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ON F-INTEGRABLE ACTIONS OF THE RESTRICTED
LIE ALGEBRA OF A FORMAL GROUP F
IN CHARACTERISTIC p >0

ANDRZEJ TYC

§1. Introduction

Let & be an integral domain, let F= (F(X,Y),.-.--,F(X, Y)), X =
X, -,X,), Y=(Y, - --,Y,), be an n-dimensional formal group over k,
and let L(F) be the Lie algebra of all F-invariant k-derivations of the
ring of formal power series k[X] (cf. §2). If A is a (commutative) k-
algebra and Der, (A) denotes the Lie algebra of all k-derivations d: A — A,
then by an action of L(F) on A we mean a morphism of Lie algebras
¢: L(F) — Der, (A) such that ¢(d?) = ¢(d)?, provided char (k) =p> 0.
An action of the formal group F on A is a morphism of k-algebras
D: A — A[X] such that D(e)=c¢ mod (X) for ac A, and F,oD = D, oD,
where F,: A[X] — A[X, Y], D,: A[X] - A[X, Y] are morphisms of
k-algebras given by F,(g(X)) = g(F), D, ,a.X*) =Y, D(a,)Y?, for a
motivation of this notion, see [15]. Let D: A — A[X] be such an action.
Then, similarly as in the case of an algebraic group action, one proves
that the map ¢,: L(F) — Der, (A) with ¢,(d)ae) = >, e, d(X*)|;_, for
de L(F), ae A, and D(a) = >, a, X" is an action of L(F) on A.

DEeFINITION. An action ¢: L(F) — Der, (A) of the Lie algebra L(F)
on a k-alegbra A is said to be F-integrable if there exists an action
D: A — A[X] of the formal group F on A such that ¢ = ¢,.

Observe that if n=1, F, =X+ Y, and F,, = X 4+ Y+ XY, then an
action of L(F,) (resp. L(F,)) on a k-algebra A is nothing else than a
k-derivation d: A - A with d? = 0 (resp. d? = d) whenever char (k) =
p > 0. Moreover, one readily checks that such d is F,-integrable (resp.
F,-integrable) if there exists a differentiation (= higher derivation) D =
{D;:A—A,i=0,1, -} such that D, =d and D, D, = (i,j)D,., (resp.
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DD, = Z,(:)(l _{_}_ r)D” where (:f) =0 for v<0 or v> u) for
all i, j. Thus we see that F,-integrability amounts to strong integrability
in the sense of [10].

If k£ is a field of characteristic 0, then from [15, Lemma 2.13] it fol-
lows that each action ¢: L(F) — Der, (A) of F on an arbitrary k-algebra
A is F-integrable. If k is not a field (being still of characteristic 0),
then the above assertion is not true. For instance, if Z is the ring of
rational integers and A = Z[X], then the action of L(F,) on A given by
the derivation X.5/6X is clearly not F,-integrable. Nevertheless, also in
this case there are some positive results, see [1, 12]. Now suppose that
k is a field of characteristic p > 0. Then the situation is worse then
that in characteristic 0. Namely, if A = k[t]/(#*) and d: A — A is the
k-derivation induced by §/6¢, then according to [10, Ex. 1] d is not in-
tegrable i.e., there does not exist a morphism of k-algebras J: A — A[X]
(X = X)) such that J(e) = a + d(e)X mod (X?) for all ae A (the existence
of such J would imply: 0 = J(* + (7)) = J( + (t*))? = X? mod (X**)).
Hence the action of L(F,) on A defined by d is not F,-integrable. How-
ever, Matsumura proved [10, Th. 7] that if A is a separable field exten-
sion of k, then every action of L(F,) on A is F,-integrable. The goal of
this paper is to extend Matsumura’s result to a wider class of formal
groups and to more general k-algebras. In particular, from our main
result (cf. §2) one derives the following.

