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ON ISOMORPHISMS OF LATTICES OF CLOSED 
SUBSPACES 

P. A. FILLMORE AND W. E. LONGSTAFF 

1. Introduction. By a projectivity of vector spaces X and Y over fields F 
and G is meant an isomorphism ^\Jf(X) —> J({Y) of their lattices of 
subspaces. A basic theorem of projective geomtry [2, p. 44] asserts that, for 
spaces of dimension at least 3, any such projectivity is of the form \p(M) = 
SM for a bijection S:X -» Y which is semi-linear in the sense that S is an 
additive mapping for which there exists an isomorphism o:F —» G such 
that 

S(Xx) = o(X)Sx for all X e F and all x e X. 

In [12] Mackey obtained a continuous version of this result: for real 
normed linear spaces X and Y, the lattices %(X) and #(Y) of closed 
subspaces are isomorphic if and only if X and Y are isomorphic (i.e., via a 
bicontinuous linear bijection). Furthermore, examination of his proof 
shows that, except in dimension 2, the bijection may be chosen to induce 
the lattice isomorphism. He does not consider the case of complex scalars, 
and indeed essential to the result is the fact that the only automorphism of 
the real field is the identity. In contrast to this, there are 2C automorphisms 
of the complex field; of which, however, only the identity and complex 
conjugation are continuous [8, p. 49]. Thus the corresponding result for 
complex scalars should assert that any such isomorphism is induced by a 
bicontinuous linear or conjugate linear bijection. This we obtain as 
Theorem 1. Note that finite-dimensional spaces have to be excluded 
because of the existence of discontinuous automorphisms and because, in 
this case, all subspaces are closed. 

Mackey was motivated by the following result of Eidelheit [4]: for real 
Banach spaces X and Y, any isomorphism y:@(X) —» <%(Y) of the rings of 
continuous linear transformations is of the form y(T) = STS~] for some 
bicontinuous linear bijection S. Eidelheit remarks that, to obtain this 
result in the complex case, it is necessary to assume explicitly that y is 
homogeneous (i.e., an isomorphism of complex algebras). Several years 
later Arnold [1] clarified this situation by showing that for infinite-
dimensional complex normed linear spaces, any ring isomorphism of their 
rings of continuous linear transformations is induced by a bicontinuous 
linear or conjugate linear bijection. We give in Theorem 2 a simple proof 
of this result using the methods of Theorem 1. 
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We note in passing that a number of investigators have considered 
versions of Eideheit's theorem for suitable subalgebras; consult Radjavi 
[14] and the references therein. Also McAsey and Muhly [13] have 
described the structure of a large class of isomorphisms of invariant 
subspace lattices (in the finite-dimensional case). 

In the last two sections, we consider lattice automorphisms of ^(H) 
where H is infinite-dimensional complex Hilbert space. Theorem 1 is 
applied to show (Theorem 3) that every such automorphism is uniformly, 
strongly and semi-strongly continuous and preserves the properties of 
being uniformly (respectively strongly, semi-strongly, weakly) closed. 
Finally, Theorem 1 is again applied to show (Theorem 4) that each such 
automorphism preserves reflexivity and transitivity. 

2. The lattice theorem. Consider an isomorphism <j>: ^(X) —* ^(Y) of the 
lattices of closed subspaces of complex normed linear spaces X and Y. 
This means that >̂ is a bijection such that 

M Q N if and only if <j>(M) Q <j>(N) 

for all M, N e ^(X). Our first task is to show that <j> extends to a 
projectivity; i.e., an isomorphism of the lattices of all (not necessarily 
closed) subspaces. 

LEMMA 1. For an isomorphism ^\^{X) —» ^(Y), 

\p(M) = U {<f>(L) \L Q M and dim L < oo} 

defines an isomorphism \\j\Jf(X) —» Jt(Y) which extends <£. 

Proof. Let M e Jt(X). Then \p(M) is a subspace of Y. For if w, v e *KM) 
then u G <t>(K) and v e <j>(L) for some finite-dimensional subspaces K, L 
Q M, so that for any X e C, 

ÀM + V G <j>(K) + <j>(L) Q <j>(K + L) Q ^(M). 

