside degrees 0 and 1, and there are
isomorphisms H0(PS) ∼= O×

L,S and H1(PS) ∼= XS . Let RegS : O×
L,S → XS ⊗Z R be the regulator
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map RegS(u) := (log|u|w)w∈S , where the absolute values |·|w are normalized as in [Tat84, ch. 0, § 0].
It induces an isomorphism O×

L,S ⊗ZR → XS ⊗ZR of R[G]-modules which we again denote by RegS .
We take the negative of this regulator as trivialization of the complex PS . Recall that in § 2.1.4 we
defined an involution ψ∗

G of K0(Z[G],R).

Conjecture 4.1. One has ∂̂1
G(ζ∗L/K,S(0)) = −ψ∗

G(χG(PS ,−RegS)) in K0(Z[G],R).

To study Conjecture 4.1 it is convenient to set

TΩ(L/K, 0) := ψ∗
G(∂̂1

G(ζ∗L/K,S(0)#) − χG(PS ,−RegS)) ∈ K0(Z[G],R).

Since ψ∗
G(∂̂1

G(ζ∗L/K,S(0)#)) = −∂̂1
G(ζ∗L/K,S(0)) (see § 2.1.4), Conjecture 4.1 is equivalent to the equal-

ity TΩ(L/K, 0) = 0. The element TΩ(L/K, 0) and therefore also Conjecture 4.1 depend only on the
extension L/K, as can be seen by an argument similar to the proof of Proposition 3.4. Alternatively
this follows from [Bur01, Theorem 2.1.2] and Remark 4.3 below.

Remark 4.2. The invariant TΩ(L/K, 0) is functorial in the field extension, i.e. ifM is an intermediate
field of L/K and H = Gal(L/M) then:

(i) resGH(TΩ(L/K, 0)) = TΩ(L/M, 0); and
(ii) qGG/H(TΩ(L/K, 0)) = TΩ(M/K, 0) if H is normal in G.

To show this one can apply an argument similar to the proof of Proposition 3.5, or alternatively
use [Bur01, Proposition 2.1.4] and the following remark.

Remark 4.3. In [Bur01, Theorem 2.1.2] an invariant TΩ(L/K, 0) ∈ K0(Z[G],R) is defined by (in
our notation) TΩ(L/K, 0) := ψ∗

G(∂̂1
G(ζ∗L/K,S(0)#) + χold

G (ΨS , (−RegS)−1)). The complex ΨS used
here is defined in [BF98, Proposition 3.1] (see also [Bur01, Proposition 2.1.1]). Now the extension
class of ΨS in Ext2Z[G](XS ,O×

L,S) with respect to an injective resolution of O×
L,S is the negative of

Tate’s canonical class used to define PS (this follows from [Bur01, Lemma 2.3.5] since there the
extension class is computed with respect to a projective resolution of XS). Therefore

χold
G (ΨS, (−RegS)−1) = −χG(ΨS,−RegS) + ∂1

G[XS ⊗ R,−id] = −χG(PS ,−RegS),

which shows that our definition of the invariant TΩ(L/K, 0) agrees with the definition in [Bur01].
Thus from [Bur01, § 2.2 and § 2.3] we can deduce the following results.

Proposition 4.4. Let L/K be any Galois extension of number fields of group G.

(i) The invariant TΩ(L/K, 0) belongs to K0(Z[G],Q) if and only if the main conjecture of Stark
at s = 0 (as interpreted by Tate in [Tat84, ch. I, Conjecture 5.1]) is valid for L/K.

(ii) The invariant TΩ(L/K, 0) belongs to the torsion subgroup of K0(Z[G],Q) if and only if the
strong Stark conjecture (as formulated by Chinburg in [Chi83, Conjecture 2.2]) is valid for
L/K.

(iii) One has ∂0
G(ψ∗

G(TΩ(L/K, 0))) = WL/K − Ω(L/K, 3) where WL/K is the ‘Cassou-Noguès–
Fröhlich root number class’ and Ω(L/K, 3) is the element defined by Chinburg in [Chi85] (and
denoted by Ωm(L/K) in [Chi83]). In particular, the vanishing of ∂0

G(TΩ(L/K, 0)) is equivalent
to the ‘Ω3-conjecture’ that is formulated in [Chi85].

(iv) The invariant TΩ(L/K, 0) vanishes if and only if the ‘lifted root number conjecture’ of
Gruenberg, Ritter and Weiss [GRW99] is valid for L/K.

Remark 4.5. In [Bur01, § 2.4] it is shown that Conjecture 4.1 is equivalent to the equivariant Tam-
agawa number conjecture for the pair (h0(SpecL),Z[G]). Although we expect this result to be true
without restriction it should be noted that in its proof and in the necessary constructions in [BF98]
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some relevant sign conventions relating to the Artin–Verdier duality theorem are not specified. It is
easy to check that there are no such sign ambiguities in the proof of Proposition 4.4. In this paper
we avoid these sign issues by working with complexes corresponding to canonical extension classes.

5. Functional equation compatibility

In the previous two sections we formulated conjectures for the leading terms of the equivariant
Dedekind zeta-function at s = 0 and s = 1. In this section we show that the compatibility of
these conjectures with respect to the functional equation of the zeta-function gives rise to a natural
conjecture for the epsilon constant.

5.1 Statement of the main result

Let L/K be a Galois extension of number fields, G its Galois group and S a finite set of places of K
as in §§ 3 and 4. Before we can formulate the main result we must introduce an invariant encoding
certain semilocal information about the extension L/K.

5.1.1 Definition of the semilocal terms. The definition of the following invariants is motivated
by similar constructions in [BlB03]; see Remark 5.4 for a detailed comparison.

Let v be a place in Sf and denote its residue characteristic by p. We choose w ∈ Sv(L) and let
Mw be a complex in D(Z[Gw]) which corresponds to the local canonical class in Ext2Z[Gw](Z, L

×
w) =

H2(Gw, L×
w), i.e. the pre-image of 1/|Gw| under the local invariant isomorphism

H2(Gw, L×
w)

invLw/Kv−−−−−−→ 1
|Gw|Z/Z.

Furthermore we choose a full projective Zp[Gw]-sublattice Lw of Ow which is contained in a suffi-
ciently large power of mw. The exponential map exp : Lw → L×

w = H0(Mw) induces a morphism
exp : Lw[0] →Mw in D(Z[Gw]) and we define a complex Mw(Lw) by the distinguished triangle

Lw[0]
exp−−→Mw −→Mw(Lw) −→ .

From the corresponding cohomology sequence we see that Mw(Lw) is acyclic outside degrees 0 and
1, and that there are identifications H0(Mw(Lw)) ∼= L×

w/exp(Lw) and H1(Mw(Lw)) ∼= Z. Moreover
one easily sees that the complex Mw(Lw) is perfect. The (normalized) valuation L×

w → Z induces a
trivialization νw : H0(Mw(Lw)⊗R)

∼=−→ H1(Mw(Lw)⊗R) and we can consider the Euler characteristic
χGw(Mw(Lw), νw) ∈ K0(Z[Gw],R). We also define

mw :=
αw · L∗

Lw/Kv
(0)#

L∗
Lw/Kv

(1)
∈ Z(R[Gw])×+, (19)

where αw = (αw,χ)χ∈Irr(Gw) ∈
∏
χ∈Irr(Gw) C× = Z(C[Gw])× is the element with αw,χ = log(Nw) if χ

is the trivial character and αw,χ = 1 otherwise.

From the local lattices Lw ⊆ Ow we obtain a global lattice L ⊆ OL as follows. For each v ∈ Sf ,
with residue characteristic p, we first define a Zp[G]-lattice Lv by Lv := Zp[G] ⊗Zp[Gw] Lw ⊆ OL,v.
We then define the full projective Z[G]-lattice L ⊆ OL by specifying its completions as in (9).

