COMPACTNESS OF SUBSETS OF TYCHONOFF SETS VIA EXPONENTIAL LAWS

PEDRO MORALES

(Received 26 March 1982)

Communicated by J. H. Rubinstein

Abstract

Using the exponential map in multifunction context, the paper deduces a system of non-Hausdorff theorems which generalize all known Ascoli theorems for the space of continuous functions and the space of point-compact continuous multifunctions.

1980 Mathematics subject classification (Amer. Math. Soc.): 54 D 30, 54 C 60, 54 C 35.

1. Introduction

In [18] Noble studied the equivalence between the exponential laws and the Ascoli theorems for the space of continuous functions. This paper uses this approach in the space of point-compact continuous multifunctions. In order to eliminate the Hausdorff restriction, the paper uses the Levine generalization of the closed set [11]. To formulate theorems which may be interpreted either in terms of continuous functions or in terms of point-compact continuous multifunctions, the paper introduces the notion of a Tychonoff set.

All unexplained terminology is defined in [14]. In this paper, the following notations will be used:

- (1) X, Y and Z denote topological spaces.
- (2) Y^{mX} , $(Y^{mX})_0$, $\mathcal{C}_0(X, Y)$ denote, respectively, the set of all multifunctions on X to Y, the set of all point-compact members of Y^{mX} and the set of all continuous members of $(Y^{mX})_0$.
 - (3) $P\{Y_x: x \in X\}$ denote the *m*-product of the topological spaces $Y_x, x \in X$.
- (4) τ_p , τ_c denote, respectively, the pointwise topology and the compact open topology.

[©] Copyright Australian Mathematical Society 1983

(5) If $f \in Y^{mX}$ and $B \subseteq Y$, we write $f^{-}(B) = \{x: x \in X \text{ and } fx \cap B \neq \emptyset \}$, $f^{+}(B) = \{x: x \in X \text{ and } fx \subseteq B \}$.

2. Fundamental implications

An element $f \in Z^{m(X \times Y)}$ determines the function $\tilde{f}: x \to f(x, \cdot)$ on X to Z^{mY} . The function $\mu: f \to \tilde{f}$ called the *exponential map*, is a bijection of $Z^{m(X \times Y)}$ onto $(Z^{mY})^X$ such that $\mu(\mathcal{C}_0(X \times Y, Z)) \subseteq (\mathcal{C}_0(Y, Z))^X$. If τ is a topology on $\mathcal{C}_0(Y, Z)$ such that

$$\mu(\mathcal{C}_0(X \times Y, Z)) \subseteq C(X, (\mathcal{C}_0(Y, Z), \tau))$$

we say that (X, Y, Z, τ) satisfies the partial exponential law. If τ is a topology on $\mathcal{C}_0(Y, Z)$ such that

$$\mu^{-1}(C(X,(\mathcal{C}_0(Y,Z),\tau)))\subseteq\mathcal{C}_0(X\times Y,Z)$$

we say that (X, Y, Z, τ) satisfies the inverse partial exponential law.

Let $F \subseteq Z^{mY}$. We say that F is pointwise bounded if $\overline{F[y]}$ is compact for every $y \in Y$. A subset T of Z^{mY} will be called a *Tychonoff set* if, for every pointwise bounded subset F of T, $P\{\overline{F[y]}: y \in Y\} \cap T$ is τ_p -compact. For example, Z^Y is a Tychonoff set, by the classical Tychonoff theorem; also $(Z^{mY})_0$ is a Tychonoff set, by Corollary 7.6 of [14, page 17].

Following Levine [11, page 90], a subset A of a topological space will be called *g-closed* if $\overline{A} \subseteq U$ whenever U is an open set containing A.

If τ is a topology on $\mathcal{C}_0(Y, Z)$ we say that (Y, Z, τ) satisfies the Ascoli theorem if, for every Tychonoff subset T of $(Z^{mY})_0$, a subset F of $\mathcal{C}_0(Y, Z) \cap T$ is τ -compact, provided that

- (i) F is g-closed,
- (ii) F is pointwise bounded, and
- (iii) τ_p is jointly continuous on the τ_p -closure of F in T.