To see that \p is surjective, let N e Jt{Y) and consider 

M = U {<t>~x{K) \K Q N and dim K < oo}. 

As above we have M e Jt(X). Because this expression for M evidently 
displays it as the union of its finite-dimensional subspaces, we have 

xP(M) = U {<t>($-\K) )\K Q N and dim K < oo} = N. 

Next let M, N e Jt(X\ Obviously M Q N implies ^(M) ç ,/,(#). For 
the converse let L be a finite-dimensional subspace of M. Then 

<J>(£) G *KM) ç ^(iv), 
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so <j>(L) = (t>(K) for some finite-dimensional subspace K of TV, and 
consequently L = K Q N. Therefore M Q N and \p is an isomorphism. 

Finally, to see that ^ extends <f>, observe that, for M e ^(X), both \p(M) 
and 4>(Af) have the same finite-dimensional subspaces, namely the 
subspaces <f>(L) for L a finite-dimensional subspace of M. Hence \p(M) = 
<KM). 

LEMMA 2. [9, Lemma 2, Cor.]. If S:X —> Y is a bijective semi-linear 
transformation of infinite-dimensional complex normed linear spaces that 
carries closed hyperplanes to closed hyperplanes, then S is either linear or 
conjugate linear. 

Proof We give a sketch for the convenience of the reader. The problem 
is to show that the automorphism <J> of C, associated with S is continuous, 
so assume that there is a bounded sequence {Xn } of complex numbers such 
that [o(Xn) } is unbounded. To obtain a contradiction, fix an infinite 
biorthogonal system {xmfn} in X. We can suppose that 

c = 2 H/J < oo, 
and that 

\a(Xn) | è n\\Sx„\\ for all n. 

Construct/ e X* as follows: for 

k 

X = 2a Jn\x)xn 
n=\ 

define 

k 

fix) = 2 fn(x)\n-
n=\ 

because 

k 

\f(x) I S 2 ll/JI IW| |AJ ^ c(sup \\n\ ) IUH 
« = i 

the Hahn-Banach Theorem provides a continuous linear extension off to 
all of X. Fix î e I with/(3c) = 1 and let 

.y*? = xn Anx, 

so tha t j w G ke r / fo r all w. Then 

so *S3c G S^ker / ) by hypothesis, and therefore 3c e ker / a 
contradiction. 
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The real linear case of the next lemma is [12, Lemma B]. 

LEMMA 3. If S:X —> Y is a linear or conjugate linear bijection of complex 
normed linear spaces such that S and S~] carry closed hyperplanes to closed 
hyperplanes, then S is bicontinuous. 

Proof Let 0 ^ g e y* be arbitrary. By hypothesis S_1(ker g) is a 
closed hyperplane, so we can choose/ e X* and u e X such that 

k e r / = S _ 1 (kerg) and f(u) = 1. 

Then any x <E X can be written in the form 

x = f(x)u + v for some v e ker/, 

so we have 

g(Sx) = g(S(f(hu)) + g(Sv) = a(f(x))g(Su) 

where a is the identity or complex conjugation. If follows that g o S is 
bounded and thus that S is bounded, so continuous, because g is arbitrary. 
Similarly S~] is continuous. 

THEOREM 1. If ^\^{X) —•> #(y) w an isomorphism of the lattices of closed 
subspaces of infinite-dimensional complex normed linear spaces X and Y, 
then there exists a bicontinuous linear or conjugate linear bijection S: X —-» Y 
such that <KM) = S M for all M e <g(X). 

Proof. By Lemma 1 we can extend <£ to an isomorphism 

4,\j?(X) -*j((y\ 

and then the "First Fundamental Theorem of Projective Geometry" [2, p. 
44] implies that there is a semi-linear bijection S:X —> Y that induces \p. In 
particular S and S~l carry closed hyperplanes to closed hyperplanes, so S 
is either linear or conjugate linear by Lemma 2, and bicontinuous by 
Lemma 3. 

