JFP 19 (3 & 4): 469-487,2009. (© 2009 Cambridge University Press 469
doi:10.1017/S0956796809007321 Printed in the United Kingdom

Algebras for combinatorial search

J. MICHAEL SPIVEY

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 30D, UK
(e-mail: mike@comlab.ox.ac.uk)

Abstract

Combinatorial search strategies including depth-first, breadth-first and depth-bounded search are
shown to be different implementations of a common algebraic specification that emphasizes the
compositionality of the strategies. This specification is placed in a categorical setting that combines
algebraic specifications and monads.

1 Introduction

Many combinatorial problems can be expressed in terms of a sequence of constrained
choices, with successive choices forming a path within a tree of possibilities. We can model
such trees with the type

data Tree o = Leaf o | Fork [Tree o].

For example, the following function choose, given an integer n, describes a tree that con-
tains all integers = n (see Figure 1).

choose :: Integer — Tree Integer
choose n = Fork [Leaf n,choose (n + 1)].

Each fork in the resulting tree corresponds to a decision whether to stop at n or to choose
a number that is n + 1 or greater. Trees can be made into a monad in a way that makes it
natural to describe sequencing of choices. This monad has operations

(>) :: Tree o — (o — Tree) — Tree
return :: o — Tree o.

These can express a program such as
choose 1> (Ax — choose 10> (Ly — return (x, y))),

which chooses pairs of integers (X, y) such that x > 1 and y > 10. Figure 2 shows the tree
that results. The overall structure near the root of this tree is a copy of the tree shown in
Figure 1, but the leaves 1, 2, 3, 4, ... of that tree have each been replaced by another tree,
again with a structure that is determined by the function choose. The leaves of the tree are
labelled with pairs (x, y).

There are some advantages in working with forests — lists of trees — rather than single
trees. The operations > and return can be redefined so as to make forests into a monad in a

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

470 J. M. Spivey

[
(LEW (2(;1—)} (&EW

Fig. 2. A composite tree.

similar way to trees, but they also support an associative concatenation operator, with the
empty forest as an identity element.

The existence of an empty forest allows us to define an operation test that yields a forest
over the unit type (): either the singleton forest return () = [Leaf ()] or the empty forest
zero = [] according to a Boolean condition.

test :: Bool — Forest ()
test b = if b then return () else zero

Although apparently of little use, this operation lets us filter out the results that satisfy a
constraint. Thus the program

p = choose 1> (Ax — choose 1> (Ly —
test (x *y = 24)> (A() — return (x,y))))

produces a forest that contains just those pairs (X, y) of integers > 1 that multiply to give
24. The expression can be written more succinctly in Haskell’s do notation as

p =do x « choose 1; y « choose 1; test (x * y = 24); return (x, y).

Although trees and forests make it easy to compose a sequence of choices, we might
prefer to have the answers as a list. There are two ways of achieving this: one is to build
the forest first, and then apply a function,

search :: Forest o — [o],

that traverses the forest in (say) a depth-first order and yields the list of leaves that it finds.
The other way is to work in the monad of lists instead of the monad of trees: we can define

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 471

operations

() =2 [o] = (2 — [B]) — [B]

return’ o — [o],

as well as others like test’ :: Bool — [()], and write the entire program in terms of
lists instead of forests. Using the monad of lists gives the same results as building the
tree and traversing it in depth-first order, and this is a consequence of the fact that search
is a morphism of monads, so that (among other things) the following algebraic law
holds:

search (xt > (Ax — f x)) = search xt ' (Ax — search (f x)).

This law lets us take a program that is written using the operator > that is connected with
trees or forests and move one step towards rewriting it to use lists instead. Applying the
law three times to the expression search p, where p is the program above, and simplifying
a little using other laws, we can obtain the program

search (choose 1) > (Ax — search (choose 1)’ (Ly —
test'(x * y = 24) ' (A() — return’(x, y)))).

We can read the law above, and other laws that relate test and return to test’ and return’,
as saying that depth-first search is compositional, in the sense that the result of applying
search to a compound program built up with > can also be obtained by applying search to
the parts of the program, and then combining the results with ',

If we additionally use the fact that search (choose n) yields the list [n..], then the whole
program can be rewritten as the list comprehension

[, y) | x—[l.],y<<[l.],x*y=24].

This list-based program for the factors of 24 is not very effective, because it finds the pair
(1,24), and then enters an unending search for other numbers y such that 1 * y = 24, never
reaching the solution (2, 12). For this problem and other similar ones, it would be better to
use another search strategy such as breadth-first search.

The ideas outlined here raise a number of questions, which the present paper aims to
answer. First, what is an appropriate set of composition operators (in addition to >) for
programs that produce search trees or forests? How can the same operators be defined
on lists so that the function search respects each operator as it does >? We will see the
answer to these questions in Section 2, where we introduce a set of operators similar to
the MonadPlus class of Haskell, but with an additional operation wrap that permits the
representation of tree-like structures.

Second, other search algorithms like breadth-first search and depth-bounded search are
more effective than depth-first search, particularly on infinite trees. Can these search algo-
rithms also be made compositional in the sense alluded to here? This question is answered
in Section 3, where these algorithms — the canonical examples of ‘oblivious’ search algo-
rithms in artificial intelligence — are shown to be expressible as other implementations of
the same set of operators.

