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Abstract

Given a poset P and a standard closure operator Γ : ℘(P)→ ℘(P), we give a necessary and sufficient
condition for the lattice of Γ-closed sets of ℘(P) to be a frame in terms of the recursive construction
of the Γ-closure of sets. We use this condition to show that, given a set U of distinguished joins from
P, the lattice of U-ideals of P fails to be a frame if and only if it fails to be σ-distributive, with σ
depending on the cardinalities of sets in U. From this we deduce that if a poset has the property that
whenever a ∧ (b ∨ c) is defined for a, b, c ∈ P it is necessarily equal to (a ∧ b) ∨ (a ∧ c), then it has an
(ω, 3)-representation.

2010 Mathematics subject classification: primary 06A15; secondary 03G10.

Keywords and phrases: posets, closure operators, representations.

1. Introduction

Schein [15] defines a meet-semilattice S to be distributive if it satisfies the first-
order definable condition that whenever a ∧ (b ∨ c) is defined, (a ∧ b) ∨ (a ∧ c) is
also defined and the two are equal. A dual definition can, of course, be made for
join-semilattices. Here, for simplicity, all semilattices are considered to be meet-
semilattices, and the order duals to our results are left unstated. Note that Schein’s
version of distributivity is strictly weaker than the notion of distributivity introduced by
Grätzer and Schmidt [10] (see, for example, [20]), although they coincide for lattices.
Schein’s distributivity (hereafter referred to as 3-distributivity, for reasons that will
become clear later) is equivalent to the property of being embeddable into a powerset
algebra via a semilattice homomorphism preserving all existing binary joins [2].

Schein’s 3-distributivity can be generalised to the concept of α-distributivity for
cardinals α (see Definition 3.1). This notion has been studied when α = n < ω [11],
when α = ω [4, 20] and when α is any regular cardinal [12]. Note that if m, n ≤ ω
with m < n, then n-distributivity trivially implies m-distributivity, but the converse
is not true [13]. A recurring theme in these investigations is that a semilattice S
is α-distributive if and only if the complete lattice of downsets of S that are closed
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under existing α-small joins is a frame (that is, it satisfies the complete distributivity
condition that x ∧

∨
Y =

∨
Y (x ∧ y) for all elements x and subsets Y).

Notions relating to distributivity have also been studied in the more general setting
of partially ordered sets (posets) [12, 18]. Note that the concepts in [18] and [12] are
not equivalent, even for semilattices (that of [18] is a straightforward generalisation
of the distributivity of Grätzer and Schmidt [10], while that of [12] is more closely
related to the approach of Schein [15]).

As the transition from lattices to semilattices causes previously equivalent
formulations of distributivity to diverge, so too does the transition from semilattices
to posets. The following example is of particular interest to us. For a semilattice,
being an ω-distributive poset, as defined in [12], is equivalent to being an ω-
distributive semilattice in the sense used here [12, Proposition 2.3], which is, in turn,
equivalent to being embeddable into a powerset algebra via a map preserving all
existing finite meets and joins [2]. However, this is not true for arbitrary posets, as
the ω-distributivity of [12] is strictly stronger than the powerset algebra embedding
property [12, Example 4.2 and Theorem 4.8].

The property of being embeddable into a powerset algebra via an embedding
preserving meets and joins of certain cardinalities has been studied using the
terminology representable [3, 7, 14] (see Definition 4.1). A notable departure
from the semilattice case is that the first-order theory of representable posets is
considerably more complex. For example, while the class of (m, n)-representable
posets is elementary for all m, n with 2 < m, n ≤ ω [7], explicit first-order axioms are
not known and the class cannot be finitely axiomatised [6]. This contrasts with the
semilattice case where intuitive first-order axioms are known and only a finite number
are required to ensure (ω, n)-representability for finite n [2].

In [3], a condition for posets, which we will refer to as MD, generalising the
distributive property for semilattices, is defined (see Definition 4.2). The authors
conjecture [3, Section 3] that this condition is sufficient to ensure that a poset has a
representation preserving existing binary joins and all existing finite meets (they call
this a neatest representation). It is easily seen that this is not a necessary condition for
such a representation (see, for example, [7, Example 1.5]).

