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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO
THE BECKER-DORING EQUATIONS

by J. CARR and R. M. DUNWELL

(Received 12th September 1997)

The asymptotics behaviour of solutions of the Becker-Doring cluster equations is determined for cases in
which coagulation dominates fragmentation. We show that all non-zero solutions tend weak* to zero.

1991 Mathematics subject classification: 82C26.

1. Introduction

The Becker-Doring equations provide a model of the dynamics of a system
consisting of a large number of identical particles. The particles can coagulate to form
clusters, which in turn can fragment into smaller clusters. Let cr(t) > 0, r = 1, 2 , . . .
denote the expected number of r-particle clusters per unit volume at time t. The
Becker-Doring model [4] is based on the following assumptions: clusters coagulate and
fragment by gaining or losing single particles; the coagulation rate of r-clusters and
monomers into (r+ l)-clusters is proportional to the numbers of r-clusters and
monomers; and the fragmentation rate of r-clusters into (r - l)-clusters is proportional
to the number of r-clusters. The coefficients of coagulation and fragmentation are the
constants a, > 0 and br+, > 0 (r = 1, 2,...) respectively, with b{ = 0 since monomers
cannot fragment. The Becker-Doring equations can then be written as

where the flux Jr{c) = <*rc\cr ~ &r+icr+i represents the net rate of conversion of r-clusters
into (r+ l)-clusters.

From physical considerations, it is only relevant to consider solutions to (1.1) which
are non-negative and have finite density p of the system given by

r=l
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Since each interaction preserves the number of particles, we expect that p is
independent of time. Time independence can be formally verified by differentiating the
above expression for p by t and substituting for each of the resulting cr terms from
(1.1). A fundamental theorem states that all solutions of the Becker-Doring equations
conserve density [3].

If cr(t) = cr is an equilibrium solution of (1.1) then Jr(cr) — 0 so that

<*M ~ K+A+\ = 0.

It follows that there is a one parameter family of equilibrium solutions of the form
cr = Qr/ for each r > 1. The constants Qr are given by Q, = 1 and

for r > 2 .

The density of the equilibrium solution is p = £ * , rQrZ. We will use z, to denote the
radius of convergence of the above series. Previous results on the asymptotic behaviour
of solutions have been for the case z, > 0. In order to outline the results for zs > 0 we
introduce the Banach space X — {c — (cr) : ||c|| = £ ] " , r\cr\ < oo}.

If z, = oo then fragmentation dominates coagulation. In this case the positive orbit
~P+(.C) = {c(0 : t > 0} is relatively compact in X, and c(t) converges in X as t ->• oo to
the equilibrium with the same density as the initial data.

The case 0 < z5 < oo corresponds to situations in which there is a balance between
coagulation and fragmentation. The results here are particularly striking when
p, = X^i rQrzl < oo- Let Po De the density of the initial data. If p0 < ps then the
positive orbit T^ic) is relatively compact in X and c(t) converges in X to the
equilibrium with density p0. If p0 > ps then the positive orbit V+{c) is not relatively
compact in X and c{t) converges to the equilibrium with density p3 in the metric
d(x, y) = 52" i \xr — yA induced by weak* convergence on X.

In this paper we study situations in which coagulation dominates fragmentation.
More precisely, we assume that (br+l + br)/ar -> 0 as r -> oo. Thus lim^^ Ql/r = oo,
z, = 0 and the only equilibrium solution is cr = 0 for all r. For this case, the positive
orbit P+(c) is not relatively compact in X if the initial data is non-zero. We prove that
for each r, lim,.,.^ cr(t) = 0. Note that for a solution with density p > 0,

This corresponds to the formation of larger and larger clusters as t increases.
Let
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A formal calculation shows

oo

CrCi - br+1cr+1][ln(arcrc,) - ln(br+1cr+1)],

so that V is a Lyapunov function. Results on the asymptotic behaviour of solutions
for the case zs > 0 have been obtained by exploiting the Lyapunov function V. Crucial
steps in this include:

(i) precompactness of orbits in a suitable metric space,

(ii) continuity of the Lyapunov function V with respect to the same metric as (i).