Third, what is an appropriate algebraic setting in which to place these results? For
standard collection types like sets, bags and lists, the Boom hierarchy (Meertens 1986;

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

472 J. M. Spivey

Bird 1987) provides a uniform setting within which similar programs can be developed
in a similar way. Is there an analogous setting for the monads that are associated with
combinatorial search? This question is answered in Section 4, which proposes a slight
generalization of the category-theoretic concept of a monad, and Section 5, where this
extended concept is applied to search strategies. Section 6 contains an outline of a way in
which these results can be extended from finite to infinite trees.

2 Combinators for search

The first task is to find a set of combinators that allow us to build up search trees. We will
define five operations that work with trees: zero, return, >, @ and wrap, and then look at
the algebraic laws that they satisfy; in effect, this will give us an algebraic specification of
search as an abstract data type. Next, we will look for other implementations that satisfy
the same specification, corresponding to different search algorithms. We will show that
the implementation based on trees is an initial object in a certain category, and this will
imply that any other implementation can be viewed as compositional in the sense outlined
in Section 1.

Rather than operating directly on trees, our initial set of combinators will work on
forests — that is, finite lists of trees — because this will allow us to define the empty
collection of results, and an associative or operator that combines two collections of results
into one. Each node in a tree is either a labelled leaf or an unlabelled internal node with a
finite list — a forest — of children.

type Forest o = [Tree o]
data Tree o = Leaf o | Fork (Forest o)

There is an empty forest, which we will call zero, and given any value x :: o, we can form
the tiny forest return x that contains just the leaf x:

zero :: Forest o
zero =[]

return :: o — Forest o
return x = [Leaf x].

The function return will become the unit of our monad of forests.

Given two forests xm and ym, we can concatenate them to form a wider forest xm @ ym.
Also, we can wrap up any forest xm as a new forest that contains a single, slightly taller,
tree; in this way we can obtain forests that are not just lists of leaves.

(®) :: Forest « — Forest o — Forest o
xm @ ym = xm ++ ym

wrap :: Forest oo — Forest o,
wrap xm = [Fork xm].

It is easy to see by an inductive argument that any forest can be constructed using the
operations we have so far introduced.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 473

Using @, wrap and return, we can define a function choose that produces the single tree
shown in Figure 1:

choose :: Integer — Forest Integer
choose n = wrap (return n @ choose (n + 1)).

The final operation in our suite of combinators is the binding operator > that makes
forests into a monad. As we shall see later, the definition of this operator is more or less
forced on us by algebraic considerations, but for now we can give a recursive definition as
follows:

(>) :: Forest o — (o — Forest) — Forest f8
[1>f=1I

(Leaf x :xm)>f = f x4+ (xm > f)

(Fork ym : xm) > f = Fork (ym > f) : (xm > f).

Now we turn to the algebraic laws that are satisfied by the operations we have introduced;
these are important because we will require that they should also hold for the other search
strategies we wish to consider. First of all, we find that return and > form a monad so that
the following laws apply:

(xm>f)pg = xmp>(Ax—> fxp>g), (1)
(returnx)>f = fx,)
xm > return = Xm. A3)

‘We also find that zero and @ form a monoid:

(xm@ym)®@zm = xm® (ym @ zm),)
zero ® xm = Xxm, (5)
xXm @ zero = Xxm. (6)

The monad and the monoid interact according to the following laws, which state that
for any function f :: & — Forest 3, the function (>f) :: Forest « — Forest § is a
homomorphism of monoids:

zero>f = zero, @)
(xm@ym)>f = (xm>f)o(ym>f). ®)

Finally, wrap and > are related by the law
(wrap xm)>f = wrap (xm> f).)

Now we define a bunch to be a type constructor M, together with five polymorphic
operations,

return :: o — Mo,

) Mo — (o > MP) —> Mp,
zero . Mo,

(®) Mou— Mou— Ma,

wrap i Mo — Mo,

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

474 J. M. Spivey

such that the laws (2) to (9) are satisfied. As we shall see in the next section, several well-
known search methods can be expressed as bunches.

We have observed in earlier work (Spivey & Seres 2003) that Haskell’s system of type
classes provides a good framework for programming different bunches so that an entire
program can be written in a way that is indifferent to the bunch that is to be used for its
execution. We forbear to do this in the present paper, as it is not needed for the exposition,
and we can therefore also suppress the newtype construction that is needed in Haskell to
allow instances of type classes to be associated with compound type constructors.

3 Examples of bunches

3.1 Depth-first search

To obtain a bunch that gives the effect of depth-first search, we can take M« to be the type
of (lazy) streams over ¢, and define the five operations as follows:

type Mo = Stream o

return x = [x]

xm > f = concat (map f xm)
zero =[]

xm @ ym = xm ++ ym
wrap xm = xm

(We use Stream o as a synonym for [o] in order to emphasize that the streams are poten-
tially infinite.) These definitions do in fact satisfy the nine laws needed for a bunch.

3.2 Breadth-first search

A bunch that gives the effect of breadth-first search can be based on the type of streams
of bags over o, with the idea that successive (finite) bags in the potentially infinite stream
give the solutions from successive levels of the search tree. The stream is finite or infinite
according to whether the search tree for the same problem is finite or infinite.