Let Σ(L) denote the set of all embeddings L → C. Then HL :=
∏
σ∈Σ(L) Z is a G × Gal(C/R)-

module and we write ρL : L ⊗Q C → HL ⊗Z C for the G × Gal(C/R)-equivariant isomorphism
l ⊗ z �→ (σ(l)z)σ∈Σ(L) (note that Gal(C/R) acts only on the second factor of L ⊗Q C but on both
factors of HL ⊗Z C). For any Gal(C/R)-module X we write X+ and X− for the submodules on
which complex conjugation acts by +1 and −1 respectively. We define πL to be the composite
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isomorphism of R[G]-modules

L⊗Q R = (L⊗Q C)+
ρL−→ (HL ⊗Z C)+

= (H+
L ⊗Z R) ⊕ (H−

L ⊗Z (iR))
id⊕(·i)−−−−→ (H+

L ⊗Z R) ⊕ (H−
L ⊗Z R)

= HL ⊗Z R.

The map πL depends on the choice of i =
√−1 ∈ C, but one can check that the element [L, πL,HL] ∈

K0(Z[G],R) is independent of this choice.
We now set

RΩloc(L/K, 1) := [L, πL,HL] +
∑
v∈Sf

indGGw(χGw(Mw(Lw), νw) + ∂1
Gw(mw))

and

TΩloc(L/K, 1) := ∂̂1
G(εL/K(0)) −RΩloc(L/K, 1)

in K0(Z[G],R). One can show that RΩloc(L/K, 1) and TΩloc(L/K, 1) depend only on the exten-
sion L/K.

Remark 5.1. The invariant TΩloc(L/K, 1) is functorial in the field extension, i.e. if M is an inter-
mediate field of L/K and H = Gal(L/M) then:

(i) resGH(TΩloc(L/K, 1)) = TΩloc(L/M, 1); and

(ii) qGG/H(TΩloc(L/K, 1)) = TΩloc(M/K, 1) if H is normal in G.

5.1.2 The comparison result. We can now state the main result which describes the relation of
the invariants TΩ(L/K, 0) and TΩ(L/K, 1), and therefore of the conjectures for the leading terms
at s = 0 and s = 1.

Theorem 5.2. One has

ψ∗
G(TΩ(L/K, 0)) − TΩ(L/K, 1) = TΩloc(L/K, 1)

in K0(Z[G],R).

We shall use the functional equation of the equivariant zeta-function and computations of various
Euler characteristics to prove Theorem 5.2 in § 5.2. By this theorem the leading term Conjectures
3.3 and 4.1 force the following conjecture for the epsilon constant.

Conjecture 5.3. One has TΩloc(L/K, 1) = 0 in K0(Z[G],R). Equivalently, one has ∂̂1
G(εL/K(0)) =

RΩloc(L/K, 1) in K0(Z[G],R).

Remark 5.4. Conjecture 5.3 is equivalent to the conjecture formulated by Bley and the second named
author in [BlB03, Conjecture 4.1]. To see this we first recall that, in the notation of that paper,
their Conjecture 4.1 is the conjectural equality EL/K = δL/K(L) +

∑
v∈Sf IG(v,L) in K0(Z[G],R)

for S and L as in § 5.1.1. We claim that TΩloc(L/K, 1) = EL/K − δL/K(L)−∑
v∈Sf IG(v,L), which

then immediately implies the equivalence of the conjectures. It is straightforward to verify that
∂̂1
G(εL/K(0)) = EL/K and [L, πL,HL] = δL/K(L).

Next we show that mw as defined in (19) agrees with mw defined in [BlB03, p. 561]. Recall that
in [BlB03, p. 561] mw is defined to be

mw :=
∗(|Gw/Iw|eGw)∗((1 − σw(Nv)−1)eIw)

∗((1 − σ−1
w )eIw)

, (20)

1447

https://doi.org/10.1112/S0010437X07002874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002874


M. Breuning and D. Burns

where the notation ∗x for x ∈ Z(Q[Gw]) is introduced in [BlB03, p. 560]. Now for χ ∈ Irr(Gw) a
direct computation of the leading term of LLw/Kv(χ, s) at s = 0 gives

L∗
Lw/Kv

(χ, 0) =


(log(Nv))−1 if χ is trivial,
(1 − χ(σw))−1 if χ is non-trivial but χ|Iw is trivial,
1 if χ|Iw is non-trivial.

Therefore

(αw · L∗
Lw/Kv

(0)#)χ = αw,χ · L∗
Lw/Kv

(χ, 0)

=


|Gw/Iw| if χ is trivial,
(1 − χ(σ−1

w ))−1 if χ is non-trivial but χ|Iw is trivial,
1 if χ|Iw is non-trivial,

=
( ∗(|Gw/Iw|eGw)

∗((1 − σ−1
w )eIw)

)
χ

for all χ ∈ Irr(Gw) which implies that

αw · L∗
Lw/Kv

(0)# =
∗(|Gw/Iw|eGw)
∗((1 − σ−1

w )eIw)
.

A similar argument shows that (L∗
Lw/Kv

(1))−1 = ∗((1 − σw(Nv)−1)eIw). Hence the definitions of
mw in (19) and (20) coincide.

Since by definition IG(v,L) = indGGw(∂1
Gw

(mw) − χold
Gw

(K•
w(exp(Lw)), ν−1

w )) with K•
w(exp(Lw))

as in [BlB03, (18)], it remains to show that χGw(Mw(Lw), νw) = −χold
Gw

(K•
w(exp(Lw)), ν−1

w ). Since
the complex Cone(µ) in [BlB03, (18)] corresponds to the negative of the local canonical class in
Ext2Z[Gw](Z, L

×
w) (in [BlB03, p. 558] it is stated that Cone(µ) corresponds to the local canonical

class, however, this difference is explained by the fact that in [BlB03] extension classes are com-
puted with respect to a projective resolution of the first variable), it follows that the extension
class of K•

w(exp(Lw)) in Ext2Z[Gw](Z, L
×
w/exp(Lw)) is the negative of the class of Mw(Lw). Hence

χGw(Mw(Lw), νw) = −χold
Gw

(K•
w(exp(Lw)), ν−1

w ) as required.

Remark 5.5. By combining Remark 5.4 with [BlB03, Remark 4.2(iv)] we may deduce the equality
∂0
G(TΩloc(L/K, 1)) = WL/K − Ω(L/K, 2) in Cl(Z[G]) where Ω(L/K, 2) is the element defined by

Chinburg in [Chi85] and so Conjecture 5.3 is a refinement of the ‘Ω2-conjecture’ that is formulated
in [Chi85, Question 3.1].

Now if L/K is tamely ramified, then OL is a projective Z[G]-module and one has Ω(L/K, 2) =
[OL]− [K : Q] · [Z[G]] ∈ K0(Z[G]) (see [Chi85, Theorem 3.2]). The study of Ω(L/K, 2) can therefore
be regarded as a natural generalization of the Galois structure theory of rings of algebraic integers
that is described by Fröhlich in [Frö83] (indeed, a similarly explicit interpretation of Ω(L/K, 2) is
also valid for wildly ramified extensions [HW94, Theorem 4.1]). On the other hand, the study of
Ω(L/K, 3) is a natural generalization of the explicit study of the Galois structures of unit groups
and ideal class groups that was undertaken by Fröhlich in [Frö89] and [Frö92] (in this regard see,
for example, the formulas for Ω(L/K, 3) that are obtained in [Bur95, Theorems 1.2 and 1.7]).

From this viewpoint, Proposition 4.4(iii) shows that the ‘multiplicative’ Galois structure results
obtained by Fröhlich in [Frö89] and [Frö92] are explicit consequences (for special families of exten-
sions) of the natural leading term conjecture for equivariant Dedekind zeta-functions at s = 0, whilst
Theorem 5.2 shows that the ‘additive’ Galois structure results that Fröhlich discusses in [Frö83]
and [Frö89] reflect the compatibility of the leading term conjectures at s = 0 and s = 1 with respect
to the functional equation of the equivariant zeta-function. We thereby resolve the problem posed
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by Fröhlich in [Frö89, Introduction] of using the functional equation to give a natural explanation
of the ‘amazing analogy’ between the Galois structure theories of unit groups and ideal class groups
and of rings of algebraic integers that he stresses in both [Frö89] and [CCFT91, § 3].