In the original phrasing of [3, Definition 1], it is unclear whether a neatest
representation must preserve arbitrary existing meets or only finite ones. From the
context, we assume the latter, as with the former definition the conjecture is false.
To see this, note that every Boolean algebra satisfies MD and, indeed, the stronger
condition that if x ∧

∨
Y is defined, then

∨
Y (x ∧ y) is also defined and the two are

equal (a Boolean algebra also satisfies the dual to this condition, so a complete Boolean
algebra is structurally both a frame and a co-frame). However, it is well known that
a Boolean algebra has a representation preserving arbitrary meets and/or joins if and
only if it is atomic [1, Corollary 1].

However, if we only demand that finite meets are preserved, then the conjecture
is indeed correct, which we prove in this note. The main step in our proof is a
result classifying the standard closure operators on ℘(P) whose lattices of closed sets
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are frames as being precisely those that can be constructed using a certain recursive
procedure (Theorem 3.5). This can be viewed as a generalisation of [12, Theorem 2.7].
The proof of the conjecture about neatest representations is then an easy corollary.

We note that the argument in the solution of this conjecture boils down to a
straightforward extension of the forward direction of the argument for semilattices
in [11, Theorem 2] to the poset setting. Nevertheless, the result is, perhaps, surprising
given that the class of posets with this kind of representation cannot be finitely
axiomatised (see Section 5 for a discussion of this).

We proceed as follows. In Section 2, we introduce join-specifications and
the concept of the radius of a standard closure operator and assorted supporting
terminology. In Section 3, we use this to prove the central theorem (Theorem 3.5)
and, in the fourth section, we prove a general version of the conjecture on neatest
representations (Corollary 4.6). The final section is devoted to a short discussion of
the implications of this for the theory of poset representations and some indirectly
related questions in complexity theory.

2. Join-specifications and standard closure operators

We begin with a brief introduction to closure operators and their relationship with
poset completions. This topic has been studied in detail and a recent survey can
be found in [8]. Nevertheless, it will be useful to present some well known results
with a consistent terminology and to make explicit some facts that are only implicit
elsewhere. We will give specific references when appropriate.

Definition 2.1 (Closure operator). Given a set X, a closure operator on X is a map
Γ from ℘(X) to itself that is extensive, monotone and idempotent. That is, for all
S ,T ⊆ X:

(1) S ⊆ Γ(S );
(2) S ⊆ T =⇒ Γ(S ) ⊆ Γ(T ); and
(3) Γ(Γ(S )) = Γ(S ).

Given a set S ⊆ P, we write S ↓ = {p ∈ P : p ≤ s for some s ∈ S }, and p↓ is a
shorthand for {p}↓. Given a poset P, we are interested in closure operators on P.
In particular, we are interested in standard closure operators, that is, closure operators
such that Γ({p}) = p↓ for all p ∈ P.

Definition 2.2 (Join-completion). Given a poset P, a join-completion of P is a
complete lattice L and an order embedding e : P→ L such that e[P] (the image of
P under e) is join-dense in L.

Given a standard closure operator Γ : ℘(P) → ℘(P), the Γ-closed sets form a
complete lattice when ordered by inclusion (which we denote by Γ[℘(P)]), and
the map φΓ : P → Γ[℘(P)] defined by φΓ(p) = p↓ is a join-completion of P (we
usually omit the subscript and just write φ). If I is an indexing set and Ci is a Γ-
closed set for all i ∈ I, then

∧
I Ci =

⋂
I Ci and

∨
I Ci = Γ(

⋃
I Ci) (see, for example,
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[8, Section 2.1]). Conversely, given a join-completion e : P→ L, the sets e−1[x↓] for
x ∈ L define the closed sets of a standard closure operator Γe : ℘(P)→ ℘(P). This well
known connection can be expressed as the following proposition.

Proposition 2.3. There is a dual isomorphism between the complete lattice of standard
closure operators on P (ordered by pointwise inclusion) and the complete lattice of
(e[P] preserving isomorphism classes of) join-completions of P (ordered by defining
(e1 : P→ L1) ≤ (e2 : P→ L2) if and only if there is an order embedding ψ : L1 → L2
such that ψ ◦ e1 = e2; if ψ exists it will necessarily preserve all existing meets).

Proof. A direct argument is straightforward. See, for example, [8, Propositions 2.1
and 2.19], or the introduction to [18], for equivalent results. �

We are interested in join-completions e : P→ L where the embedding e preserves
certain existing joins from P. Often this is done by making some uniform selection,
such as the joins of all sets smaller than some fixed cardinal (when they exist; see [16]).
We intend to be more general and, to that end, we make the following definition.