In general, if z, < oo, orbits are not compact in the metric induced by strong
convergence on X. Thus we use the metric induced by weak* convergence on X.
Unfortunately, in general V is not continuous in this metric. However, since density is
conserved, Vz(c) = V{c) — In z £ ~ , rc, is a Lyapunov function for each z, and when
z, > 0, for exactly one value of z, namely z = zs, V2 is sequentially weak* convergent.
This trick cannot be used for the case z, = 0 and we use another technique to prove the
weak* convergence of the solution to zero. If c(t) does not converge weak* to 0 as
t -> oo then we show that each cr(0 is bounded away from zero for all large t. Using
this and the domination of coagulation over fragmentation, we show that for any
T > 0, qn : [0, oo) -+ R, defined by

9.(0 =£>-»)*,«
r=n+l

satisfies qn{t) > 0 for all t > T > 0 and all sufficiently large n. From this we can deduce
that the assumption c(t) ^ 0 as t -*• oo leads to a contradiction.

In recent years a number of papers dealing with the mathematical theory of the
dynamics of cluster growth have appeared. For the Becker-Doring equations, basic
results and asymptotic behaviour for z, > 0 are given in [3]; see also [1, 10] for
technical improvements and [9, 7] for a discussion of metastable solutions. Some of the
results for the Becker-Doring equations have been extended to the more general
coagulation-fragmentation equations [2, 5, 6, 8, 11].

This paper makes frequent use of results from [3]. Section 2 recalls the basic
existence and density conservation results and the material needed on generalised
flows. The main result on the asymptotic behaviour of solutions is given in Section 3.
The final section shows that the energy equation for V holds when the initial data
decays fast enough and that

lim F(c(t)) = lim f^c,(t)\ln(^) - l] = -oo

while
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2. Preliminaries

We first introduce some notation. Let

X = {x = (xr) :< oo}, ||x|| =

and let X+ — {x e X : each x, > 0}. We say that c" converges in the weak* sense to c
in X, symbolically c" -^ c, if (i) sup, ||c"|| < oo and (ii) c" ->• c, as n -*• oo for each). We
can express weak* convergence as convergence in a metric space. Let

Bp = \ceX: f^r\cr\ < p \ .

Then (Bp,d) is a metric space where d(a,pr) = ^l1\af — Pj\. For p > 0 set
Bp = Bp n AT+ so that B^ is a closed metric subspace of Bp (with metric d). Weak*
convergence is useful because Bp is compact, equivalently, any bounded sequence in X
has a weak* convergent subsequence.

The following definition of solution introduced in [3] is used.

Definition 2.1. Let 0 < T < oo. A solution c = (cr) of (1.1) on [0, T) is a function
c : [0, T) -+ X+ such that

(i) each c, : [0, T) -*• R is continuous and sup,€[Or) ||c(t)|| < oo;

(») /o' E " i «rcr(s)ds < oo, Jl TZ2brc,(s)ds < oo for all t e [0, T);

(iii)

cr(0 = cr(0) + A/r_,(c(s)) - 7r(c(s))]is /or r > 2
Jo

(2.1)

The next theorem contains three main results from [3].

Theorem 2.2. (i) Let (gr) be a positive sequence satisfying gr+l — gr > 5 > 0, for
r > 1 where 5 is a constant and let c0 fce a positive sequence satisfying £ ~ , ^c^. < oo.
Assume that ar(gr-u — 9r) = O{gr). Then there exists a solution c of (1.1) on [0, oo) with
c(0) = c0, for which sup,e[0 T, Y!Z\ 9rCr(t) < oo, wAerc T > 0.

https://doi.org/10.1017/S0013091500020344 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020344


SOLUTIONS TO THE BECKER-DORING EQUATIONS 419

(ii) Let c be a solution of (1.1) on some interval [0, T), 0 < T < oo. Then for all
te[0,T)

r=l

and for m>2

cr(t) - £ cr(r) = f Jm.M*))ds 0 < x < t < T (2.3)

(iii) Assume that ar > 0 anrf fcr > 0 /or eacA r > 1. Lef c be a solution of (1.1) o«
some interval [0, T), 0 < T < oo, w/7/i c(0) ^ 0. 77ze/i cr(t) > 0 for all t e (0, T) and all
r > 1.

Let c(t) be a solution of (1.1) with c(0) e B+. By (2.2), the positive orbit V+(c) is
relatively compact in B*. The next theorem lists two results from [3] which concern the
generalised flow formed by the set of all solutions of (1.1).