THEOREM. Let F be a one dimensional formal group over k, let A =
E[T,, -+, T,], m=>1, and let ¢p: L(F) — Der, (A) be an action of L(F) on
A with o(yXT) e (T, ---,T,) for some yeI(F) and some i. Then ¢ is
F-integrable, provided F ~ F, or F ~ F,,. Moreover, if the field k is alge-
braically closed, then ¢ is F-integrable for any F.

Remark. If the field % is algebraically closed, then an action of F,
(resp, F,) on a given k-algebra B is a differentiation {D,: B— B, j =
0,1, ...} such that (D,.)» =0, D,, = (D)™ o - -- o (D, )"t [(m,! - - - m,!) (resp.
(D, = Dy, D,y = (Dy)o -+ o(Dyd,), 1, m = 0,1, ..., where m = m,p° +
-+- 4+ m,p* is the p-adic expansion of m and (f);=fo(f— 1)o--
o(f —j+ 1Jj!. The remark is well known for F, (and is true for any
field k of characteristic p > 0). As for the case of F,, it may be deduced
from [2, p. 127/128].
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All rings in this paper are assumed to be commutative. A local
ring is assumed to be Noetherian. A ring R is called reduced if it has
no non-zero nilpotent elements.

§2. Preliminaries and formulation of the main result

Throughout this paper % denotes a fixed field of characteristic p > 0
and N stands for the set of non-negative rational integers.

Let S’ be a subalgebra of a k-algebra S. A subset I' of S is called
a p-basis of S over S’ if S is a free S’[S?]-module (S? = {s?, se S}) and
the set of all monomials yi* ... y¥, where y,, ---,y, are distinct elements
inl"and 0 i, <p,r=1,...,t is a basis of S over S’[S?]. As usual,
Qs(S) will denote the S-module of Kihler differentials over S’ and
§: S — Q4(S) will denote the canonical S’-derivation. It is not difficult to
verify that if I is a p-basis of S over S’, then 2,.(S) is a free A-module
with {3y, yeI'} as a basis. Given a k-algebra A, Der, (A) will denote
the restricted Lie algebra over k of all k-derivations d: A — A with
[d,d]l =dod’ —d’od and d»! = d*. If deDer,(A) and a€ A, then ad
is the k-derivation x — ad (x), x ¢ A.

By a formal group over a ring R we shall mean a one dimensional
commutative formal group over R i.e., a formal power series F(X, Y)e
R[X, Y] such that F(X,0) = X, F(0,Y) =Y, F(F(X,Y),Z) = F(X, F(Y, 2)),
F(X,Y)= F(Y, X), see [6]. Two important examples are the additive
formal group F, = X + Y and the multiplicative one F,, == X + Y 4+ XY.
If F and G are formal groups over R, then a homomorphism f: F — G
is a power series f(X)e R[X] such that f(0)=0 and f(F(X, Y))=
G(f(X), f(Y)). A homomorphism f is said to be an isomorphism if f/(0)
is an invertible element in R (f(X) = 3f/6X). Let F=F(X,Y) be a
formal group over the field 2 and let d;: k[X] — k[X], i€ N, be the
maps given by the equality

(1) X, Y)) = 2, d(g(XDY",  gek[X].

We say that a function t: kR[X] — k[X] is F-invariant if tod, = d,o ¢ for
all jeN. It is clear that if a, bek and ¢, t': R[X] — k[X] are F-
invariant functions, then at + bt’ and to ¢ are also F-invariant functions.
Hence it follows that the set of all F-invariant k-derivations d: R[X] —
R[X] is a restricted Lie subalgebra of the restricted Lie algebra
Der, (k[ X]). This subalgebra is called the restricted Lie algebra of the
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formal group F and it is denoted by L(F). Let d,: k[X] — k[X] denote
the k-derivation determined by d.(X) = aF(0, X)/0Z (= oF(Z, X)oZ |,_,).
Then, similarly as in the case of algebraic groups, we have the following.