Let us write Bag o for the type of bags over o, and bag xs for the bag whose members are
listed as xs. We write W for bag union, and bagmap and bagfold for the obvious functions
with types

bagmap :: (« — f) — Bag o — Bag f8
bagfold :: (x > o — o) > o — Bag o — o,

with the proviso that bagfold f e is well defined only if f is associative and commutative
with unit element e.
With these conventions, we can define the basic bunch operators as follows:

type Mo = Stream (Bag o)
return x = [bag [x]]

zero = [].

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 475

If we think of the bags in xm and ym as successive levels in two forests, it becomes clear
that joining the two forests together corresponds to taking the union of each level, so we
define,

xm @ ym = longZipWith (W) xm ym,

where longZipWith is a version of zip With that works even when its arguments are lists
of different lengths. When one list is exhausted, the remainder of the other list is copied
over to the result:

longZipWith :: (« > o — o) = [o] — [o] — [o]
longZipWith f (x : xs)(y :ys) = (f xy) : longZipWith f xs ys
longZipWith f [1ys = ys

longZipWith f xs [] = xs.

Obviously, since W is associative and commutative, so is longZip With (W), and the empty
list zero is a unit element.

To define wrap, we need to observe that when a forest becomes wrapped up as a single
tree, the first level of that tree contains no leaves, and each subsequent level contains the
same leaves as the preceding level of the original forest. This motivates the definition

wrap xm = [] : xm.

To complete the bunch, we need to find an appropriate definition of >. We can use
Equations (2), (7), (8) and (9) to work out what this definition must be, though it will
still remain to show that the definition we derive has the appropriate properties.

Equation (7) gives us immediately that

[I>f = [l
Also, if xb = bag [x1,...,x,] is any finite bag, then we can write [xb] = return x; ®--- @
return x,, and so a stream xb : xbs can be written
xb :xbs = [xb] @ ([] : xbs) = (return x; & - - - @ return x,) ® wrap xbs.
Applying Equations (8), (2) and (9) to this, we obtain

(xb :xbs)bf = (fx1® - ®fx,)®wrap (xbs > f)
= join (bagmap f xb) & wrap (xbs > f),

where join = bagfold (®) zero. This yields the following definition of :

(I>f =1l
(xb : xbs)> f = join (bagmap f xb) & wrap (xbs > f).

We will discuss later in this paper why we can be sure that the operation defined by these
equations satisfies all the laws needed to be a bunch.

As we explained in an earlier paper (Spivey & Seres 2003), and will later explore from a
different point of view, it is necessary to use streams of bags, ignoring the order of elements
in each layer, if the composition operator > is to obey the associative law (1). If we try to use
streams of lists instead, then in Equation (1), the same results are obtained on both sides,
but they may appear in a different order. Our use of bags really amounts to a convention that

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

476 J. M. Spivey

the order of results within each level is not significant; with this convention, it is perfectly
acceptable to implement bags and bag union as lists with concatenation.

3.3 Depth-bounded search

Standard texts on artificial intelligence — for example, Russell and Norvig (2003) — observe
that breadth-first search typically has large memory requirements, and recommend depth-
bounded search as a more efficient alternative. This is similar to depth-first search (and
so can be implemented efficiently with a stack), but the search is made finite by cutting
off all branches of the search tree at a given depth. In order to make the search complete,
the technique of iterative deepening is used: this amounts to performing repeated searches
with a depth bound that slowly increases. Naturally, this entails recomputing the shallow
parts of the tree repeatedly, but in practice this is often faster than maintaining the data
structure that would be needed (as in breadth-first search) to avoid the recomputation.

In order to make depth-bounded search compositional, we need to know the depth at
which each answer is found, and so we perform the search with a function that takes a
depth bound and returns a list of answers, each paired with the unused portion of the
bound:

type DBound o. = Int — [(a, Int)].

Thus if the supplied bound is n, and the answer x occurs at depth d < n, then the pair
(x,n — d) will appear among the results.

For consistency, we require that each answer that appears for a depth bound »n should
continue to appear for each greater bound n+k. Thus if p :: DBound e and k > O, then pn
contains (x, r) if and only if p (n 4 k) contains (x, r + k). To implement iterative deepening,
we simply need to form the list,

deepenp =[x |n <« [0.],(x,r) < pnr=0].

The basic operations return and > are defined as follows:
return x = (An — [(x,n)])
p>f = (An—[(y,5) [(x,r) < pn,(y,s) — fxr]).

These satisfy the equations needed for a monad; for example, the associative law (1) is
satisfied because both (p> f) > g and p> (Ax — f x> g), when applied to a bound n, yield
the list,

[0 | (x,r) < pn(y,s) < fxr,(z,0) < gys].
The convention of pairing each solution with the remaining depth budget simplifies the
details of both the definition of > and the argument that is needed to prove associativity.
The extra operations zero, ® and wrap are equally straightforward to define:

zero = (An — [])
P1® p2 = (An — pin++pon)

wrap p = ¢q

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 477

where
q0=1]
qn+1)=pn

Again, the idea behind wrap can be understood by thinking about forests. When a forest
is wrapped up as a single tree, that tree contains no solutions at level 0, and the solutions
with depth < n+ 1 in the tree are the same as those at depth < n in the original forest. The
remaining depth budget that is paired with each solution is unchanged.