Definition 2.4 (Join-specification). Let P be a poset. LetU be a subset of ℘(P). Then
U is a join-specification (of P) if it satisfies the following conditions:

(1)
∨

S exists in P for all S ∈ U;
(2) {p} ∈ U for all p ∈ P, and
(3) ∅ <U.

Definition 2.4 is similar to that of a subset selection (see [8, Section 2]). The
difference is that we demand that the selection contains the singletons and that every
selected set has a defined join. This serves to tidy up some of the later definitions.

Definition 2.5 (Radius ofU). Given a join-specificationU, we define the radius ofU
to be the smallest cardinal σ such that σ > |S | for all S ∈ U.

Definition 2.6 (ΓU). Given a join-specificationU with radius σ and S ⊆ P, we define
the following subsets of P using transfinite recursion.

• Γ0(S ) = S ↓.
• If α + 1 is a successor ordinal, then Γα+1(S ) = {

∨
T : T ∈ U and T ⊆ Γα(S )}↓.

• If λ is a limit ordinal, Γλ(S ) =
⋃
β<λ Γβ(S ).

We define ΓU : ℘(P)→ ℘(P) by ΓU(S ) = Γχ(S ) for all S ∈ ℘(P), where χ is the
smallest regular cardinal with σ ≤ χ.

Definition 2.7 (U-ideal). Given a join-specification U, we define a U-ideal of P to
be a downset closed under joins fromU. We define the empty set to be aU-ideal.

The following is a generalisation of [12, Proposition 1.2].

Proposition 2.8. IfU is a join-specification, then ΓU is the standard closure operator
taking S ⊆ P to the smallestU-ideal containing S .
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Proof. Let S ∈ ℘(P) \ {∅} and let I be the smallestU-ideal containing S . Then it must
be that ΓU(S ) ⊆ I by the closure requirements of I. It is easy to see that ΓU(S ) is a
downset, so it remains only to show that ΓU(S ) is closed under joins from U. So let
X ∈ U and suppose that X ⊆ ΓU(S ). By definition of ΓU we have X ⊆

⋃
β<χ Γβ(S ),

so for each x ∈ X, there is some βx < χ with x ∈ Γβx (S ). Since χ is regular, there
must be β′ with βx ≤ β

′ < χ for all x ∈ X, and so
∨

X ∈ Γβ′+1(S ) ⊆ Γχ(S ) = ΓU(S ),
as required. It is straightforward to show that the function taking sets to the smallest
U-ideal containing them is a standard closure operator. �

Proposition 2.9. Given a join-specification U, the canonical map φ : P→ ΓU[℘(P)]
preserves arbitrary existing meets and the joins of all sets fromU.

Proof. This is well known, but we give a short proof for the sake of completeness.
First, recall that arbitrary intersections of Γ-closed sets are also Γ-closed. So if

∧
S = t

in P, then
∧
φ[S ] =

⋂
S s↓ = t↓ = φ(t), as required. Preservation of joins from U

follows from Lemma 2.11 and Corollary 2.13(2) below. �

Note that φ may also preserve joins of sets that are not in U. Given a join-
specification U, there will generally be more than one join-completion preserving
the specified joins. We are interested in ΓU[℘(P)], which is, in fact, the largest
such join-completion ([17] attributes this result to [5]). This is easily seen by noting
that if e : P→ L is a join-completion such that e(

∨
S ) =

∨
e[S ] for some S ⊆ P,

then whenever x ∈ L and S ⊆ e−1[x↓] it must be that
∨

S ∈ e−1[x↓] as, otherwise,∨
e[S ] , e(

∨
S ). So, in particular, if e : P→ L preserves joins from U, then e−1[x↓]

is a U-ideal for all x ∈ L. Since L is isomorphic to {e−1[x↓] : x ∈ L} considered as a
lattice ordered by inclusion, the result follows, as we can think of L as being a subset
of the set of allU-ideals.

Definition 2.10 (UΓ). Any standard closure operator Γ : ℘(P)→ ℘(P) defines a join-
specificationUΓ by

S ∈ UΓ ⇐⇒
∨

S exists, and S ⊆ C =⇒
∨

S ∈ C for all Γ-closed sets C.

Lemma 2.11. ForUΓ as in Definition 2.10 and the canonical φ : P→ Γ[℘(P)],

S ∈ UΓ ⇐⇒
∨

S exists and φ
(∨

S
)

=
∨

φ[S ].