If τ is a topology on $\mathcal{C}_0(Y, Z)$ we say that (Y, Z, τ) satisfies the *converse Ascoli theorem* if, for every Tychonoff subset T of $(Z^{mY})_0$, every τ -compact subset F of $\mathcal{C}_0(Y, Z) \cap T$ satisfies the conditions (i), (ii) and (iii).

2.1. THEOREM. If (X, Y, Z, τ) satisfies the partial exponential law for every compact space X, then (Y, Z, τ) satisfies the Ascoli theorem.

PROOF. Let T be a Tychonoff subset of $(Z^{mY})_0$ and let F be a subset of $\mathcal{C}_0(Y,Z)\cap T$ satisfying the conditions (i), (ii) and (iii). Let \overline{F} be the τ_p -closure of F in T. By (iii), ω : $(\overline{F},\tau_p)\times Y\to Z$ is continuous, and, in particular, $\overline{F}\subseteq \mathcal{C}_0(Y,Z)$.

Since T is a Tychonoff set and F is pointwise bounded, by an obvious modification of the proof of Lemma 7.8 of [14, page 18], we can conclude that \overline{F} is τ_p -compact. Then, by the hypothesis, $\tilde{\omega} \colon \overline{F} \to (\mathcal{C}_0(Y, Z), \tau)$ is continuous. Since $\tilde{\omega}$ is the inclusion map, $\overline{F} = \tilde{\omega}(\overline{F})$ is τ -compact. But $F \subseteq \overline{F} \subseteq \mathcal{C}_0(Y, Z) \cap T$. Then (i) implies, by Theorem 2.9 of [11], that F is g-closed in (\overline{F}, τ) . Since (\overline{F}, τ) is compact, Theorem 3.1 of [11] implies that F is τ -compact.

2.2. THEOREM. Let Z be a regular space and let τ be a regular topology on $\mathcal{C}_0(Y, Z)$. If (X, Y, Z, τ) satisfies the inverse partial exponential law for every compact space X, then (Y, Z, τ) satisfies the converse Ascoli theorem.

PROOF. Let F be a τ -compact subset of $\mathcal{C}_0(Y,Z) \cap T$, where T is a Tychonoff subset of $(Z^{mY})_0$. Then F is pointwise bounded because, if $y \in Y$, $F[y] = \operatorname{pr}_y(F)$ is compact [3, page 116]. Since $(\mathcal{C}_0(Y,Z) \cap T,\tau)$ is regular, Theorem 3.5 of [11] implies that F is g-closed in $\mathcal{C}_0(Y,Z) \cap T$.

In order to prove the condition (iii), it suffices, by Theorem 10.1 of [14, page 21], to show that F satisfies the condition (G). Let F_0 be a τ_c -closed subset of F and let V be an open subset of Z. It must be shown that $\bigcap_{f \in F_0} f^-(V)$ and $\bigcap_{f \in F_0} f^+(V)$ are open in Y. Since the inclusion map $i: F \to \mathcal{C}_0(Y, Z)$ is continuous, by the hypothesis, $\mu^{-1}(i) = \omega: F \times Y \to Z$ is continuous. This implies, in particular, that τ is finer than τ_c [21, page 49]. Therefore F_0 is τ -closed in F, hence τ -compact.

Let $y_0 \in \bigcap_{f \in F_0} f^-(V)$ and let $\omega \colon F_0 \times Y \to Z$. Then $F_0 \times \{y_0\} \subseteq \omega^-(V)$. Since F_0 is compact and $\omega^-(V)$ is open, by the theorem of Wallace, there exists a neighbourhood U of y_0 such that $F_0 \times U \subseteq \omega^-(V)$. Let $y \in U$. For $f \in F_0$, $fy \cap V \neq \emptyset$, that is, $y \in \bigcap_{f \in F_0} f^-(V)$. We have, therefore, $U \subseteq \bigcap_{f \in F_0} f^-(V)$, showing that $\bigcap_{f \in F_0} f^-(V)$ is open. Similarly, we show that $\bigcap_{f \in F_0} f^+(V)$ is open.