3.4 Non-examples

Equation (8), the distributive law (xm @ ym) > f = (xm > f) @ (ym > f), is interesting
because it is not satisfied by a putative bunch based on the type constructor Maybe. It is
straightforward to make this type constructor into a monad, and we can define an associa-
tive operation @ by

(®) :: Maybe o — Maybe 0. — Maybe o
Nothing @ ym = ym
Just x @ ym = Just x.

However, these do not satisfy the equation. If even is a function such that even 2 = Just 2
and even 3 = Nothing, then

(Just 3 @ Just 2) > even = Just 3 > even = Nothing,

but
(Just 3> even) @ (Just 2> even) = Nothing @& Just 2 = Just 2,

so the law does not hold. This reflects the fact that once a computation of type Maybe o
has delivered a result, it is not possible to backtrack and obtain a different result if the first
one causes the rest of the computation to fail. This means that the sort of non-backtracking
failure represented by the Maybe type is not part of the family of search strategies being
considered here, even though Maybe is made a member of the MonadPlus type class in
Haskell’s standard library.

Another non-example of our laws can be found in a recent paper by Kiselyov et al.
(2005). They enhance a stream-based model of backtracking with alternative combinators
that implement fair interleaving (including bindi, a fair version of), and they show
how this interleaving can be realized in a continuation-passing style. As we have noted
earlier (Spivey & Seres 2003), such an attempt cannot yield a monad, because there is no
way for a computation that returns a stream to signal to its environment that it has done
some work but found no answers. Briefly, in the computation

doa<—[2.];(dob «—[2.];test (a*b=9)),

the inner computation (do b « - - -) necessarily diverges when applied to the value a = 2.
However, the computation

do (a,b) « interleave [2..] [2..]; test (a* b =9)
where interleave xm ym = do x « xm; y « ym; return (x, y),

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

478 J. M. Spivey

which ought to be equivalent according to Equation (1), does have a chance to interleave the
two streams of integers fairly, and so can produce the answer (3, 3) — before also diverging
in the hunt for other pairs that multiply to give 9. The failure of these two expressions to be
equivalent boils down to a failure of the bindi combinator to satisfy the associative law (1).
This failure of associativity seems unimportant in a small example such as this, because
it is no trouble to write the second of the two expressions in place of the first; but in a
larger example, the two non-deterministic choices may be far apart in the text of a complex
program, and it may be impossible to bring them together in order to make the interleaving
fair without damaging the structure of the program.

4 A categorical view

A more abstract view of the relationships between different search strategies can be ob-
tained using concepts from category theory. We know that each strategy involves a monad,
but a strategy is more than that, because it also contains the combining operators @,
wrap and zero. This makes it natural to consider a situation where there are two related
categories: the category 2 of ordinary types and functions, and a category .o/, in which
the objects are ‘algebras’ consisting of a type that is equipped with these operations, and
the arrows are homomorphisms between these algebras. The monads we are interested
in somehow create algebras rather than just types, and we seek an appropriate setting in
which to study such monads. In the next section, we shall focus on the situation where the
category .o/ is a category of homogeneous algebras with specified operations that satisfy
certain equations. First, however, it is fruitful to study briefly a more abstract setting in
which we assume no more than a pair of categories Z and .o/, with a ‘forgetful’ functor
U:.o —>2%.

It may be helpful to give a reminder of how the notation for monads that is used in
category theory is related to that used in functional programming. In programming, a
monad consists of a type constructor M, together with polymorphic functions return ::
o — Mo and (>) :: Ma — (¢ = Mf) — Mp. In the notation of category theory, each
instance of return becomes an arrow 7, : x — MXx. For each arrow f : x — My, we can
form an arrow f* : Mx — My. This corresponds to the function that maps xm :: Mo to
xm>f :: M B, in other words, to the operator section (>>f). In this notation, the ‘associative
law’ (1) becomes the equation g* - f* = (g -), and the unit laws (2) and (3) become
f* ny = f and n; = idpsy. (A summary of the notation for category theory that is used in
this paper appears in an appendix.)

The following definition generalizes this notion of monad by identifying for each object
X € Z not just an object Mx € Z in the original category, but also an object Fx € .o/ in
the richer category.

Definition 1
If .o/ and & are categories with a functor U : .o/ — %, then we define an .«/-monad on ¥
to be a triple (F, _#,7) that assigns

e an object Fx € .o/ toeach x € 4,
e anarrow % : Fx — Fy in ./ to each arrow f : x — UFy in & and
e an arrow 7, : x = UFXx to each object x € &

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 479

VUF
FUFUF ——— FUF

ml l

FUF ——F

Fn nUF
F—» FUF UF —— UFUF
. }v \ [Uu
idp idyp
F UFr
Fig. 3. Laws for an .2/-monad.
in such a way thatif f : x > UFyandg : y — UFz, then
g ff = (UgF- [V, (10)
nf = idp, (11)
Uff-ne = f. (12)

This completes the definition.

The concept of an .o/-monad generalizes that of a monad on % in two ways. Firstly,
each .o/-monad induces an ordinary monad (M, _*,n) on ', where Mx = UFx, and if
f :x — My then f* = Uf*. It is a matter of routine to verify that the requisite equations
hold in this monad. Secondly, if we set .o/ = % and set U to be the identity functor
Idy : & — %, then the concept of an .&/-monad reduces to that of an ordinary monad
on%.