Proof. Let S ∈ UΓ. Then
∨
φ[S ] is the smallest Γ-closed set containing S , so must

therefore contain
∨

S and is, indeed, equal to (
∨

S )↓ = φ(
∨

S ). Conversely, if
∨

S
exists and

∨
φ[S ] = φ(

∨
S ), then every Γ-closed set containing S must contain

∨
S ,

and so S ∈ UΓ, by definition. �

The join-specifications of a poset P are a subset of ℘(℘(P)), and as this subset is
closed under taking arbitrary unions and intersections, they form a complete lattice
when ordered by inclusion. This leads us to the following result.
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Proposition 2.12. LetJ be the lattice of join-specifications of P and let C be the lattice
of standard closure operators on P. Define f : J → C and g : C → J by f (U) = ΓU
and g(Γ) =UΓ. Then f and g form a Galois connection between C and J . That is, for
all Γ ∈ C andU ∈ J , ΓU(T ) ≤ Γ(T ) for all T ∈ ℘(P) ⇐⇒ U ⊆UΓ.

Proof. Let Γ ∈ C and U ∈ J . Suppose that ΓU ≤ Γ. Since J is ordered by inclusion
we let S ∈ U, and we aim to show that S ∈ UΓ. Now ΓU(S ) is the smallest U-ideal
containing S , so

∨
S ∈ ΓU(S ), and since ΓU(S ) ≤ Γ(S ), this means that any Γ-closed

set containing S must contain
∨

S . But then, by definition, S ∈ UΓ, which is what we
wished to show.

For the converse, suppose that U ⊆ UΓ and let T ∈ ℘(P). We aim to show that
ΓU(T ) ⊆ Γ(T ). Since ΓU(T ) is the smallest U-ideal containing T , it is sufficient to
show that Γ(T ) is also a U-ideal. But since U ⊆ UΓ, this follows directly from the
definition ofUΓ. �

Corollary 2.13.

(1) For all standard closure operators Γ : ℘(P)→ ℘(P) we have ΓUΓ
≤ Γ, but it is

not necessarily true that Γ = ΓUΓ
.

(2) For all join-specifications U of P we have U ⊆ UΓU , but it is not necessarily
true thatU =UΓU .

(3) IfU′ =UΓU , then ΓU = ΓU′ .
(4) If Γ′ = ΓUΓ

, thenUΓ =UΓ′ .

Proof. This all follows from the fact that f and g from Proposition 2.12 form a Galois
connection. Examples 2.14 and 2.15 below witness lack of equality for parts (1) and
(2), respectively. �

Example 2.14. Let P be the three element antichain {a, b, c} and let the Γ-closed sets
be ∅, {a}, {b}, {c} and {a, b, c}. Then UΓ = {{a}, {b}, {c}} (so Γ[℘(P)] is the MacNeille
completion of P) and the set of UΓ-ideals of P is just ℘(P) (so ΓUΓ

[℘(P)] is the
Alexandroff completion composed of all downsets of P, in this case). Then, for
example, Γ({a, b}) = {a, b, c}, but ΓUΓ

({a, b}) = {a, b}.

Example 2.14 also demonstrates that not every standard closure operator arises from
a join-specification. This is because the only join-specification on P is {{a}, {b}, {c}}
and, as we saw in the example, the induced closure operator produces the Alexandroff

completion and not, for example, the MacNeille completion. This issue is also
discussed in [17, Section 2].

Example 2.15. Let P be a poset containing elements x, x′, y, y′ and z. Let the
nontrivial orderings be x < x′ < z and y < y′ < z, so that x ∨ y = x′ ∨ y′ = z. Let
U = {{x}, {x′}, {y}, {y′}, {z}, {x, y}} be a join-specification. Then {x′, y′} ∈ UΓU \ U.

It follows from Corollary 2.13 that different join-specifications can define the same
closure operator. Given a standard closure operator Γ arising from a join-specification,
while there is not necessarily a minimal generating join-specification, Definition 2.5
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allows us to define a class of join-specifications generating Γ whose sets have the
smallest possible maximum size. This puts an upper bound on the number of iterations
required in a recursive construction of Γ (although we cannot expect to do better
than ω, even if all the sets in the generating join-specification have bounded finite
size). These minimal join-specifications (Definition 2.17 below) are also relevant when
discussing the distributivity of the lattice of Γ-closed sets (see Corollary 3.6).

Definition 2.16 (Radius of Γ). Given a standard closure operator Γ such that Γ = ΓU
for some join-specificationU, we define the radius of Γ to be the minimum of the set
{χ : χ is the radius of a join-specificationU′ of P with ΓU′ = Γ}.