Remark. Lemma 1 shows that any isomorphism &(X) —> J^( Y) of the 
lattices of finite-dimensional subspaces extends to an isomorphism Jt(X) 
—> Jt{Y). Which isomorphisms p-JF{X) —> ^(Y) extend to isomorphisms 
^(X) —» #(y)? It is not difficult to see that a necessary and sufficient 
condition is that for all F G W(X) and families {Ft\i <= / } c J^(X), 

F ç V {F;|/ G / } if and only if p(F) Q V {p(Fz)|/ e / } ; 

where V denotes closed linear span. Hence, for infinite-dimensional 
complex normed linear spaces, such isomorphisms are induced by 
bicontinuous linear or conjugate linear bijections. 

https://doi.org/10.4153/CJM-1984-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-048-x


824 P. A. FILLMORE AND W. E. LONGSTAFF 

3. The ring theorem. We emphasize that we do not assume that the 
isomorphism y of the following theorem is homogeneous. The first part of 
the argument that y is spatial is essentially due to Eidelheit [4]. 

THEOREM 2. [1]. If y:3S(X) —> &6{Y) is an isomorphism of the rings of 
continuous linear transformations on infinite-dimensional complex normed 
linear spaces X and Y, then there exists a bicontinuous linear or conjugate 
linear bijection S:X -> Y such that y(T) = STS~l for all T G 9S(X). 

Proof. Fix an idempotent PQ G SS(X) of rank 1 and non-zero vectors x0 

G P0X and y0 G y(P0)Y. Then define S.X -> Y by 

SUXQ = y(U)y0, for all U G 8{X). 

It is a matter of straight-forward verification that S is a well-defined and 
additive bijection. Moreover S induces y, because for all 7, U G <%(X) we 
have 

STUx0 = y(TU)y0 = y(T)y(U)y0 = y(T)SUx0 

so that ST = y(T)S or y(T) = STS~l. Now the centre of &(X) is {\IX\\ 
e C}, so by restricting y to the centre we obtain an automorphism a of C 
such that 

y(\Ix) = a(X)IY. 

Consequently 

y(\T) = y(\Ix)y(T) = o(\)y(T) 

and S is semi-linear. Finally, S carries closed hyperplanes to closed 
hyperplanes (and, by symmetry, so does S~l). For if 0 ¥= f G X*, select z0 

G X with/(z0) ^ 0 and define T G ^ ( X ) by 

Tx = f(x)z0. 

Then S r S " 1 = y(T) G ^ ( 7 ) , so 

ker STS~X = ker T^" 1 = ,S(ker T) = S (kerf) 

is a closed hyperplane. Lemmas 2 and 3 now imply that S is bicontinuous 
and either linear or conjugate linear. 

4. Continuity of automorphisms. For the rest of the paper we will 
confine our attention to infinite-dimensional complex Hilbert space H. In 
this case we have the usual identification of a closed subspace M(and the 
orthogonal projection PM of H onto M. In particular the uniform, strong, 
and weak operator topologies induce topologies on ^(H). There has also 
been recent interest in the semi-strong topology on ^(H) [5, 7]. A 
sequence {Mn} of closed subspaces converges semi-strongly to a closed 
subspace M, denoted Mn —» M(ss), if 
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lim inf„ Mn = M = lim sup„ Mn. 

Here lim inf,z Mn denotes the set of vectors x G H with the property that 
there is a sequence {xn} with xn E Af„, converging to x in norm, and lim 
sup„ Mn denotes the set of vectors which are the (norm) limit of some 
subsequence of such a sequence {xn}. A map <J>:̂ (//) —» #(#) is 
semi-strongly continuous if 

Mw -» M(w) implies <f>(M„) -> 0(M)(^). 

For any bicontinuous linear or conjugate linear bijection S on H, denote 
by (j>s the automorphism of ^(H) defined by 

<t>s(M) = SM. 

In [10] and [11] it is shown that if S is linear then <t>s is uniformly and 
strongly continuous and preserves the properties of being uniformly (or 
strongly, or weakly) closed. Theorem 1 suggests that every automorphism 
of ^(H) has these properties, and this is indeed the case as we now 
show. 

Consider first those automorphisms induced by conjugations (i.e., 
conjugate linear isometries J such that J2 = I). 

LEMMA 4. Let J be a conjugation on H. The automorphism <j)j of ^(H) is 
uniformly and strongly continuous. If 3^ is a uniformly {respectively, strongly, 
weakly) closed family of subspaces of H so is 4>j(F). 

