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Abstract

In industrial applications of microwave heating, it has been observed that rather
than the heating taking place uniformly, regions of high temperature, called hot-
spots, tend to form. Depending on the industrial application, these can be either
desirable or undesirable, and hence a theoretical understanding of the properties
of the material that lead to hotspot formation is necessary. It has been shown in
previous studies that hotspot formation is a product of the nonlinear dependence
of microwave energy absorption by the material on temperature. It is shown in the
present work that the conductivity of the material can have a significant effect on
hotspot formation and can, if large enough, stop a hotspot from forming.

1. Introduction

The use of microwave radiation for heating in industrial settings is finding
more widespread application. With this increased use, a number of unex-
pected problems have been found to occur. These problems are due to the
large temperature increases involved in some industrial applications of mi-
crowave heating, so that the temperature dependence of the properties of
the material being heated, such as conductivity and microwave energy ab-
sorption, become important. Foremost amongst these problems is the phe-
nomenon of a hotspot, which is a small region of very high temperature
relative to its surroundings. Hotspots can reach such large temperatures that
the material melts ([2]), which can be either desirable (metal smelting) or
undesirable (drying, sintering), depending on the application.

Due to its industrial importance, the hotspot phenomenon has recently
been subject to much theoretical analysis. Since the microwave heating of
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a material is governed by a coupling of electromagnetic and thermal phe-
nomena, and furthermore, since the high temperatures involved in a hotspot
mean that the temperature dependence of the properties of the material need
to be included, the full analysis of microwave heating is quite difficult. How-
ever, as a hotspot occupies a small region, the simplifying assumption that
the microwave radiation has constant amplitude in the region of the hotspot
is made ([5], [6], [8], [12]). When this assumption is made, the temperature
of the material is governed by the forced heat equation

^ = W2T + y{T), (1.1)

where y(T) is the (temperature dependent) rate of microwave energy ab-
sorption by the material (see [10], [11]). Equation (1.1) is also the reaction-
diffusion equation which occurs in the theory of chemical reactions, with y
being the temperature-dependent reaction rate (see, for example, [1], [3], [7]).
Coleman [6] assumed that

y(T) = y0T
y> (1.2)

and with v — 0 , showed that hotspots will form if y{ > 1, hotspots manifest-
ing themselves by the temperature becoming infinite in finite time. Further-
more, solutions T{t) of (1.1) are unstable to small perturbations if yx > 1,
the growth of small perturbations being associated with hotspots. However,
temperature dependencies of the form (1.2) are unrealistic since y -* oo as
T —* oo. Coleman [6] found numerically that for Arrhenius dependencies of
the form

y = yoe~h/T, (1.3)

and for v sufficiently small, T became large in finite time, corresponding to
hotspot formation. It was further found that large values of v were required
to stop the formation of a hotspot.

Hill and Smyth [8] found steady-state solutions of (1.1) in planar and
cylindrical geometries for exponential dependencies

y = y/J (1.4)

with v constant and T = To on the boundary of the body. Such solutions
were found to be multi-valued, with two possible steady states. The steady
state of lower temperature was found to be stable and the other steady state
unstable to small perturbations. For To > f{vl{yQyia2)), where / is a
function which was determined, no steady-state solutions existed and it was
found numerically that a hotspot formed in these cases.

Roussy et al [12] solved (1.1) numerically for a cylindrical body with
y quadratic in temperature and a convective heat-loss boundary condition.
They then found an approximate criterion for a hotspot to form. Brodwin
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et al [5] found steady-state solutions of (1.1) for a thin slab with a convec-
tive and radiative heat-loss boundary condition. They found that the steady
state was a multivalued function of the incident amplitude of the microwave
field. The branch of lower temperature is stable until a critical temperature is
reached, whereupon the second branch, corresponding to unstable solutions,
folds back. For certain types of dependencies of y on T, a point is reached
where this second branch again increases as the temperature is increased. The
corresponding steady state is stable, is generally of high temperature, and so
corresponds to a hotspot.