Definition 2.17 (Minimal join-specification). A join-specification U of P is minimal
if the radius ofU is equal to the radius of ΓU .

The following technical lemma will be used in the next section.

Lemma 2.18. LetU be a join-specification. Then the following hold for all S ∈ ℘(P).

(1) If ΓU(S ) = p↓, then p =
∨

S .
(2) If p =

∨
S and p ∈ ΓU(S ), then S ∈ UΓU .

Proof. For the first part, note that p must be an upper bound for S . If p ,
∨

S , then
S has another upper bound q with p � q. But ΓU(S ) ⊆ p↓ ∩ q↓ by Proposition 2.8, and
thus p < ΓU(S ), which is a contradiction. For the second part, note that since

∨
S = p,

Definition 2.10 gives S ∈ UΓU if and only if S ⊆ C =⇒ p ∈ C for all ΓU-closed sets C.
Since ΓU(S ) is the smallest ΓU-ideal containing S , if p ∈ ΓU(S ), then every ΓU-ideal
containing S must also contain p and the proof is complete. �

3. When is a lattice ofU-ideals a frame?

As mentioned in the introduction, definitions of distributivity in semilattices
modelled on that of Schein [15] give rise to results that can be stated in our terminology
as a semilattice S is α-distributive if and only if the lattice of Uα-ideals of S is α-
distributive, whereUα contains all sets smaller than α whose joins are defined (where
α is some finite or regular cardinal) [4, 11, 12]. Moreover, it turns out that if this lattice
of Uα-ideals is α-distributive, then it will be a frame (see Definition 3.1 below). We
can extend this to posets and arbitrary join-specifications, in the sense that if the lattice
of U-ideals of P fails to be a frame, then it must be because distributivity fails for
the embedded images of some element of P and some set in U (see Corollary 3.7).
The key result is Theorem 3.5, which can be seen as a partial generalisation of [12,
Theorem 2.7] to arbitrary join-specifications.

Definition 3.1 (α-distributive). Given a cardinal α, we say that a lattice (or a
semilattice) L is α-distributive if given {x} ∪ Y ⊆ L such that |Y | < α, if x ∧

∨
Y exists,

then
∨

Y (x ∧ y) also exists and the two are equal. Note that when 3 ≤ n ≤ ω, in the
lattice case, n-distributivity is just distributivity. When L is a complete lattice and L is
α-distributive for all α, we say that L is a frame.
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From now on we fix a minimal join-specification V and we define Φ = ΓV. Let σ
be the radius of V and let χ be the smallest regular cardinal with σ ≤ χ. Similarly,
let σ′ be the radius of UΦ (recall Definition 2.10) and let χ′ be the smallest regular
cardinal with σ′ ≤ χ′.

Definition 3.2 (Υ). Given S ⊆ P, we define the following subsets of P by transfinite
recursion.

• Υ0(S ) = S ↓.
• If α + 1 is a successor ordinal, Υα+1(S ) = {

∨
T : T ∈ UΦ and T ⊆ Υα(S )}.

• If λ is a limit ordinal, Υλ(S ) =
⋃
β<λ Υβ(S ).

We define Υ : ℘(P)→ ℘(P) by Υ(S ) = Υχ′(S ) for all S ∈ ℘(P).

This differs from Definition 2.6 in that we do not close downwards during the
successor steps. Note the use of χ′ in place of χ which is important in the proof of
Corollary 3.6. Note that Υ will not necessarily be a closure operator as it may not be
idempotent.

Lemma 3.3. Υ(S ) ⊆ Φ(S ) for all S ∈ ℘(P).

Proof. We have Φ = ΓV = ΓUΦ
by Proposition 2.13(3) and, by definition of Υ, it

follows that Υ(S ) ⊆ ΓUΦ
(S ) for all S ∈ ℘(P). �

Lemma 3.4. Let J be an indexing set, and let I, K j ∈ Φ[℘(P)] for all j ∈ J. Then
I ∩ Υ(

⋃
J K j) ⊆ Φ(

⋃
J(I ∩ K j)).