Proof. For every M <= ^(H), PJM = JPMJ and the uniform and strong 
continuity of <f>j follow immediately. It is readily verified that <l>jÇF) is 
uniformly (respectively, strongly) closed if J^is. Suppose 3* Q ^(H) is 
weakly closed (as a subset of &(H) ) . Let the operator E e &(H) be the 
weak limit of a net {PJMJ with Ma G J^for every a. By the weak 
compactness of the unit ball of &(H), the net {PMCX} possesses a subnet 
converging weakly to an operator F e @{H). Since 3^ is weakly closed, 
F = PM for some M e J^ This subnet converges strongly to PM so PJM is 
the strong limit of a subnet of {PJMJ- But this subnet converges weakly to 
E, so E = PJM. Thus 4>j(3^) is weakly closed. 

THEOREM 3. Every automorphism <f> of #( / / ) is uniformly, strongly and 
semi-strongly continuous. If IF Q #( / / ) is a uniformly (respectively, strongly, 
semi-strongly, weakly) closed family of subspaces so is <j>(<F). 

Proof. By Theorem 1, <j> = <j>s for some bicontinuous linear or conjugate 
linear bijection S. For any bicontinuous conjugate linear bijection A and 
any conjugation / , the map B = AJ is a bijective element of âiï(H). Since 
J2 = I, A = BJ s o 

<t>A = <I>B ° 4>J> 
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With this in mind, the uniform and strong continuity of <fo follow from the 
preceding lemma and Theorem 1 of [11]. Let Mn —> M(ss). It will follow 
that 

<t>s(M„) -> 4>s(M)(ss) 

if we show 
(i) SM Q lim inf„ SMn and 

(ii) lim sup„ SMn Q SM. 

Consider (i). Let x G M. Since x G lim inf,7 Mm there is a sequence {xn } 
with xn G Mn such that xn —> x (in norm). Then Sxn —> Sx so 

Sx G lim inf,7 SMn. 

Consider (ii). Let 

y G lim sup„ SMn. 

Then there is a sequence {j/„} withy„ G SM„ such that>v -> y for some 
subsequence {_y„ }. Then 

so, since S~xyn G M„, 

S~V G lim sup„ Mn = M. 

Thus y G SM and the semi-strong continuity of <ps follows. 
Let ^Q ^(H). That (j>s(^) is uniformly (respectively, strongly, weakly) 

closed if J^is, follows from Theorem 2 of [11], the preceding lemma and 
our above remark concerning the decomposition of conjugate linear maps. 
A subset & Q ^(H) is semi-strongly closed (as a subset of 2H) if and only 
if Mn -> M(ss\ Mn G ^, M G # ( # ) implies M G 3? (see remark p. 294 
[7] ). Let J^be semi-strongly closed and suppose that SMn —* N(ss) with 
Af„ G J^and # G # ( # ) . Then Mn -> S _ 1 N ( ^ ) so S~ ] JV G .^and 

# = S(S~]N) G <M^)-

Hence <f>s(^) is semi-strongly closed and the proof is complete. 

Remarks. (1) It is perhaps worth noting that the formula for PSM given 
in [10] extends to the conjugate linear case. That is, if S is a bicontinuous 
conjugate linear bijection on H and M G #(/ / ) , then 

TM = 1 + S/V(S* - S~]) 

is linear and bijective and has inverse 

1 ~~ PSM + PSMS* S . 

Moreover 
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PSM = TM
]SPMS* and \\TM

l\\ S 1 + HS*" 1 ^ 1 ! ! . 

Here S* is the adjoint of S, which is defined as the unique conjugate linear 
map on H such that 

(S*y\x) = (Sx\y) for all x, y e H. 

(2) For separable // , the strong continuity of automorphisms of ^(H) 
can be proved, assuming their semi-strong continuity, as follows. Let S be 
a bicontinuous linear or conjugate linear bijectio.n on H. Suppose that the 
sequence {Mn} of subspaces converges strongly to the subspace M. By 
Theorem 1 of [7] the strong convergence of {(f>s(Mn) } to </>s(M) will 
follow if 

SMn -> SM(ss) and (SM,,)-1 -> (SM^iss). 