Just as ordinary monads can be defined equationally in terms of functors and natural
transformations, so can the concept of an .«/-monad be presented equationally. Given the
data in the definition above, we can extend F' to a functor by defining its action on an arrow
fi:x—>ytobe

Ff=(11y-f)j$: Fx — Fy.
The family of arrows 7, then becomes a natural transformation # : Idy—UF. Moreover,
we can define a natural transformationv : FUF—>F by v, = idf] ry» and the three equations
above then give the following three equations relating # and v (see Figure 3):

v-FUv = v-vUF, (13)
v-Fn = idp, (14)
Uv-qUF = idyp. (15)

These are slightly adjusted copies of the equations in the equational definition of an
ordinary monad.

Conversely, a translation the other way is obtained by setting f# = v, - Ff for each
f :x —> UFy in Z. The laws defining an .2/-monad then follow from the three equations
just stated; in particular, the associative law (10) follows because expanding the definition
of _* and using the naturality of v gives

gﬁ-f#=vZ-Fg~vy-Ff=vZ-vUFZ-FUFg~Ff,

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

480 J. M. Spivey

while expanding the definition and exploiting the fact that F and U are functors gives
(Ug? - f)F =v. - F(U(v: - Fg) - f) =v. - FUv. - FUFg - Ff.

The two expressions on the right are equal according to Equation (13).

An .«/-monad is more than a monad on Z’, but it is less than an adjunction between 2
and .o/. In particular, a forgetful functor U : &/ — Z can have (up to isomorphism) at
most one left adjoint F, but as we shall see, there may be multiple non-isomorphic .o/ -
monads on Z. The key difference between the data given above and those that determine
an adjunction is that the _* operation is restricted to arrows f : x — UFy, and does not
apply to all arrows f : x — Ua for any a € o7.

We define morphisms of .2/-monads as follows:

Definition 2
If (F, #n) and (F',_",5') are .&/-monads on %, then a morphism 0 between them is a
family of arrows 0, : Fx — F’x in .o/ for each x € &, such that whenever f : x — UFy
in Z,

0, f* (U0, - £) - 0. (17)

This completes the definition.

Equivalently, in terms of functors and natural transformations, we may define a mor-
phism of .«/-monads to be a natural transformation 6 : F->F’ such that

uo-n = 1, (18)
0-v = V- (O*xU=*0), (19)

where v/ : F’UF’'F’ and * denotes horizontal composition of natural transformations,
sothat 0 *x U* 0 = QUF' - FUQ = F'UQ - OUF. In either style, the obvious definitions
of identity morphisms and composition of morphisms make the class of .o/-monads on &
into a category. If 0 : F-5>F’ is any morphism of .«7-monads, then U0 : UF>UF’ is a
morphism of the underlying monads on Z".

For ordinary monads, it is well known that an adjunction between Z" and .o/ creates a
monad on %, and it seems reasonable to expect that it should create an .2/-monad also. In
fact, this .«7-monad is an initial object in the category.

Lemma 1
Let (F,U,n,e) : £ — .o/ be an adjunction with unit # : Idy—UF and counit ¢ :
FU-1d./, and let v = €F. Then (F,n,v) is an initial object in the category of .o/-monads.

Proof
We first show that (F,#,v) is an .o/-monad. For Equation (13), we have € - FUe = ¢ - eFU
by naturality of €. Post-multiplying by F gives

v FUv =¢€F -FUeF =¢€F -eFUF =v-vUF.
Equations (14) and (15) are instances of the two triangle laws of the adjunction:

v-Fn=e¢eF - -Fn=idg

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 481

and (again post-multiplying by F)
Uv - I’]UF = UeF - 1’]UF = idUF.

Now suppose (F’,n’,v') is any .o/-monad, and define a morphism 0 : F-5F' by 0 =
eF' - Fy'. This does give a morphism: Equation (18) holds because UFy' -1 = nUF -’
by naturality of #, and we can apply the triangle law Ue - yU = idy, post-multiplying it
by F':

UQ-ny=UeF' -UFy -y =UeF -yUF -y =¥

For Equation (19), consider the following diagram of functors and natural transformations:

FUO OUF’
FUF FUF' F'UF'
Fny'UF’
eF'UF’
FU6§
id[ﬂ(/ ol FUF'UF'
v =¢F Vv
FUV
FUF'
eF’
L
F F’
0

In this diagram, the top and right-hand sides form v’ - (@ * U * 0), and the bottom and
left-hand sides form 0 - v. Both the (distorted) squares commute by naturality of €. The
top triangle is an instance of the definition of 6, and the central triangle is a version of
Equation (15).

Lastly, suppose ¢y : F-F’ is another morphism. We can calculate as follows, us-
ing Equation (18) applied to 01, and then the naturality of ¢ and the other triangle law
for the adjunction:

0=eF -Fn' =¢eF -FUO;-Fn=0-¢F - Fn=0,.
So 6 is a unique morphism from F to F’. O

While an adjunction between 2 and the whole of the category .o/ gives an initial object in
the category of .&7-monads, other .2/-monads can be obtained from adjunctions between %
and subcategories of .o7. If (F',U’,n’,€') : & — 2 for some subcategory # = .o/ (where
U’ = Ul|y is the restriction of U), then we can define v/ = €'F’ and obtain an .«/-monad
(F',n',v"} as before. This result is interesting for us, because we can obtain subcategories
of a category .o/ of algebras by restricting attention to those algebras that satisfy additional
equations.