The present work is concerned with extending the results of [8] to include
the effects of the conductivity of the material and temperature-dependent
thermal diffusivity v . The conductivity of the material causes the microwave
radiation to decay as it propagates through the material. It is found that for
large enough values of the conductivity, a hotspot will not form, as expected
on physical grounds. The dependence of this critical value of the conductivity
on the other parameters in the case of (1.4) is determined.

2. Governing equation

The equations governing the microwave heating of a material are the
damped wave equation for the electric field associated with the microwave
radiation

Ett + o{T)Et = c\{T)V2E (2.1)

and the forced heat equation

Tt = v(T)V2T + y(T)\E\2 (2.2)

governing the resultant heat flow, where \E\ denotes the amplitude of the
electric field ([10], [11]). The parameter a is proportional to the conduc-
tivity of the material, y is the rate at which microwave energy is taken up
by the material and cx is the microwave speed. The damped wave equation
(2.1) can be derived from Maxwell's equations under the assumption that
a is small or that c, is temperature independent and a is slowly-varying
([10], [11]). If a is 0(1) and cx is temperature dependent, then the equa-
tions for the electric and magnetic fields are coupled and of a more involved
form than (2.1). In physical situations, y cx a for constant cx ([11]). In
the present work, we shall take a constant and y temperature dependent.
While this gives an unphysical temperature variation for a, solving (2.1)
for temperature dependent a is difficult. Furthermore, taking a constant
should give an indication of the effect of a physical a on the formation of
hotspots, which is the central concern of the present work. For temperature
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dependent thermal diffusivity, it is usual to take (2.2) in the form

Tt = V-(v(T)VT) + y(T)\E\2. (2.3)

If we assume the power-law dependencies

T = TX+Vl (2.5)
then setting

results in (2.3) becoming

Tt = v{T)V T + y(T)\E\ , (2.6)

where

The transformed equation (2.6) is then of the form (2.2) with power-law
dependencies for y and v . However, if the exponential dependencies

are assumed, then setting
T = e">T (2.9)

results in (2.3) becoming

Tt = P(T)V2T + y(T)\E\2, (2.10)

where _

_ _ i y ~ ^ 1 + ; , / , i (2.H)

The transformed equation (2.10) is not of the form (2.2) with exponential
dependencies for y and v. The forced heat equations (2.2) and (2.3) can
then be transformed into each other with similar dependencies of y and
v on T if this dependence is of a power-law form, but not if it is of an
exponential form. The form (2.2) is chosen in the present work as this form
leads to equations which can be solved exactly.

In the present work, we shall assume that a and cl are constant and that y
and v have the exponential dependencies (2.8). The exponential dependence
of y on T was also assumed by [8]. Von Hippel [13] gives extensive tables of
experimental data for the dependence of the dielectric properties of various
materials on temperature. While power-law dependencies of the form (2.4)
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fit a wider range of materials, the exponential dependencies (2.8) can be used
for many materials. In particular, exponential dependencies have been used
to model the behaviour of various ceramic materials ([4], [9], [14]). Let us
assume that the microwave radiation incident on the material has an electric
field of constant amplitude Eo and that a is a characteristic dimension of
the body being heated. We then non-dimensionalise (2.1) and (2.2) by

(2.12)

The non-dimensional governing equations are then

(2.13)

(2.14)

where
a2*

ac.
c= —L

(2.15)

The damped wave equation (2.13) has the damped travelling-wave solution

u = e-k<telW-m), (2.16)

where

—
2c2

k2- —
' *' ' 2c2 - 1 + (2.17)

It can be seen from (2.17) that large values of the conductivity s result in
the rapid decay of the electric field away from £, — 0, so that the electric
field is non-zero only in a boundary layer at £, — 0 . To be specific, let us
assume that we have a one-dimensional planar body in the region 0 < (̂  < 1
and that microwave radiation of amplitude |M| = 1 is incident on the slab
at ^ = 0. Then the microwave field in the body is given by (2.16) if any
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reflections at the surface £, — 1 are ignored. With the electric field given by
(2.16), the forced heat equation (2.14) becomes