Since Mn —•> M(ss), the former follows from the semi-strong continuity of 
<J>s. Since Mw~ —» Mx(ss), the latter follows from the semi-strong 
continuity of <j)S* i 

5. Reflexivity and transitivity. For any non-empty subset J*" ç ^ ( / / ) , 
Alg J^ denotes the set of operators in <%(H) leaving every member of J*" 
invariant. For any non-empty subset s# Q @(H), Lat J/denotes the set of 
subspaces in #( / / ) which are left invariant by each member of s/. We say 
that J^is reflexive if 

Lat Alg ^ = J^and that it is transitive if Lat Alg & = tf(H) [6]. 

THEOREM 4. For every automorphism <f> of # ( / / ) tfftd every non-empty 
subset &Q V(H), 

Lat Alg <KF) = <f>(Lat Alg J*"). 

Consequently 3Fis reflexive (respectively, transitive) if and only if <j>(F) is. 

Proof Let <J> be an automorphism, so that 4> = <j>s for some bicontinuous 
linear or conjugate linear bijection S on H. Let ^Q ^(H) be non-empty. 
It readily follows that 

Alg<J>(JO = S(A\g^)S~x 

and thus that 

Lat Alg <J>(̂ \) = <f>(Lat Alg .F). 

From this, t ^ = Lat Alg ^"implies that 

<f>(^) = Lat Alg $(&). 
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The reverse implication follows by applying <f> . Also, 

Lat A lgJ^= <g(H) 

implies that 

Lat Alg tf<F) = <g(H) 

and, again, the reverse implication follows by applying <>_1. 

For an automorphism <j> of ^(H) it seems natural to call an element M 
G ^(H) invariant under <j> if <j>(M) Q M, and just as natural to denote the 
set of invariant subspaces of <£ by Lat <J>. In partial order language Lat <J> is 
the largest subset of ^(H) on which <j> is decreasing (cf. [3, p. 3] ). Lat <f> 
is indeed a sublattice of ^(H). (It is even strongly closed, hence complete 
[6, p. 923].) Does every automorphism <J> have a non-trivial invariant 
subspace? An affirmative answer would solve the famous invariant 
subspace problem. Now the result referred to in [6, p. 927] that every 
self-conjugate lattice is transitive may be stated as: For every conjugation 
J on // , Alg Lat J = CI or, equivalently, S G Se (H) and S non-scalar 
implies S M % M for some M G Lat / . Since conjugations are 
characterized by the relations J2 = I and J* = J the following result 
seems to be the conjugate linear version of the result. In the proof, (x) 
denotes the subspace spanned by x G H. 

PROPOSITION. For every symmetry U G &(H) such that the ranges of 
1 -f U and 1 — U are each of dimension ¥= 1, and every non-zero continuous 
conjugate linear map S on H, there exists M G Lat U such that SM % 
M. 

Proof Let N be the range of 1 + U. Then 

N = k e r ( l - £ / ) 

and the range of 1 — u is A^ = ker(l + U). Clearly x G N U À ^ implies 
(JC> G Lat U. 

Suppose SM Q M for every M G Lat U, where S is continuous and 
conjugate linear. The S(x) Q (x) for every x G N SO, for every such x, 
there exists a scalar X(x) G C such that Sx = X(x)x. If dim N = 0, then 
Sx = 0 for every x G N. Suppose dim N > 1. Then, if x, y G N are 
linearly independent, 

X(x) = \(y)(= X(x + ; , ) ) 

and it follows that there is a scalar X such that Sx = Xx for every JC G N. 
Since S is conjugate linear, A = 0 (consider S(ix) ). Thus Sx = 0 for every 
x G N. Similarly Sy = 0 for every y G N±. It follows that S is zero. This 
completes the proof. 

The condition that the ranges of 1 dz U each be of dimension ¥= 1 
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cannot be dropped in the above proposition. For example, let e e H be a 
unit vector and define S on H by 

Sx = (e\x)e, x e H. 

Let U G &(H) be the symmetry defined by 

Ux = 2(x\e)e — x, x e H. 

Lat U = {M e <g(H):e ^ M U M±) 

and it is clear that SM Q M for every M e Lat U. 
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