2.1 LEMMA. Let f: F— G be an isomorphism of formal groups over
k and let f: k[X] — k[X] be the isomorphism of k-algebras induced by
f e, F(8(X) = g(f(X))). Then L(f): L(F) — L(G) with L(f)(d) =f-'odof,
is an isomorphism of restricted Lie algebras. Moreover, L(F) is a one
dimensional vector space over k spanned by d,.

Proof. Given an H(X, Y)ek[X, Y] with H(0,0) = 0 we denote by
H: k[X] — k[X, Y] the homomorphism of k-algebras given by H(g(X)) =
g(H(X,Y)). If u, v: k[X] — k[X] are k-linear maps, then u® v: E[X, Y]
— R[X, Y] will denote the map taking > a, XY’ into > a, u(X")u(Y’).
It is easy to see that if de Der, (k[X]), then d & ide Der, (R[X, YD.
Moreover, a k-derivation d of k[X] is in L(F) if and only if Fod =
(d®id)oF. Observe also that (f®f) G Fof, because f(F(X,Y)) =
G(f(X), f(Y)) Similarly, (f'® f-)oF = Gof-!, because f~' = f~!, where
FUF(X)) =

Now we may prove that L(f) is an isomorphism of restricted Lie
algebras. First notice that if de L(F), then L(f)(d) = f“odofe L(G).
Indeed, Gofodof = (F ' @ F NoFodof=(F 1 QF NdQid)o Fof = (F-'o
dOF N (fFOFoG = (Flodof ®id)oG, which implies L(f)(d) ¢ L(G).
Further, for d, t € L(F) we have:

LA = (Fodefyr = F-todrof = L),

and

(LX), L)) = fodofof-totef — flotofoftodof
= f‘lo(dot-— tod)of
= L(f)d, t]) .

Since clearly L(f') = L(f)"! we are done. It remains to verify that
L(F) = kd;. Let g(X) be in k[X]. Then

Fodi(g(X)) = F(g'(X)-0F(0, X)/02))
= g'(F(X, Y))-0F(0, F(X, Y))[oZ
= g'(F(X, Y))0/oZ(F(F(Z, X), )|z
= g'(F(X, Y)X@F(T, Y)[aD)\|r-rcz.x, 0F(Z, X)[0Z)|; -,
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= g/(F(X, Y))aF(X, Y)/aX)(F (0, X)/3Z)
= (d, ® i) F(g(X)),

whence d € L(F). Further, if d e L(F) and W(X) = d(X), then A(F(X, Y))
= Fod(X) = (d®id)o F(X) = GF(X, Y)/6X)h(X). Hence, putting X = 0,
Y = X, we get d(X) = M(X) = GF(0, X)/6Z)h(0) = h(0)d(X), which means
that d = h(0)d,. Consequently L(F) = kd,, and the lemma is proved.

Remark. The equality L(F) = kd, may be deduced from Proposition
1 in [T. Honda, Formal Groups and Zeta Functions, Osaka J. Math. v.5
(1968)].

From the above lemma it follows that d% = c¢,-d, for some uniquely
determined constant c¢,e k. Notice that ¢, =0 for F=F, and ¢, =1
for F = F,. By an action of L(F) on a k-algebra A we mean a mor-
phism of restricted Lie algebras ¢: L(F) — Der, (A). It is obvious that
such an action is nothing else than a k-derivation d of A with d? = ¢;d.