Remark 5.6. Conjecture 5.3 is essentially of a local nature. More precisely, in [Bre04b] a conjecture
for the equivariant local epsilon constant of a Galois extension of p-adic fields is formulated. It is
then shown that the validity of this local conjecture for all non-archimedean completions Lw/Kv

of L/K implies the validity of Conjecture 5.3. Such a local approach lies (implicitly or explicitly)
behind the proof of the known cases mentioned in the following proposition.

Proposition 5.7. For every Galois extension L/K, the invariant TΩloc(L/K, 1) lies in the finite
group K0(Z[G],Q)tors, the torsion subgroup of K0(Z[G],Q) ⊂ K0(Z[G],R). Moreover TΩloc(L/K, 1)
is known to vanish in each of the following cases:

(i) L/K is a tamely ramified extension;

(ii) L is an abelian extension of Q with odd conductor;

(iii) L is a non-abelian extension of Q of degree 6.

Proof. The first statement is [BlB03, Corollary 6.3(i)]. Case (i) is [BlB03, Corollary 7.7]. Cases (ii)
and (iii) follow by combining Remark 5.1 with [BlB03, Corollary 5.4(ii)] and [Bre04a, Theorem 1.1]
respectively.

Recall that if χ is a symplectic character of G then the Artin root number W (χ) is either 1 or
−1. In the case where L/K is tamely ramified, this sign has been determined by Cassou-Noguès
and Taylor in terms of a natural algebraic invariant (see [CT83a, CT83b]). Assuming the validity
of Conjecture 5.3, one has the following generalization of this result to wildly ramified extensions.

Theorem 5.8. If Conjecture 5.3 is valid, i.e. if the leading term conjectures at s = 0 and s = 1 are
compatible, then for every symplectic character χ of G the Artin root number W (χ) is determined
by the algebraic invariant RΩloc(L/K, 1) in K0(Z[G],R).

Theorem 5.8 was first shown in [Bre04c, § 7] but for easier reference we have included the proof
in § 5.3.

5.2 Proof of the main result
By the functorial properties of the invariants (see Proposition 3.5 and Remarks 4.2 and 5.1) it suffices
to show Theorem 5.2 for K totally real and L totally complex. We will assume this for the rest of
this section. We fix a finite set S of places of K containing S∞(K), all places ramified in L/K and
for which Pic(OL,S) = 0. Furthermore for each v ∈ Sf we fix a place w ∈ Sv(L), a complex Mw

and a lattice Lw ⊆ Ow as in § 5.1.1. These lattices give rise to Lv ⊆ OL,v and L ⊆ OL as above. In
§ 5.2.1 we will use the functional equation of the equivariant zeta-function to compute the quotient
of the leading terms at s = 0 and s = 1. Then in §§ 5.2.2 to 5.2.5 we will apply the additivity of
Euler characteristics in distinguished triangles and some explicit computations to express the sum
χG(PS ,−RegS) + χG(ES(L), µL) in terms of certain semilocal invariants. After these preliminary
steps the proof of Theorem 5.2 will be given in § 5.2.6.

5.2.1 Functional equation of the equivariant zeta-function. We now consider the behaviour of
the leading terms of the S-truncated zeta-function with respect to the functional equation. To
simplify the notation we use the following convention. If W is a finitely generated Z[G]-module
(respectively R[G]-module) and α ∈ R× then [W,α] denotes the element in K1(R[G]) which is rep-
resented by the R[G]-module W ⊗Z R (respectively W ) with automorphism given by multiplication
with α.
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Lemma 5.9. One has

∂̂1
G

(ζ∗L/K,S(0)#

ζ∗L/K,S(1)

)
= ∂̂1

G(εL/K(0)) +
∑
v∈Sf

indGGw ∂̂
1
Gw

( L∗
Lw/Kv

(1)

L∗
Lw/Kv

(0)#

)
+ ∂1

G(−[H−
L , π] − [H+

L , 2] + [R,−1])

in K0(Z[G],R).

Proof. Taking the leading term at s0 = 0 of both sides of the functional equation (8) we obtain the
equality

Z∗
L/K(0)# = εL/K(0) · α · Z∗

L/K(1)

in Z(R[G])× where α = (αχ)χ∈Irr(G) ∈
∏
χ∈Irr(G) C× = Z(C[G])× is the element with αχ = −1 if χ

is the trivial character and αχ = 1 otherwise.
The relation to the leading term of the S-truncated zeta-function is given by

Z∗
L/K(s0) = ζ∗L/K,S(s0) ·

∏
v∈S

indGGw(L∗
Lw/Kv

(s0)).

Since the induction indGGw and the involution x �→ x# commute we find

ζ∗L/K,S(0)
#

ζ∗L/K,S(1)
= εL/K(0) · α ·

∏
v∈S

indGGw

( L∗
Lw/Kv

(1)

L∗
Lw/Kv

(0)#

)
. (21)

The product of the leading terms of the archimedean Euler factors can be written in the following
more explicit form. Let v ∈ S∞(K), ψ ∈ Irr(Gw) and let n+

ψ , n−ψ be as in § 2.3.2. The well-known

properties of the Γ-function imply that L∗
Lw/Kv

(ψ, 0) = 2n
+
ψ and L∗

Lw/Kv
(ψ, 1) = π−n

−
ψ . From this

one easily deduces that ∏
v∈S∞(K)

indGGw

( L∗
Lw/Kv

(1)

L∗
Lw/Kv

(0)#

)
= −[H−

L , π] − [H+
L , 2]

in Z(R[G])×+ ∼= K1(R[G]). Therefore the lemma follows by applying ∂̂1
G to (21).

5.2.2 The distinguished triangle. As in the case of a non-archimedean place in § 5.1.1, for each
v ∈ S∞(K) we fix w ∈ Sv(L) and let Mw be a complex in D(Z[Gw]) which represents the canonical
class in Ext2Z[Gw](Z, L

×
w) = H2(Gw, L×

w) ∼= 1
2Z/Z. Then for every v ∈ S the complex Z[G]⊗Z[Gw]Mw

in D(Z[G]) is acyclic outside degrees 0 and 1, and there are isomorphisms H0(Z[G] ⊗Z[Gw] Mw) ∼=
Z[G] ⊗Z[Gw] L

×
w

∼= ∏
w∈Sv(L) L

×
w and H1(Z[G] ⊗Z[Gw] Mw) ∼= Z[G] ⊗Z[Gw] Z ∼= ∏

w∈Sv(L) Z. Here
and in the following the letter w stands either for the fixed place in Sv(L) (in expressions like
Z[G] ⊗Z[Gw] L

×
w) or for all places in Sv(L) (in

∏
w∈Sv(L) L

×
w); this should not cause any confusion.

We set MSf :=
⊕

v∈Sf Z[G] ⊗Z[Gw] Mw and MS∞ :=
⊕

v∈S∞(K) Z[G] ⊗Z[Gw] Mw.

The local and global invariant maps are compatible, that is, for every w ∈ S(L) the following
diagram commutes.

H2(Gw, L×
w)

invLw/Kv ��

��

1
|Gw|Z/Z

H2(Gw, CS(L))
inv

L/LGw ,S �� 1
|Gw|Z/Z

Here the left vertical arrow is induced by the map L×
w → CS(L) which is the composite of the

inclusion L×
w → IL and the canonical map IL → CS(L). Therefore by Lemma 2.4 there exists a
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morphism Mw → ES in D(Z[Gw]) which induces the map L×
w → CS(L) on H0 and the identity

Z
=−→ Z on H1. From this we obtain a morphism Z[G]⊗Z[Gw ]Mw → ES in D(Z[G]) and adding over

all v ∈ S gives a map MSf ⊕MS∞ → ES in D(Z[G]). One can show that the complex PS lies in the
distinguished triangle

PS −→MSf ⊕MS∞ −→ ES −→ (22)
whose cohomology sequence identifies with the canonical sequence

0 → O×
L,S → L×

S → CS(L) 0−→ XS → YS → Z → 0

(compare [BF98, § 3.1]).