5 Application to combinatorial search

The general picture of the category of .o/-monads can now be applied to the particular
case of search strategies. For the moment, we will simplify the discussion by restricting
attention to finite search spaces and ignore the problem of modelling programs where the
search space is infinite. This restriction will be removed in Section 6.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

482 J. M. Spivey

5o ° 01

Fig. 4. A typical forest.

A search strategy is a monad equipped with the operations @, zero and wrap and
satisfying the equations given in Section 2. This makes it appropriate to take .o/ to be
the category of (€, E)-algebras and homomorphisms, where Q is the set of operators
{@®2,zerog, wrap, } with arities as shown, and E is the set of equations,

{(x@y)@z=x@(y®z),zer0 DX =X = X @ zero}.

These equations correspond to laws (4), (5) and (6) from Section 2. Laws (1), (2) and (3)
state that > and return are the operations of a monad. Laws (7), (8) and (9) state that the
function (>f), for any function f : « — M f3, is a homomorphism of algebras. Together,
these observations amount to the fact that what we have called a bunch is exactly an .o7-
monad for this particular category .o7.

A standard result states that there is an adjunction between the category of sets and
the category of (Q, E)-algebras that gives the free algebra generated by any set. See, for
example, MacLane (1971, p. 120). Lemma 1 of Section 4 then tells us that the .o/-monad
containing these free algebras is an initial object in its category.

For our choice of Q and E, this free algebra is the set of forests with leaves from the
given set. A typical element where the leaves are integers is the forest

[Fork [Tip 1, Tip 2], Tip 3, Fork [Fork [Tip 4, Tip 5], Tip 6]],

shown in Figure 4. Writing w for wrap and {x} for return x, this can be expressed in terms
of the operations as

w({l} @ {2}) @ {3} @ w(w({4} @ {5}) ® {6}).

In this case, it should be clear that the type of forests, together with the operations defined
in Section 2, represents exactly the set of expressions of this form, and that distinct ex-
pressions give distinct forests. The results of Section 4 then tell us that the type of forests
can be made into an .2/-monad, and it remains only to calculate a definition of the binding
operator >. Any forest xm can be written in the form

xm = [t1] ++ [t2] +H -+ 4+ [t
and then we see that
xm> f = ([ti]> f) 4+ ([]>)+ (L] > f)
Furthermore, we can calculate that
[Leaf x]> f = fx,

and
[Fork xm] > f = [Fork (xm > f)].

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 483

In this way, we can derive the definition of > shown in Section 2 from the algebraic laws
that characterize a bunch, something we already did in Section 3 for the bunch of breadth-
first search.

This calculation could have been carried out without knowing the results of the previ-
ous section or their application to bunches. But what these results guarantee is that the
adjunction between # and .o/ does indeed create an .o/-monad, so that there does exist
an operation > that satisfies all the required laws. What we have just shown is that any
operation that satisfies the laws must also satisfy the equations that make up a recursive
definition of 1>; since this recursive definition describes a unique operation, we may be sure
that this operation is the required binding operator for the monad.

We can now play a game like the one that leads to the ‘Boom hierarchy’ trees—lists—
bags—sets of collection types: by adding equations to the algebraic specification, we obtain
alternative models that identify previously distinct terms. For each set of equations E’ that
extends our original set E, we obtain a full subcategory of the category of (Q, E)-algebras,
containing just those algebras that satisfy the equations E’, together with an adjunction
between sets and the subcategory. This gives an .o/-monad on sets, and in particular a
unique definition of the binding operator 1> for the resulting notion of search.

For example, if we put wrap x = x, this reduces the example term to

{he2je 3o {4 o5 @6

that is, to something that can be represented by the list [1,2,3,4, 5, 6], and we obtain the
monad of depth-first search. Again, once we see that the expressions in this normal form
are faithfully represented by lists, it follows that there is an .«/-monad based on lists, and
the definition of the binding operator can be calculated.

Alternatively, we may add the equation that wrap distributes over @, reducing the ex-
ample term to

w({1}) @ w({2}) @ (3} @ w’({4}) @ w({5}) ® w({6}),

where we write, e.g., w?(x) for w(w(x)). With these equations, any finite term can be
reduced to a normal form that is a sum of terms, each of the form w”({x}); such a normal
form reveals the left-to-right order of the solutions and the depth in the tree at which each
one appears, without preserving the branching structure that links the solutions to roots in
the forest. Thus it corresponds to the bunch of depth-bounded search.

Adding the further equation that wrap is commutative lets us group together the terms
w"({x}) that have the same depth n, and reduces our example term to

(3lew({l} @ {2} @ {6}) @ w ({4} ® {5}).

In general, the normal form is a sum of terms w"(s) for distinct n, where s is itself a sum of
singletons in an arbitrary order. This corresponds closely to breadth-first search, where we
may discover the bag of solutions that occur at each depth in the tree.

We remarked earlier that it was impossible to get an associative binding operator for
breadth-first search without making @ commutative, and so treating each level of the
result as a bag rather than a list. Here we see that imposing commutativity has the pos-
itive effect of simplifying the normal forms and leading us directly to the stream-of-bags
representation.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

484 J. M. Spivey

If we accept that the type containing lists of bags is a proper representation of the normal
forms just described, then the calculation in Section 2 that led to a definition of 1> is correct,
and the operator it defines satisfies all the required laws, including the associative law (1).
This is reassuring, since proving the associative law directly is rather difficult (see Spivey
2000).