Now recall [15] that an action of the formal group F on a k-algebra
A is a morphism of k-algebras D: A — A[X] such that if D(a) =
2 Di@Xt, ae A, then D, = id, and 37, , D, D(@)X*Y’ = ¥, D,(a)F(X, Y)’
for all ac A. If D: A — A[X] is such an action and ¢: R[X] — k[X]
is any k-linear map, then we define the k-linear map ¢,(f): A— A by
formula ¢,()(@) = 3, D(@)i(X?)|y_,. A straightforward calculation proves
that ¢,(d) € Der, (A) and ¢,(dod’) = ¢,(d)o¢p,(d’) for de L(F) and d’e
Der, (k[ X]). Hence it results that ¢,: L(F) — Der, (A) is an action of
L(F) on the k-algebra A. Since ¢,(d;) = D,, this means that D? = ¢, D,.

DerFINITION. An action ¢ of the restricted Lie algebra L(F) on a
k-algebra A is called F-integrable if there exists an action D of the
formal group F on A such that ¢, = ¢.

The main result of this paper is the following.

THEOREM. Let F be a formal group over k and let ¢: L(F) — Der, (A)
be an action of L(F) on a local k-algebra A with the unique maximal
ideal m satisfying the conditions (i) and (ii) below:

(i) the ring A®, k*™" is reduced,

(i) if m+#0, then 2,(A) is a free A-module of finite rank and
o(d:)m) & m.
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Then ¢ is F-integrable in each of the following two cases.

Case 1) F is isomorphic to F, or to F,,

Case 2) the field k is separably closed and A is a complete local ring
with m + 0.

The idea of the proof of this theorem comes in part from [10, proof
of Theorem 7] and relies on the construction of a special p-basis I" of A
over k and an element xe " such that xem (f m # 0), d(I" — {x}) = 0,
and d(x) = dF(x, 0)/dY, where d = ¢(d;). Having such a pair (I, x), one
shows that the function D: I' — A[X] given by D(x) = F(x, X), D(y) =y,
y # x, extends to an action D: A — A[X] of the formal group F on A
with ¢, = ¢. We start with

§3. Auxiliary Lemmas

In what follows, given a k-algebra A, a subset I' C A, and a func-
tion f: I' - A[X,, ---, X,], fu: ' > A, ae N™, will denote the functions
determined by the equality >, f.(»)X* = f(y), yeI', where X* = Xp*-..
Xz for o = (ay, -+ -y @n). If @ = (ay,---,a,) €N™ then |«| and pa stand
for ¢, + .-+ + @, and (pay, - - -, pa,,), respectively. Note that if D: A —
AlX,,---,X,] is a morphism of k-algebras with D, = id,, then D,:
A — A is a k-derivation for any « € N™ with |a| = 1.

3.1 LEmMMA. Let A be a k-algebra such that the ring A®,k*™" is
reduced and let I' be a p-basis of A over k. Then for any m > 1 and
any function s: I' - A[X] = A[X,, ---, X,,] with s(y) =y for yeI there
exists a unique morphism of k-algebras D: A — A[X] such that D, = id,
and D|. = s.

The lemma is a simple generalization of Heerema’s Theorem 1 in [7]
(see also, [5, Theorem 3]), where the case m = 1, k= F,, and A being a
field was considered. For the sake of completeness we sketch its proof.

By induction on |«| we define k-linear maps D,: A — A, a € N™, in
such a way that D: A - A[X] with D(e) = 3, D(a)X*, ac A, will be
the desired morphism of k-algebras. If ¢« = 0, one has to put D, = id,.
Suppose that D,’s have been already defined for all vy e N™ with |7|<r,
and take o« € N™ with |a|=r. In order to define D, we first define its
restriction to k[A?]. Let y = Y, t.a?, where t,ck and a,€ A. Then by
definition
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(> t;.D(a)’, when a = pr for some 7
I)a(bo - .
0 , otherwise .