(2.18)

3. Steady-state solutions

In this section, we shall seek steady-state solutions of the forced heat equa-
tion (2.18), as was done by [8]. The absence of such solutions indicates the
conditions under which a hotspot will form. Such steady-state solutions are
possible for boundary conditions which involve heat loss to the surroundings,
such as the fixed temperature boundary conditions to be used here. Insulated
boundaries will not yield a steady state. If we define

(3.1)

then the steady-state solutions of (2.18) satisfy

d2e
(3.2)

Hill and Smyth [8] considered this equation for fi{ = 0 (and kt = 0).
Equation (3.2) has distinct solutions for nx > 1 and /*, < 1. The solution
for n{ < 1 is similar to that of [8] and it may be found that

(1 -ixl)6 = 2kfi + log \2r{l
A_ }sech

2 ffifl + flj .
For /i, > 1, it may be shown that there are two possible solutions

A
(1-ftJO = 2kfi + log

and

2T(fi. -
u2 yTA,cosech -—-(

(3.3)

(3.4a)

(3.4b)

The solution (3.4b) is possible if /? and P + 1 have the same sign.
Let us first consider the solution for fix < 1, (3.3). The fixed-temperature

boundary condition 6 = 60 at £, = 0, 1 gives

(3.5)^ _ _ s e c h

2 r ( i - / / 1 ) s e c n 2
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and

The relations (3.5) can be shown to yield

2F(1 - fi.) (i-//.) k. , VA 2fc, ,~ ,,
= 2 e ' c o s h e r — 1 - e ' , (3.6)

yi 2. 2.

which determines A, so that fi follows from (3.5a). For fix — 0 and k( = 0,
it may be shown that (3.6) is the same as the equivalent expression of [8].
For A = 0 , the left-hand side of (3.6) is positive (and finite) and the right-
hand side of (3.6) is negative. Also as A —* oo, the left-hand side of (3.6)
dominates over the right-hand side. Hence if (3.6) has one solution, then it
must have two solutions.

It was shown by [8] that for (ii =0 and kt, = 0, (3.6) has two solutions if

0o<log[3.5138F~'] (3.7)

in the present non-dimensionalisation, and no solutions otherwise. In the
limit fc, » 1, the dominant terms of (3.6) are

-e ' = 0, (3.8)

so that one solution is, to first order,

A = 4kf. (3.9)

From (3.5a), we then have for k( » 1,

- l , - l
fi = ±kt sech

T{\ -
(3.10)

The solution (3.9) and (3.10) exists for any value of 6Q (since kt » 1),
so that a steady state exists for all 60 for kt » 1. Hence a hotspot will
not form for kt » 1 i.e. for large conductivity s (see 2.17). This is to be'
expected as large values of kt (i.e. conductivity) cause the electric field to
decay rapidly away from £, = 0 . As the electric field is then weak in the body
of the material, little heating can occur there and so a hotspot cannot form.

There is thus a value of k(, kic say, for which (3.6) always has a solution
for kj > kic, so that no hotspot will form for kt > kic. The marginal case
for (3.6) occurs when the two roots for A coincide. In this case, we have
from (3.6) that

C ^ ^ • » y * ^ w | f * . * ^ WAA.AA* ^ ^ | ^tf ^ ^ M. p * | y ^ • * ^ v\/tfXA A

(3.11)
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is also satisfied. It is found numerically that (3.6) and (3.11) have a solution
if kt< 17.65. Hence kic = 17.65 and no hotspot forms for ki > kic.