3. Ascoli theorems

Let $F \subseteq Z^{mY}$. Following [15], we say that F is evenly continuous if, whenever $y \in Y$, K is a compact subset of Z and V is a neighbourhood of K, there exist neighbourhoods U, W of y, K, respectively, such that, for all $f \in F$, $fx \cap W \neq \emptyset$ implies $U \subseteq f^-(V)$ and $fx \subseteq W$ implies $U \subseteq f^+(V)$.

Let $Z = (Z, \mathfrak{A})$ be a uniform space and let $F \subseteq Z^{mY}$. Following [22], we say that F is *equicontinuous* if, for $y \in Y$ and $U \in \mathfrak{A}$, there exists a neighbourhood V of y such that, for all $f \in F$, $f(V) \subseteq U[fy]$ and $fx \cap U[z] \neq \emptyset$ whenever $(x, z) \in V \times fy$.

Since (X, Y, Z, τ_c) satisfies the partial exponential law [14, page 18], we deduce from Theorem 2.1 the following consequence:

- 3.1. THEOREM. (Y, Z, τ_c) satisfies the Ascoli theorem.
- 3.2. COROLLARY. Let Z be a regular space and let T be a Tychonoff subset of $(Z^{mY})_0$. A subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact if
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is evenly continuous.

PROOF. By Lemma 4.1 of [15], (c) implies the condition (iii).

- 3.3. COROLLARY. Let Z be a regular space and let T be a Tychonoff subset of $(Z^{mY})_0$. A subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact if
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F satisfies the condition (G).

PROOF. By Theorem 10.1 of [14, page 21], (c) implies the condition (iii).

- 3.4. COROLLARY. Let Z be a uniform space and let T be a Tychonoff subset of $(Z^{mY})_0$. A subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact if
 - (a) F is a g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is equicontinuous.

PROOF. By Lemmas 6 and 7 of Smithson [21, pages 257-258], (c) implies (iii).

Let $Z = (Z, \mathfrak{A})$ be a uniform space and let cZ denote the set of all non-empty compact subsets of Z. Following Michael [13, page 153], we define on cZ the uniformity $c\mathfrak{A}$ having as base the sets of the form $\{(K_1, K_2): K_2 \subseteq \bigcup_{x \in K_1} U[x] \text{ and } K_2 \cap U[y] \neq \emptyset$ for all $y \in K_1\}$, where $U \in \mathfrak{A}$. Since, in the proof of Theorem 3.3 of [13, page 160], the restriction that the members of cZ be closed in Z is not used, we may conclude that $c\mathfrak{A}$ induces the Vietoris or finite topology on cZ. Accordingly we can identify $f \in \mathcal{C}_0(Y, Z)$ with the function $f^*: y \to fy \in cZ$ to obtain the equation $\mathcal{C}_0(Y, Z) = C(Y, cZ)$. This identification being understood, we write f for f^* . It turns out that the topology of uniform convergence τ_u on $\mathcal{C}_0(Y, Z)$, as defined by Smithson [22, page 253], is the same as the topology of uniform convergence, in the classical sense, on C(Y, cZ), using the uniformity

 $c\mathfrak{A}$. Consequently, a base for the neighbourhood filter of an element $f \in (\mathcal{C}_0(Y, Z), \tau_u)$ consists of all sets of the form $N_{d,\epsilon}(f) = \{g: d(f(y), g(y)) < \epsilon \text{ for all } y \in Y\}$, where $\epsilon > 0$ and d is a continuous pseudometric on $(cZ, c\mathfrak{A})$.

A subset of a topological space X is called a *zero-set* if it is the inverse image of 0 under some continuous real-valued function on X [8, page 53]. We note that if f is a real-valued continuous function on X, then $\{x \in X: f(x) \ge 0\}$ is a zero-set. Let X, Y be topological spaces and let Π_X : $X \times Y \to X$ be the first projection. Then Π_X is said to be *z-closed* [7] if it maps every zero-set of $X \times Y$ onto a closed subset of X.