Since A ®, k*™* is a reduced ring, one easily verifies that D,: k[A?] - A
is a well-defined k-linear map. If y, ...,y, are distinct elements in I,
ts - -5 p, € N are smaller than p, and y* = yi1 ... yi, then D(y*) is de-
fined to be the coefficient at X« in s(y,) - - - s(y,)* e A[X]. Finally, for
zc k[AP] and y* as above we set

(2) D, (zy*) = 2. D.(2)DA(y").

wtr=a

Since I' is a p-basis of A over k, formula (2) determines a k-linear map
D,: A — A. Thus the inductive procedure gives us a set of k-linear maps
D,: A— A, «e N™, such that D, = id, and D, |, = s,: ' — A. This means
that D: A — A[X] with D(a) = >, D(a)X*, a€ A, is a k-linear map
with D, =1id, and D|. = s. The fact that D preserves multiplication
may be shown similarly as in [7]. As for the uniqueness of D, if D':
A — A[X] is another morphism of k-algebras such that Dj=1id, and
D'\, = s, then one easily proves, using induction on ||, that D, = D,
for all « € N™. Hence D’ = D, and consequently the lemma follows.

3.2 CororrARY. Under the assumptions of the lemma we have:

1) if D', D: A— A[X] are morphisms of k-algebras with Dj= D,
=id, and D’|. = D|., then D’ = D,

2) for any k-derivations d,, ---,d,,: A— A there is a morphism of
k-algebras D: A — A[X] such that D, =1id, and D, =d;, i=1,---,m,
where (i) = (0, ---,0,1,0, ...,0)€ N™ with 1 on the i-th positions.

Proof. Part 1) results immediately by Lemma 3.1 (to s = D’|, =
D|;). To prove part 2) let us define the function s: I' — A[X] by s(y) =
y4+ > mr,d(yX,, yel'. Then according to Lemma 3.1 there exists a
morphism of k-algebras D: A — A[X] such that D, =1id, and D|, = s.
Hence D, (y) = d(y) for yeI', which clearly implies that D, =d,, i =

1, ---,m. The corollary is proved.

b

3.3 LemmA. Let A be a local algebra with the unique maximal ideal
m such that 2.(4) is a free A-module of finite rank, and let I' be a subset
of A such that {5y ®1, yeI'} is a basis of the AJm-vector space 2,(A)
®,Alm. Then I' is a p-basis of A over k. In particular, A possesses a
p-basis over k.

https://doi.org/10.1017/S0027763000001574 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001574

132 ANDRZEJ TYC

Proof. Since 2,(A) is a finite A-module, A is a finite A[A?]-module,
by [3, Proposition 1]. Moreover, it is easy to see that {5y, y € I'} is a basis
of 2,(A) over A. The conclusion now follows from [9, Proposition 38. G].

3.4 LeEmMA (Hochschild Lemma, [14, § 6, Lemma 1]). If R is any ring
of characteristic p and d: R — R is a derivation, then

d* (- 'd(w) = — d(w)? + w~'d*(u)
for all ueR.

Below, for a given ring R, U(R) denotes the set of all units in R.
Moreover, for any derivation d: R — R, R® stands for the subring
{acR, d(e) = 0} C R.

3.5 LeEmMA. Let A be a k-algebra and let d: A — A be a non-zero
k-derivation such that d? = ad for some ac A. Then we have:

1) if d(2)e U(A) for some zc A, then A is a free A%-module with
1,z .-.,27"! as a basis,

2) if ce A® is such that ¢* ' = a and A is an integral domain, then
there is @« y€ A — {0} with d(y) = cy,

3) if d(2)e U(A) and ¢ ' = a for some zc A and ce A%, then there
is an x € Az such that d(x) = cx + 1.