Theorem 2.3. (i) Assume a, = o{f) and br = o(f). For p > 0, let Qp denote the set of
all solutions o/(l.l) on [0, oo) with c(0) e B*. Then Qp is a generalised flow on Bp.

(ii) Let G be a generalised flow on Y, let cp e G and suppose V+(q>) is relatively
compact. Then 0)(q>) is nonempty and quasi-invariant, and dist(<p(f), co(cp)) - ^0 as
t —»• oo .

3. Main results

For the rest of this paper we assume that aT > 0 and fcr+1 > 0 for each r > 1. We shall
make use of the following hypotheses:

HI aT = o(r) and br — o(r).

H2 lim^=lim^- = 0.
i--»ooar r-.oo a,

From the previous section, the omega limit set co(c) of a solution c is nonempty.
We show that <o{c) contains only the zero solution so that c{t) -^ 0 as t -*• oo. The
proof is by contradiction. The first consequence of assuming that c(t) ^ 0 is that all
solutions are bounded away from zero as t -*• oo.

Theorem 3.1 Assume HI holds and that c is a solution o/(l . l) such that c(t) -^ 0 as
t -*• oo. Then for any x > 0 and for each r = 1,2,... there exists an ar > 0 such that
cr(t) > a,/or all t > x.
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Proof. Suppose that there is a sequence tk such that tk -*• oo as k -*• oo and
cm(tk) -> 0 as /c -^ oo, for some m > 1. By Theorem 2.3(i), Qp is a generalised flow on
B*. The positive orbit of c is relatively compact in B*, so Theorem 2.3(ii) implies that
for any 8 > 0 there exists a subsequence of {tk - 5}, denoted {tkj - 8], for which
c(h, - S) -^ x e co(c). Let d be a solution of (1.1) with d(0) = x, then Theorem 2.3(ii)
also implies that d(t) e (o(c) for all t e [0, oo). Then the definition of a generalised flow
implies that there is a subsequence of {tkj - 8}, also denoted {tkj - 3], such that
c(tkj — 8 + t) -^ d(t) as 7 ->• oo, for all t e [0, oo). In particular cm(tkj) -^ dm(S). Since by
2.2(iii) dm(5) > 0, this is a contradiction. •

Theorem 3.2. Assume HI holds. Then for each n, qn{t) = 5Z~n+i(r ~ ")cr(0 & bounded
and differentiable with

qn(t) = ancx(t)cn(t) -
r=n+l

If, in addition, H2 holds and c •?- 0 then for any T > 0, there exists n^ such that
<jn(0 — 0 for all n > HQ and t > T.

Proof. The boundedness of qn follows from:

oo

r=n+l r-n+l

By (2.2), we can write qn as qn(t) = p-El: rc,(t) - nfn(t), where /,(*) = E"n + 1 cr(0-
From formula (2.3), /„ is differentiable, and it follows from the definition of a solution
that qn is differentiable. Differentiation of qn gives

r=n+t

= ancx(t)cn{t) + Y^(arCi(t) - br)cr(t).
r=n+l

If c(t) ^ 0 as t -+ oo then c,(r) > a, for some a, > 0 and for all t e [r, oo). If H2 holds
then for large enough r, arcx{i) — b, > 0 for t > T and <?„(!) > 0. •

Theorem 3.3. Assume that HI and H2 hold. Let c be a solution o/(l . l) on [0, oo).
c(i) -^ 0 as t -+ oo.
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Proof. Suppose c(t) ^ 0. By Theorem 3.2 for large enough n, qn is bounded and
eventually non-decreasing. Hence qn(t) -*• 0 as t -*• oo, so that l im,^ c,(t)cn(t) = 0,
which contradicts Theorem 3.1. D

4. The Lyapunov function

When the coefficients of the Becker-Doring equations are such that
lim supMM Q]/r < oo then it can be shown, once additional assumptions have been
made, that the function V defined in equation (1.2) satisfies the energy equation

K(c(0) + / ' D(c{s))ds = V(c(0)), (4.1)
Jo

where

OO

D(c) := J2(<*rCiCr - fer+1cr+1)(ln(arc,c,) - ln(ftr+1cr+1)). (4.2)

Writing V(c) = G(c) - £ ~ , rcrln(Ql"), where G(c) - YZi ^Mcr) - 1], we see that if
H2 holds (so that l i n v ^ Q1/' — oo), then V(c) may not be defined for all solutions.