In addition to the notion of an .2/-monad, our categorical approach points us to the notion
of a morphism of .&/-monads, a parametric system of homomorphisms of algebras that is
also a morphism of monads. For our initial object, there is such a unique morphism to
any other bunch M, and we can easily derive a definition of this morphism as a functional
program. It gives the value in any bunch that results from searching a forest:

search :: Forest . — Mo

search [] = zero

search (Leaf x : xm) = return x @ search xm

search (Fork ym : xm) = wrap (search ym) @ search xm.

The fact that search is a bunch morphism reassures us that for any bunch M, the same
results are obtained by running a program that builds a forest and then searching it as are
obtained by running the same program directly in M.

Gibbons and Jones (1998) have shown that the familiar implementations of depth-first
and breadth-first search that use a stack and a queue respectively can be derived from this
definition of search by recasting it as an unfold.

6 Infinite search spaces

The discussion of the previous section indicates that, at least for finite searches, all com-
positional search strategies can be made part of a single algebraic framework. It would be
nice to do the same for infinite searches, and preferable to do it in a way that reflects the
fairness of strategies like breadth-first search. One possible approach is based on the theory
of metric spaces.

Let us define a fair bunch to be a bunch M such that type M« is also a complete bounded
metric space under some metric d, subject to certain restrictions. For the theory of metric
spaces see, for example, Sutherland (1975). Our first example will be the bunch of forests,
where we now allow infinite trees, provided that they remain finitely branching. If f; and
f> are forests, we can define d(f1, f2) = 27", where n is the first level at which f; and f,
differ, or d(f1, f») = 0if f; = f,. More precisely, we can define a function

prune :: Integer — Forest o — Forest o

that cuts off all branches in a forest below a specified depth; we then look for the smallest
n such that prune n f| + prune n f5.
The operations of the bunch are related to this metric in a number of ways:

1. The function wrap is a contraction, in the sense that

d(wrap f1,wrap f2) < pd(f1, f2)

for some p < 1; actually, we can take p = 1/2.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 485

2. The operation @ satisfies d(f1 @ f2, f1 @ f5) < max(d(f1, f1), d(f2, f5))-

3. The finite elements of M« — those that are the value of some finite term in the
operations — are dense in M«, so that every element of Mo is the limit of some
sequence of finite elements.

The first two of these properties are sufficient to guarantee that any guarded recursive
definition has a unique solution. By a guarded recursion, I mean an equation of the form
t = F(t), where F(x) is defined by a term where each occurrence of x is ‘guarded’ by
at least one application of wrap. Standard techniques allow this result to be extended to
recursive definitions of functions of the form f(x) = F(f(g(x))), where F is guarded.
The third property ensures that any continuous function from Mo to some other complete
metric space is uniquely determined by its behaviour on the finite elements.

Of the other bunches mentioned earlier, we cannot hope to make a fair bunch from
the monad of depth-first search, because there the wrap operation is the identity function,
and that cannot be a contraction. The lack of a general result about the existence of free
continuous algebras of this kind means that we must also treat the other bunches one at a
time.

For breadth-first search, we can define the distance between two streams of bags m; and
my to be d(my,my) = 27", where n is smallest such that take nm; # take nmy. Similarly,
for depth-bounded search we may instead define d(p1, p2) = 27", where n is smallest such
that p; n % p; n.

It is not appropriate to develop the theory here at length, since it reveals no more structure
than we found in the finite case, so I will just give a very brief outline of it. The appropriate
notion of morphism for fair bunches is a family of uniformly continuous functions that is
also a morphism of the underlying bunches. In fact, all the functions we need to consider
in the existing examples are actually Lipschitz-continuous.

Using uniform continuity ensures that the image of a Cauchy sequence is again a Cauchy
sequence, and allows us to extend functions defined on finite elements to cover infinite
elements too, in a way that is unique because we assume that the finite elements are dense.
This allows us to extend the definitions of the operations from finite to infinite elements
in a way that preserves the algebraic laws, and gives us a unique morphism from the fair
bunch of forests to any other fair bunch.

7 Conclusion

We have seen that in functional programming, several different strategies for combinatorial
search can be made part of the same algebraic framework, one that emphasizes the compo-
sitional nature of the strategies. This algebraic framework adds one operation, wrap, to the
standard MonadPlus type-class of Haskell, in effect making it possible for a computation
to signal that it has produced all the results with a specified cost. We have shown, at least
for finite search spaces, that these different search strategies all arise by adding various
equations to an algebraic theory that describes the set of outcomes of the search, and we
have suggested a way in which the theory could be extended to cover infinite search spaces
also.

The search strategies we have covered are all oblivious, in the sense that they depend
only on the depth of solutions in the tree of choices, and are not guided by any heuristic

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

486 J. M. Spivey

estimate of distance from a solution. It would be interesting to see whether the present
framework could be extended to include a (real-valued) notion of distance, so that strategies
such as best-first and 4" search could also be covered.

Many others have written about implementations of combinatorial search in higher-order
functional programming, and it is appropriate to mention some recent related work here.
Much of this work focusses on implementations of depth-first search. Hinze (2001) has
shown that an implementation of depth-first search using success and failure continuations
can be more efficient in Haskell than one based on lazy streams. He also considers the
algebraic laws that are satisfied by our combinators and by others that correspond to
Prolog’s control structures, including cut. Kiselyov ef al. (2005) extend this work to show
how fair interleaving can also be implemented, though with the failure of associativity
that we noted earlier. In a strikingly elegant paper, Wand and Vaillancourt (2001) use
operational semantics to show the equivalence of the continuation-based and stream-based
models of depth-first search.