Proof. Suppose that d(z) e U(A) and set u = d(2)"'. Thanks to [8,
Lemma 1] we know that (ud)? = c,d for some ¢, € A. Since ¢, = uc,d(z) =
w(ud)?(2) = w(ud)’~'(1) = 0, we see that (ud)® = 0. Applying now Lemma
4 in [10] to the derivation ud: A — A and z< A, one gets part 1) of the
lemma. To prove 2) assume that ¢?~! = a for some cc A? and denote by
L,: A— A the map taking b into cb for be A. Then doL, = L,od and
0=d’—ad = d”— ¢ 'd = d® — L*'od = (d>* — Lz)od = (d — L))o
F(d), where F(Z) is a polynomial of degree p — 1 from the ring A‘[Z].
What we must show is that Ker(d — L, # 0. But the -equality
Ker(d — L,) =0 would imply F(d) =0, which is impossible by [11,
Theorem 3.1]. So, it remains to prove part 3). Suppose z€ A, ce A? are
such that d(z)e U(A), ¢*' = a, and set x, = 2?"'d(z). Then from the
Hochschild Lemma and the equality d? = ad it follows that d?-!(x,) =
ax, — d(z)*. Hence if we put
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then xe Az and
d(x) — cx = — d(z)"’[(d ~ L)% Lgdp—z—i(x,)] = —d(z)-(d" — Lr)(xy)
= — d(z)"?(d* (x,) — c;’“x,) = —d(z)?(d*(x) —ax) = 1.

This means that d(x) = cx + 1, as was to be shown. The lemma is
proved.

3.6 CorOLLARY. Let (A, m) be a local k-algebra and let d: A — A
be a k-derivation with d? = ed for some ec{0,1} and with d(m) ¢ m,
whenever m + 0. Then there exists an xe€ A such that d(x) = ex + 1l¢
U(A) and A is a free A-module with 1,x, ---, x*"! as a basis. Moreover,
if m =+ 0, then one may assume that x € m.

Proof. Let m #+ 0. Then from the assumption we know that d(z)e
U(A) for some zem. Hence, by Lemma 3.5, 3), there exists an xc Az
with d(x) = ex 4+ 1. Since ex 4 1¢ U(A), by applying Lemma 3.5, 1), one
gets that A is a free A%module with 1,x, -..,x?! as a basis. Now
suppose that m = 0, that is, A is a field. If e = 0, then again by Lemma
3.5, 3) there is an xe A with d(x) = 1. If e = 1, then in view of Lemma
3.5, 2) we may find 0 = ye A such that d(y) =y. Set x =y — 1. Then
dix) =d(y) =y =x+1 and x + 1€ U(A), because y = 0. In both cases
(e=0o0re=1) Ais a free A%module, by part 1) of the above lemma.
The corollary follows.

Now, for later use, let us recall the notion of height of a formal
group. Let G(X,Y) be a formal group over a ring R. As G(X,Y) =
G(Y, X), the induction formula: [1],(X) = X, [m](X) = G(Im — 1](X), X),
m € N, determine a sequence of endomorphisms of the group G. If pR = 0,
then according to [4, Chap. III, § 3, Theorem 2] each homomorphism f: G —
G’ of formal groups over R can be uniquely written in the form f(X) =
fi(X*"), where fi(X)e R[X], fi(0) +0, and he N U{} (h = oo, if f=0).
The number % is called the height of f. Now the height Ht(F) of a formal
group F over the field & is defined to be the height of the endomorphism
[p]1A(X). It is easily seen that Ht(F) > 1 for any F and that Ht(F,) = oo,
Ht(F,) = 1. Observe also that Ht(F) = Ht(F’), provided F ~ F".

3.7 LeEmMMA. Let F be a formal group over k and let as before cy ek
be the constant determined by the equality d% = cyd,. Then ¢, = 0 if and
only if Ht(F) = 1.
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Proof. Thanks to [4, Chap. III, § 1,. Theorem 2] we know that F~ F,
if and only if Ht(F) = co. So, let Ht(F) < oo, and let D: A — A[Y] be
an action of F on a k-algebra A. For the proof of the lemma it suffices
to show that D? = 0, when Ht(F) > 2, and that D? = ¢D, for some ce
k — {0}, when Ht(F) = 1. Indeed, for A = k[X] and D given by D(g(X))
= g(F(X,Y)) we have D, = d,, whence (under the above assumption)
¢y = 0 if and only if Ht(F) > 2. From the definition of an action of F
on A it follows that D,o D, = 3., C,,,D,, i,je N, where C,,’s are con-
stants in k determined by the equality F(X, Y)" = 3},,C,,X'Y!. In
view of Lemma 2 in [4, Chap. III, § 2] we may assume that