Proof. We note that Υ(
⋃

J K j) =
⋃
α<χ′ Υα(

⋃
J K j). We proceed by showing that

I ∩ Υα(
⋃

J K j) ⊆ Φ(
⋃

J(I ∩ K j)) for all α using transfinite induction on α. If α = 0,
the result is trivial so consider the successor ordinal α + 1 and assume the appropriate
inductive hypothesis. Let p ∈ I ∩ Υα+1(

⋃
J K j). Then p =

∨
T for some T ∈ UΦ with

T ⊆ Υα(
⋃

J K j) and, since p ∈ I, it follows that T ⊆ I ∩ Υα(
⋃

J K j). By the inductive
hypothesis this means that T ⊆ Φ(

⋃
J(I ∩ K j)). Thus by definition of UΦ, we have

p ∈ Φ(
⋃

J(I ∩ K j)), as required. The limit case is trivial. �

Theorem 3.5. The following are equivalent:

(1) Φ(S ) = Υ(S ) for all S ∈ ℘(S );
(2) Φ[℘(P)] is a frame when considered to be a lattice ordered by inclusion.

Proof. (1) =⇒ (2). Let J be an indexing set and let I,K j ∈ Φ[℘(P)] for all j ∈ J. We
must show that I ∩ Φ(

⋃
J K j) = Φ(

⋃
J(I ∩ K j)). Since we are assuming that Φ = Υ

and that the right side is always included in the left, it remains only to show that
I ∩ Υ(

⋃
J K j) ⊆ Φ(

⋃
J(I ∩ K j)), and this is Lemma 3.4.

(2) =⇒ (1). We note that Φ0(S ) = Υ0(S ) for all S ∈ ℘(P), by definition, and we
proceed by using transfinite induction to show that Φα(S ) ⊆ Υα(S ) for all cardinals α
and for all S ∈ ℘(P). As Υ(S ) ⊆ Φ(S ) by Lemma 3.3, the result then follows.
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Let S ∈ ℘(P) and suppose Φα(S ) ⊆ Υα(S ) for some cardinal α. Let T ⊆ Φα(S ) and
suppose T ∈ U. Let p ≤

∨
T . In Φ[℘(P)], we have p↓ ∩

∨
T t↓ = p↓ ∩ (

∨
T )↓ = p↓ by

Proposition 2.9. Since Φ[℘(P)] is a frame,
∨

T (p↓ ∩ t↓) = p↓, and thus
∨

T (p↓ ∩ t↓)
= Φ(

⋃
T (p↓ ∩ t↓)) = Φ(T ↓ ∩ p↓) = p↓. So p =

∨
(T ↓ ∩ p↓) by Lemma 2.18(1) and

T ↓ ∩ p↓ ∈ UΦ by Lemma 2.18(2). But T ↓ ⊆ Φα(S ) ⊆ Υα(S ), and thus T ↓ ∩ p↓ ⊆ Υα(S )
and p ∈ Υα+1(S ), as required. The limit case is trivial and so the proof is complete. �

Corollary 3.6. If Φ[℘(P)] is not a frame, then there is T ∈ V and p ∈ P such that

(1) p ≤
∨

T and
(2) φ(p) ∧

∨
φ[T ] ,

∨
T (φ(p) ∧ φ(t)) in Φ[℘(P)].

Here φ is the canonical map from P into Φ[℘(P)] taking p to p↓.

Proof. By Theorem 3.5, if Φ[℘(P)] is not a frame, then there is S ∈ ℘(P) with Φ(S ) ,
Υ(S ). Let α be the smallest cardinal such that Φα(S ) * Υ(S ). This exists by Lemma 3.3
and the assumption that Φ(S ) , Υ(S ). Moreover, α cannot be zero or a limit cardinal so
α = β + 1 for some β. Choose any p ∈ Φα(S ) \Υ(S ). Then by minimality of α, we must
have p < Φβ(S ), and p ≤

∨
T for some T ∈ V with T ⊆ Φβ(S ). In Φ[℘(P)] we have

p↓ ∩
∨

T t↓ = p↓. However, if p↓ =
∨

T (p↓ ∩ t↓) = Φ(T ↓ ∩ p↓), then p =
∨

(T ↓ ∩ p↓) and
T ↓ ∩ p↓ ∈ UΦ by Lemma 2.18. Since T ↓ ∩ p↓ ⊆ Φβ(S ), by choice of α it follows that
T ↓ ∩ p↓ ⊆ Υ(S ). Since Υ(S ) is closed under joins fromUΦ (by an argument similar to
that in the proof of Proposition 2.8) and p < Υ(S ) by choice of p, we must, therefore,
have p↓ ,

∨
T (p↓ ∩ t↓) to avoid a contradiction. �

Here the minimality of V is relevant as it gives a smaller upper bound on the
possible size of a cardinal α for which α-distributivity can fail. Two immediate
consequences of Corollary 3.6 are the following corollaries.