5.2.3 Replacing the trace map by the zero map. From now on we simply write exp : LS [0] → ES

for the map in D(Z[G]) which induces LS expS−−−→ L×
S → CS(L) ∼= H0(ES) on H0. Similarly we write

tr : L[−1] → ES for the map which induces L tr−→ Z ∼= H1(ES) on H1. Recall that the complex
ES(L) is defined by the distinguished triangle

LS [0] ⊕ L[−1]
exp⊕tr−−−−→ ES −→ ES(L) −→ (23)

whose cohomology sequence induces the identifications

H i(ES(L) ⊗ R) =


L0∞ if i = −1,
L0 ⊗ R if i = 0,
0 otherwise,

and that we consider the canonical isomorphism µL : L0 ⊗R → L0∞ as trivialization of the complex
ES(L).

Instead of the trace map tr : L → Z = H1(ES) we now consider the zero map 0 : L → H1(ES).
We define a complex FS(L) by the distinguished triangle

LS [0] ⊕ L[−1]
exp⊕0−−−−→ ES −→ FS(L) −→ (24)

whose cohomology sequence induces identifications

H i(FS(L) ⊗ R) =


L0∞ if i = −1,
L⊗ R if i = 0,
R if i = 1,
0 otherwise.

We define a trivialization tF : L⊗ R → L0∞ ⊕ R of FS(L) by L⊗ R
µ′L−−→ L∞ ∼= L0∞ ⊕ R, where the

last isomorphism is induced by the canonical splitting of the surjection L∞
tr∞−−→ R, i.e. by R → L∞,

x �→ (x/[L : Q])w∈S∞(L).

Lemma 5.10. One has

χG(ES(L), µL) = χG(FS(L), tF )
in K0(Z[G],R).

Proof. We will show below that there exists a distinguished triangle

L[0] ⊕ L[−1] α−→ FS(L)
β−→ ES(L)

γ−→ (25)

in D(Z[G]) whose cohomology sequence after tensoring with R identifies with the exact sequence
(starting with H−1(FS(L) ⊗ R))

L0
∞

id−→ L0
∞

0−→ L⊗ R
id−→ L⊗ R

0−→ L0 ⊗ R
⊂−→ L⊗ R

tr−→ R.
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On the complex L[0] ⊕ L[−1] we take the trivialization id : L ⊗ R → L ⊗ R. We want to show
that the distinguished triangle (25) with the trivializations id, tF and µL satisfies the additivity
criterion in Lemma 2.5. Note that ker(Hev(α) ⊗ R) = 0 and that we can therefore omit this term
when applying Lemma 2.5. We consider the R[G]-modules and isomorphisms in the following (in
general non-commutative) diagram

(L⊗ R) ⊕ (L0 ⊗ R) sev ��

tF⊕(−id)
��

(L⊗ R) ⊕ (L0 ⊗ R)

id⊕µL
��

(L0∞ ⊕ R) ⊕ (L0 ⊗ R) sod
�� (L⊗ R) ⊕ (L0∞)

and we must show that the automorphism (tF ⊕ (−id))−1 ◦ (sod)−1 ◦ (id ⊕ µL) ◦ sev of the module
(L⊗ R) ⊕ (L0 ⊗ R) has reduced norm equal to 1.

The map sev : (L ⊗ R) ⊕ (L0 ⊗ R) → (L ⊗ R) ⊕ (L0 ⊗ R) is induced by splittings of the exact
sequence

0 → 0 → L⊗ R
id−→ L⊗ R

0−→ L0 ⊗ R
id−→ L0 ⊗ R → 0.

Hence we have sev(a, b) = (a, b). The map sod : (L0∞ ⊕ R) ⊕ (L0 ⊗ R) → (L⊗ R)⊕ (L0∞) is induced
by splittings of the exact sequence

0 → L0 ⊗ R
⊂−→ L⊗ R

(0,tr)−−−→ L0
∞ ⊕ R

(id,0)−−−→ L0
∞ → 0 → 0.

As splitting of the surjection tr : L⊗ R → R we take the map R → L⊗ R, b �→ 1 ⊗ b/[L : Q]. With
this choice of splitting we have sod(a, b, c) = (c+ 1 ⊗ b/[L : Q], a).

To simplify the description of the automorphism (tF ⊕ (−id))−1 ◦ (sod)−1 ◦ (id ⊕ µL) ◦ sev of
(L ⊗ R) ⊕ (L0 ⊗ R), we replace (L ⊗ R) ⊕ (L0 ⊗ R) by the module (L0 ⊗ R) ⊕ R ⊕ (L0 ⊗ R)
via the isomorphism (a, b) �→ (a1, a2, b) with a2 = tr(a) and a1 = a − 1 ⊗ a2/[L : Q]. Then
(tF ⊕ (−id))−1 ◦ (sod)−1 ◦ (id ⊕ µL) ◦ sev becomes the automorphism (a1, a2, b) �→ (b, a2,−a1) of
(L0⊗R)⊕R⊕(L0⊗R), and obviously this has reduced norm equal to 1. So we can apply Lemma 2.5
and find that

χG(FS(L), tF ) = χG(L[0] ⊕ L[−1], id) + χG(ES(L), µL).

Since χG(L[0]⊕L[−1], id) = 0 in K0(Z[G],R), the required equality χG(FS(L), tF ) = χG(ES(L), µL)
follows.

It remains to show the existence of the distinguished triangle (25) with the claimed cohomology
sequence. Consider the continuous arrows in the following diagram.

L[0] ⊕ L[−1] α ������� FS(L)
β ��������

��

ES(L)
γ ��

��

L[1] ⊕ L[0]

L[0] ⊕ L[−1] a �� LS [1] ⊕ L[0] id⊕0 ��

exp⊕0

��

LS[1] ⊕ L[0] 0⊕id ��

exp⊕tr

��

L[1] ⊕ L[0]

ES [1]

��

ES [1]

��
FS(L)[1]

β[1] ������� ES(L)[1]

(26)

Here a : L[0] ⊕ L[−1] → LS [1] ⊕ L[0] is the map (k, l) �→ (0, k), so clearly the second row is a
distinguished triangle. The two central columns are the distinguished triangles obtained from (24)
and (23) by rotation (without changing the signs of the maps; these are still distinguished triangles
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because we rotated twice), and γ is the map making the top right-hand square commutative. It
follows from the octahedral axiom (more precisely, the version TR 4′ of the octahedral axiom
in [BBD82, bottom of p. 21]) that diagram (26) can be completed by the dashed arrows in such
a way that one obtains an octahedral diagram, i.e. such that the first row is also a distinguished
triangle, the diagram is commutative, and furthermore the square

LS [1] ⊕ L[0] 0⊕id ��

exp⊕tr

��

L[1] ⊕ L[0]

α[1]
��

ES [1] �� FS(L)[1]

(27)

commutes.
The first row in diagram (26) is the required triangle (25). After tensoring with R, its cohomology

sequence has the form (starting with H−1(FS(L) ⊗ R))

L0
∞

u1−→ L0
∞

v1−→ L⊗ R
w1−→ L⊗ R

u2−→ L0 ⊗ R
v2−→ L⊗ R

w2−→ R.

We still have to compute the maps in this sequence. In diagram (26) we have a morphism from
the first row to the second row. After tensoring with R, the associated morphism of cohomology
sequences (starting with H−1(FS(L)⊗R) in the first row and H−1((LS [1]⊕L[0])⊗R) in the second
row) is as shown below.

L0∞
u1 ��

⊂
��

L0∞
v1 ��

⊂
��

L⊗ R
w1 �� L⊗ R

u2 ��

id

��

L0 ⊗ R
v2 ��

⊂
��

L⊗ R
w2 �� R

��
LS ⊗ R

id �� LS ⊗ R
0 �� L⊗ R

id �� L⊗ R
0 �� L⊗ R

id �� L⊗ R �� 0

We deduce that u1 = id, v1 = 0, w1 = id, u2 = 0 and that v2 is the inclusion L0 ⊗ R ⊂ L ⊗ R.
It remains to compute the map w2 : L ⊗ R → R. Taking H0 of the commutative square (27) and
tensoring with R gives the following commutative square.

L⊗ R
id ��

tr
��

L⊗ R

w2

��
R

id �� R

This implies that w2 = tr and completes the proof.

5.2.4 The semilocal complexes. We now construct two complexes Mfinite and March in D(Z[G])
with trivializations tMfinite and tMarch respectively, and show that their Euler characteristics are
closely related to the terms defined in § 5.1.1.