FX,Y)=X+ Y+ prf ((f”) / p)Xf Y7 mod deg p* + 1
for h = Ht(F) and some 0 + we k. Hence
D,oD, = (i,))D,n + w(ll?h)/pﬂl for i 4+ j = p*,
and

DfODjz(i,j)Di+j fori+j<ph-

The first equality implies that D,o D, , = wD, if A = 1, while the second
one that D,o D, , = pD, = 0 for A > 2 and thatD, = Di/i! for 0 < i <p and
any h. Therefore, if A = 1, then D, = w'D,oD,_, = w='D, D?"*/(p — 1)!
= Drlw(p — 1)), i.e.,, D?P = ¢D, with ¢ = w(p — 1)!1, 0.

In the case where 2 > 2 we have 0 = D,o D,_, = D?/(p — 1)!, whence
D? = 0. Thus the lemma is established.

§4. Proof of the theorem

Below, Z and @ denote the ring of rational integers and the field
of rationals, respectively. Moreover, N* denotes the set N — {0}. It is
easy to see that if F and G are isomorphic formal groups over k& and
the theorem is true for G, then it is also true for F. Therefore, in case
1) of the theorem we may (and will) assume that F = X + Y + eXY,
ec{0, 1}. In case 2) of the theorem we replace quite general F by a
certain (isomorphic to F) formal group F,, which is much easier to deal
with. To this end set h = Ht(F) and consider the following formal
power series from Q[X, Y]
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fi(X) = X + z pIX™ (fAX) = X),
Fh(X’ Y) = f}?l(fn(X) + fn(Y)) .

Thanks to [6, Chap. I, § 3.2] one knows that F, = F,(X,Y) is a formal
group over Z and that [p];(X) = X?" mod pZ[X] (X?* = 0). Now F, is
defined to be the formal group over k O Z/pZ obtained by reducing all
the coefficients of F, modulo p. Certainly, Ht(F,) = A = Ht(F). It results
that F ~ F,, because by [4, Chap. III, § 2, Theorem 2] the height classifies
(up to isomorphism) formal groups over a separably closed field. In the
sequel, when dealing with case 2) we will assume that F = F,, where
h = Ht(F). Moreover, it will be assumed that A > 2, since otherwise, i.e.,
when A = 1, F is isomorphic to F,, (by the already mentioned Theorem 2
in [4, Chap. III, §2]), and case 1) can be applied.

Now let d = ¢(d;). Then d: A — A is a k-derivation with d? = c,d
and with d(m) ¢ m, if m = 0. The second important ingredient of the
proof is the construction of a special p-basis I' of A over k£ and an
element x e I" satisfying the following conditions

a) xem, whenever m + 0,

b) d(x) = aF(x, 0)/3Y,

c) d(y) =0 for yel, y =+ x.

First we show such a pair (I', x) exists in case 1) of the theorem i.e.,
when F= X+ Y+ eXY, ec{0,1}. Then ¢, = ¢, and therefore d? = ed.
If A is a field, then by Corollary 3.6, there is an x € A such that d(x) =
ex+1and 1,x,.--,xP"! is a basis of A as an A%module. Since, by the
assumption (i) of the theorem, A is a separable field extension of %, the
latter permits to find a p-basis I' of A over k with xeI" and I — {x} C
A?, see [10, proof of Theorem 7]. It is clear that the pair (I, x) has
properties a)-c) above. Now suppose that A is not a field, that is, m == 0.
Then again making use of Corollary 3.6 one may find an x e m such that
d(x) =ex+ 1€ U(A) and A = 3., A%*. Hence §(x) ¢ m-2,(A), because
d = qo§ for some homomorphism of A-modules q: 2,(A) - A. In view
of Lemma 3.3 this implies that there exists a p-basis I of A over k
containing x. We “improve [””. Since A = > A%, each y' e I” can be
written in the form y =y + s,x, for suitable yc A* and s, e A. Let
I'={y,yel”— {x}} U{x}. Then from the equalities 4(y") = 3(y) + s,.6(x)
+ x3(s,), ¥’ € I' — {x}, and Lemma 3.3 it follows that I" is a p-basis of A
over k (xem!). The p-basis I" and x ¢ I" satisfy conditions a)-c), and thus