Corollary 3.7. If Φ[℘(P)] is not a frame, then Φ[℘(P)] must fail to be σ-distributive
(recall that σ is the radius ofV).

Proof. If Φ[℘(P)] is not a frame, then distributivity fails for φ(p) ∧
∨
φ[T ] for some

T ∈ V, and |T | < σ by definition. �

Corollary 3.8. Given a poset P, the lattice of all downsets of P closed under existing
finite joins is a frame if and only if it is distributive.

Proof. This lattice is produced by the closure operator which arises from the join-
specification containing all nonempty finite sets with defined joins. The radius of this
join-specification is ω, and the result then follows from Corollary 3.7. �

If κ is a regular cardinal and V =Uκ = {S ∈ ℘(P) \ {∅} : |S | < κ and
∨

S exists},
Theorem 3.5 and its corollaries are superseded by [12, Theorem 2.7]. Indeed, in this
case, the mentioned theorem shows, using our notation, that Φ[℘(P)] is a frame if and
only if Φ(S ) = {

∨
T : T ∈ V and T ⊆ S ↓} for all S ∈ ℘(P).
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Various distributivity properties for join-completions of posets (and quasiorders)
are investigated in [9]. In particular, see [9, Theorem 2.1] for a summary of other
properties equivalent to the join-completion corresponding to a given standard closure
operator being a frame.

4. Sentences guaranteeing representability

Definition 4.1 ((α, β)-representable). For cardinals α and β, a poset P is (α, β)-
representable if there is an embedding h : P→ F, where F is a powerset algebra, such
that h preserves meets of sets with cardinalities strictly less than α and joins of sets
with cardinalities strictly less than β. When α = β, we just write α-representable.

The next definition appears under a slightly different name as [3, Definition 2].

Definition 4.2 (MD). A poset P is MD (meet distributive) if, for all a, b, c ∈ P, if
a ∧ (b ∨ c) is defined, then (a ∧ b) ∨ (a ∧ c) is also defined and the two are equal.

Given a cardinal α ≥ 3, we can generalise this to the following definition.

Definition 4.3 (MDα). A poset P is MDα if, whenever {a} ∪ X ⊆ P, |X| < α and
a ∧

∨
X is defined in P, then

∨
X(a ∧ x) is also defined in P and the two are equal.

Note that, for semilattices, MDα is equivalent to α-distributivity. We use our
terminology to avoid confusion with the distributivity for posets defined in [12]. Given
a cardinal γ, suppose thatV =Uγ is the set of all nonempty sets S ⊆ P such that |S | < γ
and

∨
S exists in P and define Φ and Υ for thisV as in Section 3. Note that in Section

3 we say thatV is minimal, but minimality is not essential in the definitions of Φ and
Υ or the theory developed therein. So the fact that Uγ may not be minimal is not a
problem here. We have the following theorem.

Theorem 4.4. Let γ be any cardinal strictly greater than two. If P is MDγ, then
Φ[℘(P)] is a frame.

Proof. By Corollary 3.6, if Φ[℘(P)] fails to be a frame, there must be T ∈ V and
p ∈ P such that p ≤

∨
T and φ(p) ∧

∨
φ[T ] ,

∨
T (φ(p) ∧ φ(t)) in Φ[℘(P)]. But, by the

definition ofV, we must have |T | < γ. So by Proposition 2.9 and the assumption that P
is MDγ, it follows that φ(p)∧

∨
φ[T ] = φ(p∧

∨
T ) = φ(

∨
T (p∧ t)) =

∨
T (φ(p)∧ φ(t)),

so Φ[℘(P)] must be a frame after all. �

Corollary 4.5. Every MD poset has an (ω, 3)-representation.

Proof. LetV =U3 and let Φ be defined as in Section 3. Since Φ[℘(P)] is distributive,
it embeds into a powerset algebra F via a map preserving finite meets and joins.
Since φ : P→ Φ[℘(P)] preserves binary joins and arbitrary meets, we obtain an (ω, 3)-
representation for P by composing φ with the embedding of Φ[℘(P)] into F. �

By setting the value of γ appropriately, we also obtain the following result.

Corollary 4.6. If 3 ≤ n ≤ ω, then every MDn poset has an (ω, n)-representation.
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When α > ω, we do not obtain a result corresponding to Corollary 4.6 because a
frame is not necessarily (ω, α)-representable in this case. We know this because, for
every α > ω, every nonatomic countable Boolean algebra satisfies MDα but is not
(ω, α)-representable, as discussed in the introduction.