3.5. THEOREM. If Z is a uniform space and Π_X : $X \times Y \to X$ is z-closed, then (X, Y, Z, τ_u) satisfies the partial exponential law.

PROOF. Let $f \in \mathcal{C}_0(X \times Y, Z)$, let $x_0 \in X$ and let $N_{d,\epsilon}(\tilde{f}(x_0)) = \{g \in \mathcal{C}_0(Y, Z): d(\tilde{f}(x_0)(y), g(y)) < \epsilon$ for all $y \in Y\}$, where $\epsilon > 0$ and d is a continuous pseudometric on $(cZ, c^{\mathfrak{A}})$. It must be shown that $\tilde{f}^{-1}(N_{d,\epsilon}(\tilde{f}(x_0)))$ is a neighbourhood of x_0 . Let $\Gamma_f \colon X \times Y \to Y \times cZ$ be defined by the formula $\Gamma_f(x, y) = (y, f(x, y))$. Since $\Pi_{cZ} \circ \Gamma_f = f$ and $\Pi_Y \circ \Gamma_f$ is the second projection on $X \times Y$, Γ_f is continuous. Let $S = \{(y, K) \in Y \times Z: d(f(x_0, y), K) \ge \epsilon\}$. Then $\Gamma_f^{-1}(S) = \{(x, y) \in X \times Y: d(f(x_0, y), f(x, y)) \ge \epsilon\}$, so $\Pi_X(\Gamma_f^{-1}(S)) = \{x \in X: d(f(x_0, y), f(x, y)) < \epsilon \text{ for some } y \in Y\}$ and therefore $X - \Pi_X(\Gamma_f^{-1}(S)) = \{x \in X: d(f(x_0, y), f(x, y)) < \epsilon \text{ for all } y \in Y\} = \tilde{f}^{-1}(N_{d,\epsilon}(\tilde{f}(x_0)))$. Since $\Gamma_f^{-1}(S) = \{(x, y) \in X \times Y: d \circ (\tilde{f}(x_0) \times 1_{cZ}) \circ \Gamma_f(x, y) \ge \epsilon\}$, $\Gamma_f^{-1}(S)$ is a zero-set. Then $\Pi_X(\Gamma_f^{-1}(S))$ is a closed set not containing x_0 , so $\tilde{f}^{-1}(N_{d,\epsilon}(\tilde{f}(x_0)))$ is an open set containing x_0 .

By definition, a topological space X is *pseudocompact* if every real-valued continuous function on X is bounded [8, page 67]. It is known that the product of a pseudocompact space by a compact space is pseudocompact [16, page 20].

3.6. THEOREM. If Z is a uniform space and Y is a pseudocompact space, then (Y, Z, τ_u) satisfies the Ascoli theorem.

PROOF. This follows from Theorems 2.1, 3.5 and Theorem 2.5 of [18, page 397].

- 3.7. COROLLARY. Let Y be a pseudocompact space, let Z be a uniform space and let T be a Tychonoff subset of $(Z^{mY})_0$. A subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_u)$ is compact if
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is equicontinuous.

Proof. Same as proof of Corollary 3.4.

4. Converse Ascoli theorems

A topological space X is a k_3 -space if $C_k(X, Y) = C(X, Y)$ for every regular space Y [19, page 195]. Thus a k-space is a k_3 -space but not conversely. In fact, the product of uncountably many copies of the real line, which is not a k-space, is a k_3 -space [19, Theorem 5.6 (i)].

If X is compact, Y is a k_3 -space and Z is regular, then (X, Y, Z, τ_c) satisfies the inverse partial exponential law [15, Theorem 3.4]. From this fact, Theorem 2.2 and Theorem 2 of Smithson [21, page 48], we deduce the following consequence:

- 4.1. THEOREM. If Y is a k_3 -space and Z is regular, then (Y, Z, τ_c) satisfies the converse Ascoli theorem.
- 4.2. COROLLARY. Let Y be a k-space, let Z be a regular space and let T be a Tychonoff subset of $(Z^{mY})_0$. If a subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact, then
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is evenly continuous.