Acknowledgments

The author is happy to acknowledge that part of this work was carried out while he held a
visiting chair at the University of New South Wales, and thanks to Carroll Morgan for his
generous hospitality and helpful suggestions. Thanks are also due to Paul Blain Levy for
pointing out an error in an earlier version of this paper.

References

Bird, R. S. (1987) An introduction to the theory of lists. In Calculi of Discrete Design, Broy, M. (ed.),
NATO ASI Series F, vol. 36. Springer, pp. 5-42.

Gibbons, J. & Jones, G. (1998) The under-appreciated unfold. In Proceedings of the 3rd ACM
SIGPLAN International Conference on Functional Programming, ICFP ’98 (Baltimore, MD, Sept.
1998). ACM Press, pp. 273-279.

Hinze, R. (2001) Prolog’s control constructs in a functional setting — axioms and implementation,
Int. J. Found. Comput. Sci., 12 (2): 125-170.

Kiselyov, O., Shan, C.-C., Friedman, D. P. & Sabry, A. (2005) Backtracking, interleaving and
terminating monad transformers, In Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming, ICFP 05 (Tallinn, Sept. 2005). ACM Press, pp. 192—
203.

MacLane, S. (1971) Categories for the Working Mathematician, Graduate Texts in Mathematics,
vol. 5. Springer.

Meertens, L. G. L. T. (1986) Algorithmics — towards programming as a mathematical activity.
In Proceedings of the CWI Symposium on Mathematics and Computer Science, de Bakker, J.,
Hazewinkel, M. & Lenstra, J. K. (eds), CWI Monographs, vol. 1. CWI, pp. 289-334.

Russell, S. J. & Norvig, P. (2003) Artificial Intelligence: A Modern Approach, 2nd ed. Prentice Hall.

Spivey, J. M. (2000) Combinators for breadth-first search, J. Funct. Program., 10 (4): 397—
408.

Spivey, J. M. & Seres, S. (2003) Combinators for logic programming. In The Fun of
Programming, Gibbons, J. & de Moor, O. (eds), Cornerstones of Computing. Palgrave MacMillan,

pp- 177-200.
Sutherland, W. A. (1975) Introduction to Metric and Topological Spaces. Oxford University
Press.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

Algebras for combinatorial search 487

Wand, M. & Vaillancourt, D. (2001) Relating models of backtracking. In Proceedings of the 9th
International Conference on Functional Programming, ICFP *04 (Snowbird, UT, Sept. 2004).
ACM Press, pp. 54-65.

Notation

We use curly letters 2, %, &, .o/ for categories, and uppercase Roman letters for functors
F : & — % between them. The identity functor on % is written as Idy : & — Z.

A natural transformation 6 : F-F’ from a functor F to a functor F’ (with F,F' : & —
%) is a family of arrows 6, : Fx — F’x such that for each arrow f : x — x’ in 4, the
following diagram commutes:

F
Fz ! Fa'
0.’1[Jlga:’-
F'z F'a’
F'f

In other words, the equation Gf - 0, = 0’ - Ff holds.

We use an infix dot for composition of arrows g - f, and also for ‘vertical’ composition
of natural transformations. If § : F>F" and ¢ : F'>F”, then ¢ - 0 : F->F" is defined by
(¢ - 0)x = ¢y - 0. This composition, together with the obvious definition of the identity
transformation idr from a functor F to itself, makes the collection of functors £ — % and
the natural transformations between them into a category.

Composition of functors with functors and with natural transformations is denoted by
juxtaposition. As examples of the latter, if 0 : F>F" and ¢ : G=>G’ for functors F, F' :
2 — % and G,G' : Z — X, then G : FG>FG' and F¢ : FG->FG’ are defined by
(0G). = Oy and (F), = F(¢.).

With this set-up, if the arrow f : x — x’ in the diagram above is in fact a component
¢. : Gz — G'z of ¢, then the diagram can be redrawn as a diagram of functors and natural
transformations:

Fo

FG—— FG'

ecj lec’.

FIG——FG
F'e
We say that this diagram, like the one above, commutes ‘by naturality of 8°, and we use
the notation 0 * ¢ = 0G’ - F¢p = F'¢p - OG for the diagonal of the square, the horizontal
composition of 0 and ¢. This composition is associative, and as a special case, if 0 : F->F’
for F,F' : 4 — o/ and U : o/ — &, we write 0 * U * 0 for the natural transformation
¢ =0xidy*0 : FUF — F'UF’ with ¢, = Oy, - FUO, = F'UO, - Oypy.

Following MacLane (1971), we use the notation (F, U,7,€) : 4 — .o/ for an adjunc-
tion. This consists of a pair of functors F : Z — ./ and U : .o/ — 2 with natural
transformations # : Idy—>UF and € : FU-I1d, such that the triangle laws eF - Fy = idp
and Ue-nU = idy hold. We call 5 the unit and e the counit of the adjunction, and say that
F is a left adjoint of U, and U is a right adjoint of F.

https://doi.org/10.1017/50956796809007321 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007321