When H2 holds we show that if the initial data has a sufficiently fast decay, then
V{c(t)) is defined and the energy equation (4.1) is satisfied. To establish the results
about V it is necessary to make additional hypotheses on the coefficients:

H3 ar(lnQr+x-\nQ,) =

H4 a' = °iB
By Lemma 4.2 in [3], G is weak* continuous, and is bounded above and below on

p for any p > 0. Thus V(c(t)) is defined if and only if

0 < °o- (4-3)

If H2 and H3 hold, ln(Qr) satisfies the requirements for the sequence (gr) in Theorem
2.2(i) and if the initial data satisfies

^ 0 ) < c x ) , ( 4 . 4 )

there is a solution of (1.1) on [0, oo) such that V{c{t)) is defined for t > 0. Since
solutions of (1.1) are not known to be unique, we need to show that (4.3) holds for any
solution with initial data satisfying (4.4).
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Lemma 4.1. Let H2 and H3 hold. If c is a solution of (I.I) on [0, oo) with initial data
satisfying (4.4) then (4.3) holds.

Proof. By H2, there exists m such that In Qr+l — In Qr > 0 for r >m. Let

7 1 - 1

hn = ]T(ln Qr+I - In <2r)(arC,cr - br+icr+l) + In em/m_, - In QnJn. (4.5)

This can be rearranged, and the inequalities ar(ln Qr+] - In Qr) < K In Qr for some
constant X and c, < p used to give:

m.x - In QnJn.

From equation (2.3) and H2

^ (cr(0 - cr(0)) < ln(Qn) ^ c,(0) < £ ln(Q,)cr(0).
l_r=n+l J r=n+l r=n+l

It follows from Gronwall's inequality that for some constant M independent of n,

Kit) + f ^ ( l n <Ui ~ ^ Qr)br^cr+i(s)ds < MeK",

and the result follows. •

The proof of the energy equation (4.1) for the case z, > 0 in [3] only uses
lim sup,.^^, Ql/r < oo to show

lim In Qn f Jn(c(s))ds = lim In Qn+l f JMs))ds = 0, 0 < x < t, (4.6)

and that

lim V(c(t)) = V(c(0)). (4.7)
[-•0

In the next lemma we prove that these limits hold without assuming that Q\lr is
bounded.

Lemma 4.2. Let H2 and H3 hold. If c is a solution o/(l.l) on [0, oo) with initial data
satisfying 4.4 then (4.6) and (4.7) hold.
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Proof. The proof is similar to the one given for Theorem 2.5 of [3]. From equation
(2.3) we have that

lim f Uc(s)) In QR+lds = lim In Qn+l £ c,(t) - £ crW|-

Using In Qr+I > In Qr for large r and Lemma 4.1,

oo oo

lim lnQn+1 Y] cr(s) < lim V In Qrcr(s) = 0,
n-HX *—' n-»oo *—'

from which (4.6) follows. Let h(i) — J^Lm m 2rcr(0- Using (4.6) and the dominated
convergence theorem, it follows from (4.5) that

h(t) - *(0) = jf lnQmJm-x00 + £ ( 1 " a+1 - InQMM Ids. (4.8)

Since the integrand in the above equation is bounded, h(t) ->• /i(0) as t -*• oo from
which (4.7) follows. •

It is now possible to state the equivalent of Theorem 4.7 in [3]; it can be proved by
combining Lemma 4.2 and the proof of the original theorem.

Theorem 4.3. Assume H2-H4 hold and let c be a solution o/( l . l ) on [0, oo) with initial
data satisfying c(0) ^ 0, and £ " , ln Qrcr(0) < oo. Then the energy equation (4.1) is
satisfied for all t > 0.

The next result shows that even though V{c{t)) is finite, it must be unbounded as
t -* oo.

Theorem 4.4. Assume H2-H4 and let c be a solution o/(l . l) on [0, oo) with initial
data satisfying c(0) ^ 0, and £ ~ , ln.Qrcr(0) < oo. Then V(c(t)) - • —oo as t ->• oo.

Proof. Recall that V(c) = G(c) - YZi rcr HQl/r) and that G(c) is bounded. Since
ln Ql/r - • oo as r ->• oo, if V(c{t)) is bounded then the positive orbit T^(c) is relatively
compact in X. This would contradict c(t) -^ 0 and the result follows. •
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