3
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the existence of the required pair (I', x) has been shown in case 1). In
case 2) of the theorem we have d? = 0, by Lemma 3.7, and d(m) ¢ m.
Hence, again by Corollary 3.6, there is an xem with d(x) =1 and A =
> iso A%xt.  Similarly as above this makes it possible to find a p-basis I
such that xe I’ and I' — {x} C A%. It remains to verify that d(x) =1 =
oF,(x,0)/0Y. From the equality f,(F,(X, Y)) = fu(X) + f.(Y) (see (3)) it
results that fy(X)oF,(X,0)/dY = 1. This implies fy(X)oF,(X, 0)/0Y =1,
where f,(X) is obtained by reducing all the coefficients of f7(X) modulo p.
But fi(X) =1+ > 5, p'* 2X?"1 (see (3)), whence fi(X)=1, as h > 2.
Consequently 3F,(x, 0)/dY = 1 (==d(x)), which means that also in case 2)
there exist a p-basis I' and an element x e I" satisfying conditions a)-c).

We are now in position to prove the theorem. Choose a p-basis I’
of A over k and an x e I' satisfying the conditions a)-c), and then define
the function s: I — A[X] by the formula: s(x) = F(x, X), s(y) =y, ye
I' — {x}. In view of Lemma 3.1 the function s (uniquely) extends to a
morphism of k-algebras D: A — A[X] with D, =id,. We show that D
is an action of the formal group F on the k-algebra A such that ¢, = ¢.
The latter amounts to D), = d and it is a consequence of the fact that
the k-derivations D, and d coincide on the p-basis I" of A over k. So,
all that remains to be proved is that F,oD = D, oD, where as before
F,: A[X] —A[X, Y], Dy: A[X] — A[X, Y] are the morphisms of k-alge-
bras defined as follows: F,(g(X)) = g(F(X,Y)), D;C] a,X") = >, D(a,)Y".
By Corollary 3.2, it suffices to check that F,o D(y) = D, o D(y) for all yeI.
If ¥ +# x, then both sides are equal to y. Write F(X,Y) = >, F(X)Y’,
where F, e k[X]. Then

F,oD(x) = F(x, F(X,Y)) = F(F(x, X),Y) = >, F(F(x, X)) Y’ .
On the other hand

Dy o D(x) = Dy(2. F((x)Y') = 3 D(F(x))Y’! = 3. Fy(F(x, X))Y" .
Hence F,o D(x) = D, o D(x), and thus the theorem has been established.

4.1 CoROLLARY (from the proof). Under the assumptions of the the-
orem there exist a p-basis I' of the k-algebra A over k and an element
x eI such that d(x) = 0F(x,0)/aY, ' — {x} C A%, and xem, if m + 0.

4.2 Remark. Let (A, m) be a local k-algebra satisfying the conditions
(i), (ii) of the theorem. Then A turns out to be a regular local ring.
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This is a consequence of [16, Lemma 1].

4.3 Remark. If the field k is algebraically closed, F = F,, and A is
the completion of the local ring of a regular point on some algebraic
variety over k, then Corollary 4.1 may be easily deduced from [13, proof
of Theorem 1].
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