Note that it follows from Theorem 4.4 and [12, Theorem 2.7] that if κ is a regular
cardinal, then MDκ =⇒ κ-distributive in the sense of [12] (which, for convenience,
we shall dub HMκ). Also by [12, Theorem 2.7], being HMκ is equivalent to having
Φ(S ) = {

∨
T : T ∈ Uκ and T ⊆ S ↓} for all S ∈ ℘(P) (as mentioned following Corollary

3.8). Using this, we can show that HMκ 6=⇒ MDκ for all regular κ, as Example 4.7
below provides a poset that is HMκ, but fails to be MDκ, for all regular κ.

Example 4.7. Let P be the poset in the diagram below and let κ be any regular cardinal.
Given S ∈ ℘(P), define Φ′(S ) = {

∨
T : T ∈ Uκ and T ⊆ S ↓}. Then a ∧ (b ∨ c) = c, but

a ∧ b does not exist. So P fails to be MD3, and thus fails to be MDκ. However, the only
nontrivial nonprincipal downsets of P are {b, c} and {a, b, c}, and Φ({b, c}) = (b ∨ c)↓ =

Φ′({b, c}) and Φ({a, b, c}) = P = Φ′({a, b, c}), and so P is HMκ for all regular κ.

• •a

•b •c

By combining the preceding discussion with [12, Example 4.2 and Theorem 4.8],
we obtain the following chain of strictly one way implications.

MDω =⇒ HMω =⇒ ω-representable.

5. Obstructions to representability

Another way to view these results is to think about obstructions to a poset being,
for example, 3-representable. For the sake of this discussion, we say that P has a triple
(a, b, c) if there are a, b, c ∈ P such that a ∧ (b ∨ c) is defined. If (a, b, c) is a triple of
P and (a ∧ b) ∨ (a ∧ c) is defined but not equal to a ∧ (b ∨ c), we call (a, b, c) a split
triple, and we say that a triple (a, b, c) is an indeterminate triple if (a ∧ b) ∨ (a ∧ c) is
not defined.

It is easy to see that having a split triple is a sufficient condition for a poset P
to fail to be 3-representable. Moreover, existence of a split triple can be defined
in first-order logic, so if having a split triple were also a necessary condition for a
poset to fail to be 3-representable, it would follow that the class of 3-representable
posets is finitely axiomatisable. This is not the case [6], so there must be other,
less obvious obstructions to 3-representability. This is not surprising, as even in
the simpler semilattice case the existence of a split triple is not necessary for failure
of 3-representability. However, the semilattices that fail to be (ω, 3)-representable
can be characterised as those that contain either a split triple or an indeterminate
triple (by [2, Theorem 2.2], phrased in the terminology of triples), which is also a
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first-order property. Since the class of (m, n)-representable posets is elementary for
all m and n with 2 < m, n ≤ ω, it follows that the class of posets that fail to be 3-
representable cannot be axiomatised in first-order logic at all (otherwise it would
be finitely axiomatisable, in contradiction with [6]). This contrasts starkly with the
intuitive finite axiomatisation of the semilattice case.

Putting this another way, let S be the class of posets containing a split triple, let I
be the class of posets containing an indeterminate triple but no split triple, let L be the
class of MD-posets and let R be the class of 3-representable posets. Then S, I and
L are all basic elementary and partition the class of all posets. Moreover, L ⊂ R and
S ⊂ R̄. However, I ∩ R is elementary but not finitely axiomatisable, and I ∩ R̄ is not
even elementary. This contrasts with the semilattice case where L and R coincide.

On the other hand, one reason why we might expect these obstructions to
representability to defy simple characterisation comes from computational complexity
theory. It was shown in [19] that the problem of deciding whether a finite poset has
an (m, n)-representation is NP-complete for countable m, n with at least one of them
greater than three. So if there were a simple characterisation of the finite posets that fail
to be (m, n)-representable, such as exists in the semilattice case, we could potentially
use this to prove that this decision problem is also in coNP, which would imply the
unexpected coincidence NP = coNP. More precisely, by Fagin’s theorem, NP = coNP
if and only if the finite posets that fail to be (m, n)-representable (for suitable m and n)
have an existential second-order characterisation.
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[8] M. Erné, ‘Closure’, in: Beyond Topology, Contemporary Mathematics, 486 (Amer. Math. Soc.,

Providence, RI, 2009), 163–238.
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