Recall that MSf is the complex
⊕

v∈Sf Z[G] ⊗Z[Gw] Mw and that H0(MSf ) =
∏
w∈Sf L

×
w and

H1(MSf ) = YSf . Notice that for every v ∈ Sf the lattice Lv ⊆ OL,v decomposes as
∏
w∈Sv(L) Lw ⊆∏

w∈Sv(L) Ow and that we can therefore talk about lattices Lw ⊆ Ow for all w ∈ Sf (not just for
the fixed places w). We set LSf :=

∏
w∈Sf Lw and define Mfinite by the distinguished triangle

LSf [0]
exp−−→MSf −→Mfinite −→ . (28)

From its cohomology sequence we see that for the non-zero cohomology groups there are identifica-
tions

H0(Mfinite) ∼=
∏
w∈Sf

L×
w

exp(Lw)
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and H1(Mfinite) ∼= YSf . On the complex Mfinite we consider the trivialization

tMfinite :
∏
w∈Sf

L×
w

exp(Lw)
⊗ R → YSf ⊗ R, (xw)w∈Sf �→ (vw(xw) · logNw)w∈Sf ,

where vw is the normalized valuation of L×
w and Nw is the cardinality of the residue field of w.

Lemma 5.11. One has

χG(Mfinite, tMfinite) =
∑
v∈Sf

indGGw(χGw(Mw(Lw), νw) + ∂1
Gw [R, log Nw ])

in K0(Z[G],R).

Proof. This follows easily from [BrB05, Proposition 5.6.2].

Before defining March we must introduce some notation. We shall write S∞ for both S∞(K) and
S∞(L); the meaning will always be clear by our convention to write places as v, respectively w. For
every w ∈ S∞ we denote by R(Lw) and I(Lw) the real and imaginary axis in Lw respectively, i.e.
the R-line generated by 1 in Lw and the R-line generated by a square root of −1 in Lw. Furthermore
we set R(L∞) :=

∏
w∈S∞ R(Lw) and I(L∞) :=

∏
w∈S∞ I(Lw). Then R(L∞) and I(L∞) are R[G]-

submodules of L∞ and one has L∞ = I(L∞) ⊕ R(L∞). Note that I(L∞) lies in the kernel of the
trace map tr∞ : L∞ → R. We let R0(L∞) be the kernel of the restriction of tr∞ to R(L∞); thus
there is a short exact sequence 0 → R0(L∞) → R(L∞) tr∞−−→ R → 0. Using the canonical splitting
R → R(L∞), x �→ (x/[L : Q])w∈S∞ we obtain the direct sum decomposition R(L∞) = R0(L∞)⊕R.

We identify R(L∞) with YS∞⊗ZR by the isomorphism of R[G]-modules which sends (xw)w∈S∞ ∈
R(L∞) to (2xw)w∈S∞ ∈ YS∞ ⊗ R. Then there is a commutative diagram

0 �� R0(L∞) ��

∼=
��

R(L∞)
tr∞ ��

∼=
��

R �� 0

0 �� XS∞ ⊗ R �� YS∞ ⊗ R
aug �� R �� 0

and the above splitting of R(L∞) tr∞−−→ R corresponds to the canonical splitting of YS∞ ⊗ R
aug−−→ R.

Recall that MS∞ is the complex
⊕

v∈S∞ Z[G]⊗Z[Gw]Mw. One has H0(MS∞) = L×∞ and we define
March by the distinguished triangle

L∞[0] ⊕ L[−1]
exp⊕0−−−−→MS∞ −→March −→ . (29)

From its cohomology sequence we see that for the non-zero cohomology groups there are identifi-
cations H−1(March) ∼= ∏

w∈S∞ 2π
√−1 Z ⊂ L∞, H0(March) ∼= L and H1(March) ∼= YS∞ . Note that∏

w∈S∞ 2π
√−1 Z is a full lattice in I(L∞) and therefore (

∏
w∈S∞ 2π

√−1 Z)⊗R ∼= I(L∞). We define
the trivialization tMarch by

L ⊗ R
µ′L−−→ L∞ = I(L∞) ⊕ R0(L∞) ⊕ R

id⊕(−id)⊕id−−−−−−−−→ I(L∞) ⊕ R0(L∞) ⊕ R

= I(L∞) ⊕ R(L∞)
∼=−→ I(L∞) ⊕ YS∞ ⊗ R.

Lemma 5.12. One has

χG(March, tMarch) = [L, πL,HL] + ∂1
G(−[H−

L ,−π] − [H+
L , 2] + [R,−1])

in K0(Z[G],R).
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Proof. First we choose a special representative of the complex March in D(Z[G]). We note that for
each v ∈ S∞ the complex Mw(Lw) in D(Z[Gw]) defined by the distinguished triangle

Lw[0]
exp−−→Mw −→Mw(Lw) −→

has non-zero cohomology modules H−1(Mw(Lw)) = 2π
√−1 Z ⊂ Lw and H1(Mw(Lw)) = Z, and

that its extension class in Ext3Z[Gw](Z, 2π
√−1 Z) ∼= 1

2Z/Z is non-trivial. On the other hand let
Hw :=

∏
σ∈Σ(Lw) Z where Σ(Lw) is the set of continuous isomorphisms Lw → C, and consider the

complex of Gw-modules Nw : Hw
1+τ−−→ Hw

1−τ−−→ Hw with non-zero terms in degrees −1, 0 and 1,
where τ ∈ Gal(C/R) denotes complex conjugation. Then Nw is acyclic outside degrees −1 and 1,
and one has H−1(Nw) = H−

w , H1(Nw) = Hw/H
−
w . Moreover Nw has non-trivial extension class in

Ext3Z[Gw](Hw/H
−
w ,H

−
w ) ∼= 1

2Z/Z. Thus by fixing isomorphisms 2π
√−1 Z ∼= H−

w and Z ∼= Hw/H
−
w we

obtain an induced isomorphism Mw(Lw) ∼= Nw in D(Z[Gw]). Applying Z[G]⊗Z[Gw] and summing
over all v ∈ S∞ we see that March is isomorphic to N ⊕ L[0] in D(Z[G]) where N is the complex

HL
1+τ−−→ HL

1−τ−−→ HL.

The trivialization tMarch corresponds to the following trivialization t on N ⊕ L[0]:

L ⊗ R
t
March−−−−→ I(L∞) ⊕ YS∞ ⊗ R

∼=−→
∏
v∈S∞

(Z[G] ⊗Z[Gw] (2π
√−1 Z)) ⊗ R ⊕

∏
v∈S∞

(Z[G] ⊗Z[Gw] Z) ⊗ R

∼=−→
∏
v∈S∞

(Z[G] ⊗Z[Gw] H
−
w ) ⊗ R ⊕

∏
v∈S∞

(Z[G] ⊗Z[Gw] Hw/H
−
w ) ⊗ R

= H−
L ⊗ R ⊕HL/H

−
L ⊗ R.

We compute the Euler characteristic χG(March, tMarch) = χG(N⊕L[0], t) by using splittings, i.e.
we use the refined Euler characteristic χold

G discussed in [BrB05, § 6]. The relation of χG and χold
G is

given in [BrB05, Theorem 6.2]. With the canonical splittings (given by the direct sum decomposition
HL ⊗ R = H−

L ⊗ R ⊕ H+
L ⊗ R) we find that χold

G (N ⊕ L[0], t−1) = [HL ⊕ HL, g,HL ⊕ L], where
g : (HL ⊕HL) ⊗ R → (HL ⊕ L) ⊗ R is the isomorphism

HL ⊗ R ⊕HL ⊗ R = (H−
L ⊗ R ⊕H+

L ⊗ R) ⊕ (H−
L ⊗ R ⊕H+

L ⊗ R)
1⊕2⊕1/2⊕1−−−−−−−→ H−

L ⊗ R ⊕ (H+
L ⊗ R ⊕H−

L ⊗ R) ⊕H+
L ⊗ R

∼= H−
L ⊗ R ⊕HL ⊗ R ⊕ (HL/H

−
L ) ⊗ R

id⊕t−1−−−−→ HL ⊗ R ⊕ L⊗ R.