The solution (3.3) is shown in Figure 1 for k{ = 0, 1,3 and |*, = 0, T =
1, 60 = 1. It can be seen that as kt increases, the temperature decreases and
the temperature maximum becomes more skewed towards £, = 0. The overall
temperature decreases as kt (i.e. conductivity s) increases since increasing
values of kt result in more rapid decay of the electric field away from ^ = 0,
resulting in decreasing total heat input. Also the more rapid decay of the
electric field away from £ = 0 causes more heating near £ = 0 and hence
the skewness of the resulting temperature profile. As /*, is decreased from
zero, the temperature increases uniformly due to the diffusivity in (2.14)
decreasing with increasing temperature for fi{ < 0.

Let us now consider the solution (3.4) for fi{ > 1. The fixed temperature
boundary condition 6 = 60 at £ = 0, 1 gives

•sec

and

sec
y/A. (3.12)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3(
FIGURE 1. The solution (3.3) for //, = 0 , T = 1, 0Q = 1 and it,. = 0(—), 1( ) ,
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for (3.4a) and
A

 Cosech2 ^
- 1) 2

and

for (3.4b). Again these equations may be examined in the limits kt = 0 and
k. » 1.

For /c, = 0, it may be found from (3.12) and (3.13) that

fi = - \ (3.14)

and for (3.12) that

^ = 2 r ( ^ - l ) e ( 1 - " ' ) e ° c o s 2 ^ . (3.15)

Since /? < 0 and /? + 1 > 0, the solution (3.4b) is not valid for A:,. = 0. It
can easily be seen that (3.15) has at least one solution for A for all values
of F, fil > 1 and 60. In fact, for

16nV < 2r(0, - l)e(1-"')e° < 16(n + 1 ) V , (3.16)

there are 2n + 1 distinct solutions for A . Hence a hotspot will not form
for fil > 1 and fcf. = 0. This is to be expected as //, > 1 means that heat
diffusion dominates over heat generation as 6 —• oo, so that a hotspot cannot
form as heat is rapidly diffused for large 0 .

Let us now consider the limit fc( > 1. Eliminating /? between both (3.12)
and (3.13), we find

2r(/i, - 1M-1 sin2 htfj e(1-"')e« = 1 + elk> - 2ek- cos ̂  (3.17)

and

2Y{nx - \)A~l sinh2 I ̂ f I e^"*'"0 = 1 + e"1 - 2eK> cosh ^ (3.18)

respectively. For kt » 1, it can be found that (3.17) does not have a solution
for A . However, for kt » 1, it may be found in a similar manner to (3.9)
that

A = 4kf. (3.19)
It may then be found from (3.13) that for k( » 1,

(3.20)
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We thus see that there is one steady state for 6 for fi{ > 1 and kt » 1,
so that no hotspot will form for /*, > 1 and fc( » 1. For nx > 1, it then
appears that no hotspot will form, which is expected as in this case thermal
diffusion dominates over heat production.

The graphs of the solutions (3.4) are similar to those of the solution (3.3),
examples of which are shown in Figure 1, with the temperature decreasing
uniformly as fi{ is increased from 1, this being due to the diffusivity in
(2.14) increasing with increasing temperature for nl > 1. This can be seen
in Figure 2, where the solution (3.4a) is shown fro /i{ — 2, 2.5, 3 and F = 1,
0O = 1, fc,. = 0.

In [8], a steady-state solution for 6 was found in the case of a cylindrically
symmetric body for fix — 0 and kt, = 0 . The cylindrically symmetric solution
of the damped wave equation (2.13) corresponding to (2.16) is

where

and

CO
—
C

IS
—
CO

1/2

(3.21)

(3.22)

is a Hankel function. Unfortunately, when (3.21) is substituted

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 2. The solution (3.4a) for fc, = 0 , T = 1, 00 = 1 and /*, = 2(—), 2.5( ) ,
3( )-
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into the forced heat equation (2.14), steady-state solutions for 0 cannot be
found. Presumably however, similar behaviour to the planar case would be
found if such steady-state solutions could be determined.
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