Here the isomorphism H+
L ⊗ R ∼= (HL/H

−
L ) ⊗ R is induced by the embedding H+

L → HL/H
−
L and

for the arrow marked id ⊕ t−1 we have first used the obvious permutation and then the identity on
HL ⊗ R and the isomorphism t−1. Let h : L⊗ R → H−

L ⊗ R ⊕HL/H
−
L ⊗ R ∼= HL ⊗ R be defined as

t except that we omit −id on R0(L∞). One then has

[HL ⊕HL, g,HL ⊕ L] = −[L, h,HL] + ∂1
G([XS∞ ,−1] − [H−

L , 2] + [H+
L ,−2]).

Finally we claim that

[L, h,HL] = [L, πL,HL] − ∂1
G[H−

L , 2π]. (30)

Indeed, the map L∞
(µ′L)−1

−−−−→ L ⊗ R ⊂ L ⊗ C
ρL−→ HL ⊗ C gives an identification of L∞ with

(HL ⊗ C)+. Under this identification one has R(L∞) ∼= H+
L ⊗ R and I(L∞) ∼= H−

L ⊗ iR. In the
case K = Q it easily follows that for the correct choice of i =

√−1 ∈ C in the definition of πL the
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map h : L ⊗ R → HL ⊗ R agrees with L ⊗ R
πL−−→ H+

L ⊗ R ⊕H−
L ⊗ R

id⊕1/(2π)−−−−−−→ H+
L ⊗ R ⊕H−

L ⊗ R,
which implies (30). In the case of a general totally real field K the two maps still agree if one chooses
the correct i in the definition of πL for each v-component of H−

L =
∏
v∈S∞(K)(

∏
σ∈Σ(L),σ|K=v Z)−

separately; one can check that [L, πL,HL] is independent of all such choices.
Summarizing we find

χG(March, tMarch) = χG(N ⊕ L[0], t)

= −χold
G (N ⊕ L[0], t−1) + ∂1

G[H−
L ,−1]

= [L, h,HL] + ∂1
G(−[XS∞ ,−1] + [H−

L ,−2] − [H+
L ,−2])

= [L, πL,HL] + ∂1
G(−[H−

L ,−π] − [H+
L , 2] + [R,−1]).

This completes the proof of Lemma 5.12.

5.2.5 Relation of Euler characteristics. Here we prove two lemmas.

Lemma 5.13. One has

χG(Mfinite, tMfinite) + χG(March, tMarch) = χG(PS ,−RegS) + χG(FS(L), tF )

in K0(Z[G],R).

For the proof of Lemma 5.13 we need the following result.

Lemma 5.14. There exists a distinguished triangle

PS
α−→Mfinite ⊕March β−→ FS(L)

γ−→ (31)

in D(Z[G]) whose cohomology sequence after tensoring with R identifies with the exact sequence
(starting with H−1((Mfinite ⊕March) ⊗ R))

I(L∞) ⊂−→ L0
∞

−exp−−−→ O×
L,S ⊗ R

η−→
( ∏
w∈Sf

L×
w

exp(Lw)

)
⊗ R ⊕ L⊗ R

ξ−→ L⊗ R
0−→ XS ⊗ R

⊂−→ YS ⊗ R
aug−−→ R.

Here the map −exp : L0∞ → O×
L,S ⊗ R is the composite

L0
∞ = log∞(O×

L ) ⊗ R
−id−−→ log∞(O×

L ) ⊗ R
exp−−→ O×

L ⊗ R
⊂−→ O×

L,S ⊗ R,

the map η is induced by the canonical maps O×
L,S → L×

w , and the map ξ is the identity on L ⊗ R

and zero on the first summand.

Proof. Consider the continuous arrows in the following diagram.

LS[0] ⊕ L[−1]
exp⊕0 �� MSf ⊕MS∞ ��

��

Mfinite ⊕March ��

β

���
�
�

LS[1] ⊕ L[0]

LS[0] ⊕ L[−1]
exp⊕0 �� ES ��

��

FS(L) ��

γ

���
�
�

LS[1] ⊕ L[0]

PS [1]

−
��

PS [1]

−α[1]
��

MSf [1] ⊕MS∞ [1] �� Mfinite[1] ⊕March[1]

(32)
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The first row is the direct sum of the distinguished triangles (28) and (29), and the second row
is (24). The first vertical triangle is the rotation of (22) (the arrow labelled with a minus sign is
the negative of the shift of the first arrow in (22)), and −α[1] is the map making the bottom
square commutative. It follows from the octahedral axiom that the diagram can be completed by
the dashed arrows in such a way that one obtains an octahedral diagram, i.e. such that the second
vertical triangle is also distinguished, the diagram is commutative, and furthermore the square

FS(L) ��

γ

��

LS[1] ⊕ L[0]

exp⊕0
��

PS [1] − �� MSf [1] ⊕MS∞ [1]

(33)

commutes.

We obtain the required distinguished triangle (31) as the rotation of the triangle

Mfinite ⊕March β−→ FS(L)
γ−→ PS [1]

−α[1]−−−→Mfinite[1] ⊕March[1] (34)

in diagram (32). We will compute the cohomology sequence of (34). Taking into account the sign
change coming from the rotation, it then follows that the cohomology sequence of (31) has the
stated form.

After tensoring with R the cohomology sequence of (34) has the following form (starting with
H−1((Mfinite ⊕March) ⊗ R)):

I(L∞) u1−→ L0
∞

v1−→ O×
L,S ⊗ R

w1−→
( ∏
w∈Sf

L×
w

exp(Lw)

)
⊗ R ⊕ L⊗ R

u2−→ L⊗ R
v2−→ XS ⊗ R

w2−→ YS ⊗ R
u3−→ R.

We must compute the maps in this sequence. In diagram (32) we have a morphism from the first
row to the second row. After tensoring with R, the associated morphism of cohomology sequences
is as given below (starting with H−1((Mfinite ⊕March) ⊗ R) in the first row and H−1(FS(L) ⊗ R)
in the second row).

I(L∞) ⊂ ��

u1

��

LS ⊗ R
exp �� L×

S ⊗ R ��

��

( ∏
w∈Sf

L×
w

exp(Lw)

)
⊗R ⊕ L⊗ R

u2

��
L0∞

⊂ �� LS ⊗ R
exp �� CS(L) ⊗ R

0 �� L⊗ R

ξ �� L⊗ R
0 �� YS ⊗ R

id ��

aug

��

YS ⊗ R

u3

��id �� L⊗ R
0 �� R

id �� R

We deduce that u1 : I(L∞) → L0∞ is the inclusion, u2 = ξ and u3 : YS⊗R → R is the augmentation.

A similar argument using the morphism of the cohomology sequences of the two vertical triangles
in diagram (32) shows that w1 = −η and that w2 : XS⊗R → YS⊗R is the negative of the inclusion
map. It immediately follows that v2 = 0. Finally, taking H−1 of the commutative square (33) and
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tensoring with R gives the following commutative square (where we use the maps expS and ∆S

from § 3.1).

L0∞
⊂ ��

v1
��

LS ⊗ R

expS ⊗R
��

O×
L,S ⊗ R

−id �� O×
L,S ⊗ R

∆S⊗R �� L×
S ⊗ R

Now we recall from the proof of Lemma 3.1 that the inclusion L0∞ ⊂ LS ⊗ R is obtained via
L0∞ = log∞(O×

L ) ⊗ R ∼= {x ∈ LS : expS(x) ∈ ∆S(O×
L )} ⊗ R ⊂ LS ⊗ R. It easily follows that v1 :

L0∞ → O×
L,S⊗R is the composite L0∞ = log∞(O×

L )⊗R
−id−−→ log∞(O×

L )⊗R
exp−−→ O×

L ⊗R
⊂−→ O×

L,S⊗R.
This completes the proof of Lemma 5.14.

Proof of Lemma 5.13. We want to apply the additivity criterion of Lemma 2.5 to the distinguished
triangle in Lemma 5.14. Note that ker(Hod(α) ⊗ R) = 0 and that we can therefore omit this term
when applying Lemma 2.5. We have to consider the R[G]-modules and isomorphisms in the following
(in general non-commutative) diagram.( ∏

w∈Sf

L×
w

exp(Lw)
⊗ R ⊕ L⊗ R

)
⊕ (O×

L ⊗ R) sev ��

t
Mfinite⊕tMarch⊕id

��

(O×
L,S ⊗ R) ⊕ (L⊗ R)

(−RegS)⊕tF
��

(I(L∞) ⊕ YS,R) ⊕ (O×
L ⊗ R) sod

�� (XS,R) ⊕ (L0∞ ⊕ R)

(35)

Here we write YS,R := YS ⊗ R etc., and for the left vertical map we have composed tMfinite ⊕ tMarch

with the canonical isomorphism YSf ,R ⊕ I(L∞) ⊕ YS∞,R
∼= I(L∞) ⊕ YS,R. The maps sev and sod are

given by splittings of the exact sequences

0 → O×
L ⊗ R → O×

L,S ⊗ R
η−→

∏
w∈Sf

L×
w

exp(Lw)
⊗ R ⊕ L⊗ R

ξ−→ L⊗ R → 0 → 0

and

0 → 0 → XS,R → I(L∞) ⊕ YS,R → L0
∞ ⊕ R

−exp−−−→ O×
L ⊗ R → 0

respectively. Lemma 5.13 will follow from Lemma 2.5 once we have shown that the automorphism

(tMfinite ⊕ tMarch ⊕ id)−1 ◦ (sod)−1 ◦ ((−RegS) ⊕ tF ) ◦ sev (36)

of ( ∏
w∈Sf

L×
w

exp(Lw)
⊗ R ⊕ L⊗ R

)
⊕ (O×

L ⊗ R)

has reduced norm equal to 1.

To compute the reduced norm of (36) we use the following isomorphisms to replace various of
the modules:

−RegS∞ : O×
L ⊗ R

∼=−→ XS∞,R,

−RegS : O×
L,S ⊗ R

∼=−→ XS,R,∏
w∈Sf

(vw(·) · logNw) :
∏
w∈Sf

L×
w

exp(Lw)
⊗ R

∼=−→ YSf ,R,
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YS,R = YSf ,R ⊕ YS∞,R = YSf ,R ⊕XS∞,R ⊕ R,

L0
∞ = I(L∞) ⊕ R0(L∞) ∼= I(L∞) ⊕XS∞,R

and

L⊗ R
µ′L−−→ L∞ = I(L∞) ⊕ R0(L∞) ⊕ R ∼= I(L∞) ⊕XS∞,R ⊕ R.

Diagram (35) then becomes

(YSf ,R ⊕ I(L∞) ⊕XS∞,R ⊕ R) ⊕ (XS∞,R) s̃ev ��

t1
��

(XS,R) ⊕ (I(L∞) ⊕XS∞,R ⊕ R)

t2
��

(I(L∞) ⊕ YSf ,R ⊕XS∞,R ⊕ R) ⊕ (XS∞,R) s̃od
�� (XS,R) ⊕ (I(L∞) ⊕XS∞,R ⊕ R)

and we must show that the automorphism t−1
1 ◦ (s̃od)−1 ◦ t2 ◦ s̃ev of (YSf ,R⊕ I(L∞)⊕XS∞,R⊕R)⊕

(XS∞,R) has reduced norm equal to 1. For this it is necessary to give explicit descriptions of the
maps s̃ev, t2, (s̃od)−1 and t−1

1 . It is easy to see that t1(a, b, c, d, e) = (b, a,−c, d, e) and t2 = id.

Next we compute the map s̃ev. It is induced by splittings of the exact sequence

0 → XS∞,R → XS,R → YSf ,R ⊕ I(L∞) ⊕XS∞,R ⊕ R → I(L∞) ⊕XS∞,R ⊕ R → 0 → 0,

which consists of the canonical short exact sequence XS∞,R → XS,R → YSf ,R and the identity
I(L∞) ⊕ XS∞,R ⊕ R

=−→ I(L∞) ⊕ XS∞,R ⊕ R. As splitting of the surjection XS,R → YSf ,R we
choose the map YSf ,R → XS,R given by a = (aw)w∈Sf �→ (gw)w∈S where gw = aw if w ∈ Sf and
gw = −aug(a)/|S∞| if w ∈ S∞ (here aug(a) =

∑
w∈Sf aw is the augmentation of a). With this

splitting we obtain

s̃ev(a, b, c, d, e) = ((fw)w∈S , b, c, d)

with

fw =

{
ew − aug(a)/|S∞| if w ∈ S∞,
aw if w ∈ Sf ,

where we write a = (aw)w∈Sf ∈ YSf ,R and e = (ew)w∈S∞ ∈ XS∞,R.

Finally we compute the map s̃od. It is induced by splittings of the exact sequence

0 → 0 → XS,R → I(L∞) ⊕ YSf ,R ⊕XS∞,R ⊕ R → I(L∞) ⊕XS∞,R ⊕ R → XS∞,R → 0,

which consists of the canonical short exact sequences XS,R → YSf ,R ⊕ XS∞,R ⊕ R → R (recall
that YS,R = YSf ,R ⊕ XS∞,R ⊕ R) and I(L∞) → I(L∞) ⊕ XS∞,R → XS∞,R. As splitting of the
surjection YSf ,R ⊕ XS∞,R ⊕ R = YS,R → R we choose the map R → YSf ,R ⊕ XS∞,R ⊕ R given by
d �→ ((d/|S|)w∈Sf , (0)w∈S∞ , d|S∞|/|S|). With this splitting we obtain

(s̃od)−1(a, b, c, d) = (b, (aw + d/|S|)w∈Sf , (aw − aug∞(a)/|S∞|)w∈S∞ , aug∞(a) + d|S∞|/|S|, c)
where we write a = (aw)w∈S ∈ XS,R and aug∞(a) =

∑
w∈S∞ aw.

It follows that the automorphism t−1
1 ◦(s̃od)−1◦t2◦s̃ev of (YSf ,R⊕I(L∞)⊕XS∞,R⊕R)⊕(XS∞,R) is

(a, b, c, d, e) �→ (a+ (d/|S|)w∈Sf , b,−e,−aug(a) + d|S∞|/|S|, c).
Therefore its reduced norm can be computed as the product of the reduced norm of the automor-
phism (a, d) �→ (a+ (d/|S|)w∈Sf ,−aug(a) + d|S∞|/|S|) of YSf ,R⊕R and of the reduced norm of the
automorphism (b, c, e) �→ (b,−e, c) of I(L∞) ⊕XS∞,R ⊕XS∞,R. It is straightforward to verify that
both of these reduced norms are equal to 1.

1459

https://doi.org/10.1112/S0010437X07002874 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07002874


M. Breuning and D. Burns

5.2.6 Completion of the proof. We now collect all the previous results to complete the proof of
Theorem 5.2.

Proof of Theorem 5.2. By the definitions of TΩ(L/K, 0) and TΩ(L/K, 1), and by Lemmas 5.10
and 5.13 we have

ψ∗
G(TΩ(L/K, 0)) − TΩ(L/K, 1)

= ∂̂1
G(ζ∗L/K,S(0)#) − χG(PS ,−RegS) − ∂̂1

G(ζ∗L/K,S(1)) − χG(FS(L), tF )

= ∂̂1
G

(ζ∗L/K,S(0)#

ζ∗L/K,S(1)

)
− χG(Mfinite, tMfinite) − χG(March, tMarch).

Lemmas 5.9, 5.11 and 5.12 show that this is equal to

∂̂1
G(εL/K(0)) − [L, πL,HL]

−
∑
v∈Sf

indGGw

(
−∂̂1

Gw

( L∗
Lw/Kv

(1)

L∗
Lw/Kv

(0)#

)
+ χGw(Mw(Lw), νw) + ∂1

Gw [R, logNw]
)

+ ∂1
G(−[H−

L , π] − [H+
L , 2] + [R,−1] + [H−

L ,−π] + [H+
L , 2] − [R,−1]),

which is TΩloc(L/K, 1) since ∂1
G[H−

L ,−1] = 0.

5.3 Proof of Theorem 5.8
The following proof of Theorem 5.8 is taken from [Bre04c, § 7]. As a preliminary step of independent
interest we show that the invariant RΩloc(L/K, 1) in K0(Z[G],R) allows one to determine the
absolute norm of the Artin conductor of every character of G.

5.3.1 Determining conductors. In the following result |·| denotes the usual absolute value on
the complex numbers C.

Lemma 5.15. Let α = (αχ)χ∈Irr(G) ∈
∏
χ∈Irr(G) C× = Z(C[G])× and assume that |ω(αχ)| = |αχ| for

all χ ∈ Irr(G) and all automorphisms ω of C. Then for every χ ∈ Irr(G) the absolute value |αχ| is
determined by ∂1

Z[G],C(α) ∈ K0(Z[G],C).

Proof. The hypothesis implies that all αχ are algebraic over Q. Therefore there exists a finite
extension E of Q in C such that ∂1

Z[G],C(α) ∈ K0(Z[G], E) and which is big enough to ensure
that every irreducible representation of G is realizable over E. This implies that α ∈ Z(E[G])× =∏
χ∈Irr(G)E

×.
Using the hypothesis and the product formula for the field E we obtain

|αχ|[E:Q] =
∏

v∈S∞(E)

|αχ|v =
∏

v∈Sf (E)

|αχ|−1
v ,

where the valuations |·|v are normalized as usual. It therefore suffices to show that ∂1
Z[G],E(α)

determines |αχ|v for every non-archimedean place v of E.
Let v be a non-archimedean place of E and let p be the residue characteristic of v. We write

j : E → Ev for the embedding of E into its completion at v. Then j induces maps j∗ of the centres of
the group rings and of the relative algebraic K-groups making the following diagram commutative.

Z(E[G])×
∂1
Z[G],E ��

j∗
��

K0(Z[G], E)

j∗
��

Z(Ev [G])×
∂1
Zp[G],Ev �� K0(Zp[G], Ev)
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But it is well known that ∂1
Zp[G],Ev

(j∗(α)) determines j∗(α)j◦χ = j(αχ) up to a unit in Ev for every
χ ∈ Irr(G), hence it determines |αχ|v.
Corollary 5.16. For each character χ of G the absolute norm of the Artin conductor of χ is
determined by RΩloc(L/K, 1) ∈ K0(Z[G],R).

Proof. Let n be the order of the finite group K0(Z[G],Q)tors. Since the invariant TΩloc(L/K, 1) =
∂̂1
G(εL/K(0))−RΩloc(L/K, 1) lies inK0(Z[G],Q)tors (cf. Proposition 5.7) and εL/K(0)2n ∈ Z(R[G])×+

one has 2n ·RΩloc(L/K, 1) = 2n · ∂̂1
G(εL/K(0)) = ∂1

Z[G],R(εL/K(0)2n). Furthermore

εL/K(0)2n = (W (χ)2nNf(χ)n|dK/Q|deg(χ)n)χ∈Irr(G) ∈
∏

χ∈Irr(G)

C×

by definition, and since Nf(χ) and |dK/Q| are both rational integers and W (χ) is an algebraic
number with absolute value equal to 1 for every archimedean place (this follows for example
from [Tat77, Remark on p. 110]), one sees that εL/K(0)2n satisfies the hypothesis of Lemma 5.15.
Thus Lemma 5.15 shows that 2n ·RΩloc(L/K, 1) determines

|W (χ)2nNf(χ)n|dK/Q|deg(χ)n| = Nf(χ)n|dK/Q|deg(χ)n

for every χ ∈ Irr(G). This allows us to find |dK/Q| because the conductor of the trivial character is
equal to 1. We then get Nf(χ) for every χ ∈ Irr(G) and finally Nf(χ) for arbitrary characters χ
because the Artin conductor is multiplicative.

5.3.2 Determining symplectic epsilon constants. We denote the group of all complex-valued
(virtual) characters of G by RG and the subgroup of symplectic characters by RsG. Let α =
(αχ)χ∈Irr(G) ∈ ∏

χ∈Irr(G) C× = Z(C[G])×. The map Irr(G) → C× given by χ �→ αχ has a unique
extension to a homomorphism of abelian groups RG → C× and thus defines αχ for every χ ∈ RG.

Lemma 5.17. Let α ∈ Z(R[G])× be such that αχ ∈ {±1} for all χ ∈ RsG. If ∂̂1
G(α) = 0 ∈ K0(Z[G],R)

then αχ = 1 for all χ ∈ RsG.

Proof. We reduce to [CT83a, Proposition (6.1)] and use the same notation as there. In particular,
J denotes the idèle group of the algebraic closure Q of Q in C. We write +1∞ for the idèle with
component 1 at all places and −1∞ for the idèle with component −1 at all non-archimedean places
and component 1 at all archimedean places. Let f ∈ Hom(RsG,±1∞) be the homomorphism given by

χ �→
{

+1∞ if αχ = +1,
−1∞ if αχ = −1,

for χ ∈ RsG. To apply [CT83a, Proposition (6.1)] we must show that f ∈ Dets(Z̃[G]×) where
Z̃[G] = R[G] × ∏

p Zp[G] with p running through all rational prime numbers and Dets denot-
ing the restriction of the determinantal homomorphisms to RsG as discussed in [CT83a, § 3]. The
archimedean component of f is obviously contained in Dets(R[G]×).

Let p be a prime number. Let j : Q → Qp be any embedding and extend it to an embedding
j : C → Qp. Then j induces maps j∗ : Z(R[G])× → Z(Qp[G])× and j∗ : K0(Z[G],R) → K0(Zp[G],Qp)
such that

Z(R[G])×
∂̂1
G ��

j∗
��

K0(Z[G],R)

j∗
��

Z(Qp[G])×
∂1
Zp[G],Qp �� K0(Zp[G],Qp)
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commutes (cf. Lemma 2.2). From the assumption ∂̂1
G(α) = 0 it follows that

j∗(α) ∈ im(K1(Zp[G]) → Z(Qp[G])×). (37)

In particular j∗(α) ∈ Z(Qp[G])× which implies αj−1◦ω◦j◦χ = αχ for all χ ∈ RsG and ω ∈ Gal(Qp/Qp).
Since this is true for all p and embeddings j we find that αω◦χ = αχ for all χ ∈ RsG and ω ∈
Gal(Q/Q).

The p-component of f is the map fp : χ �→ αχ ∈ (Q⊗QQp)× for χ ∈ RsG. By the argument above
fp lies in HomGal(Q/Q)(R

s
G, (Q ⊗Q Qp)×). Denote the group of symplectic Qp-valued characters by

RsG,p. An embedding j : Q → Qp induces an isomorphism

j∗ : HomGal(Q/Q)(R
s
G, (Q ⊗Q Qp)×) → HomGal(Qp/Qp)

(RsG,p,Qp
×),

and to show that fp lies in Dets(Zp[G]×) it suffices to show that j∗(fp) lies in Dets(Zp[G]×) (compare
the diagram in [CT83a, p. 254]). But j∗(fp) is the homomorphism which corresponds to j∗(α) ∈
Z(Qp[G])× and therefore lies in Dets(Zp[G]×) by (37).

We have shown that f ∈ Hom(RsG,±1∞) ∩ Dets(Z̃[G]×). By [CT83a, Proposition (6.1)] this
intersection consists only of the trivial homomorphism; hence αχ = 1 for all χ ∈ RsG.

Proof of Theorem 5.8. By the proof of Corollary 5.16 the element ∂̂1
G(εL/K(0)) ∈ K0(Z[G],R) de-

termines Nf(χ)|dK/Q|deg(χ) for every χ ∈ Irr(G). We set δχ :=
√
Nf(χ)|dK/Q|deg(χ) (positive square

root), δ := (δχ)χ∈Irr(G) and α := εL/K(0)δ−1. Then δ and α lie in Z(R[G])× and α = (W (χ))χ∈Irr(G).
Since W (χ) ∈ {±1} for every χ ∈ RsG, we can apply Lemma 5.17 to α and conclude that the root
numbers W (χ) for χ ∈ RsG are determined by ∂̂1

G(α) = ∂̂1
G(εL/K(0)) − ∂̂1

G(δ) and therefore also
by ∂̂1

G(εL/K(0)). Thus assuming the validity of Conjecture 5.3, the symplectic root numbers are
determined by RΩloc(L/K, 1).
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