PROOF. By (iii), ω : $(F, \tau_p) \times Y \to Z$ is continuous, therefore $F = \{\omega(f, \cdot): f \in F\}$ is evenly continuous [15, Lemma 4.2].

- 4.3. COROLLARY. Let Y be a k_3 -space, let Z be a regular space and let T be a Tychonoff subset of $(Z^{mY})_0$. If a subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact, then
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F satisfies the condition (G).

PROOF. By (iii), τ_p on F is jointly continuous. Then, by Corollary 10.6 of [14, page 23], F satisfies (G).

- 4.4. COROLLARY. Let Y be a k_3 -space, let Z be a uniform space, and let T be a Tychonoff subset of $(Z^{mY})_0$. If a subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_c)$ is compact, then
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is equicontinuous.

PROOF. By (iii), τ_p on F is jointly continuous. Then, by Lemma 8 of Smithson [22, page 258], F is equicontinuous.

4.5. THEOREM. If Z is a uniform space, then (X, Y, Z, τ_u) satisfies the inverse partial exponential law.

PROOF. Let $f \in (Z^{m(X \times Y)})_0$ be such that the function $\tilde{f}: X \to (\mathcal{C}_0(Y, Z), \tau_u)$ is continuous. Let $(x_0, y_0) \in X \times Y$ and let $\{U_i\}_{1 \le i \le n}$ be a finite sequence of open subsets of Z such that $f(x_0, y_0) \subseteq \bigcup_{i=1}^n U_i$ and $f(x_0, y_0) \cap U_i \ne \emptyset$ for all $i = 1, \ldots, n$. It must be shown that $f^{-1}(\langle U_1, \ldots, U_n \rangle)$ is open in $X \times Y$.

Since $f(x_0, y_0) \in \langle U_1, \dots, U_n \rangle$, there exists $\varepsilon > 0$ and a continuous pseudometric d on $(cZ, c\mathfrak{A})$ such that $\mathfrak{B}_{d,\varepsilon}(f(x_0, y_0)) = \{K \in cZ : d(K, f(x_0, y_0)) < \varepsilon\} \subseteq \langle U_1, \dots, U_n \rangle$. Since $\tilde{f}(x_0)$ is continuous, $W = \tilde{f}(x_0)^{-1}(\mathfrak{B}_{d,\varepsilon/2}(f(x_0, y_0)))$ is a neighbourhood of y_0 . Moreover, since \tilde{f} is continuous, $V = \tilde{f}^{-1}(N_{d,\varepsilon/2}(\tilde{f}(x_0)))$ is a neighbourhood of x_0 . Then $V \times W$ is a neighbourhood of (x_0, y_0) contained in $f^{-1}(\langle U_1, \dots, U_n \rangle)$. In fact, let $(x, y) \in V \times W$. Then $\tilde{f}(x) \in N_{d,\varepsilon/2}(\tilde{f}(x_0))$ and $f(x_0)(y) \in \mathfrak{B}_{d,\varepsilon/2}(f(x_0, y_0))$, that is, $d(f(x, t), f(x_0, t)) < \varepsilon/2$ for all $t \in Y$ and $d(f(x_0, y), f(x_0, y_0)) < \varepsilon/2$. So, in particular, $d(f(x, y), f(x_0, y_0)) < \varepsilon$ and therefore $f(x, y) \in \mathfrak{B}_{d,\varepsilon}(f(x_0, y_0)) \subseteq \langle U_1, \dots, U_n \rangle$.

4.6. THEOREM. If Z is a uniform space, then (Y, Z, τ_u) satisfies the converse Ascoli theorem.

Proof. This follows from Theorems 2.2 and 4.5.

- 4.7. COROLLARY. Let Z be a uniform space and let T be a Tychonoff subset of $(Z^{mY})_0$. If a subset F of $(\mathcal{C}_0(Y, Z) \cap T, \tau_u)$ is compact, then
 - (a) F is g-closed,
 - (b) F is pointwise bounded, and
 - (c) F is equicontinuous.

PROOF. Same as proof of Corollary 4.4.

- 4.8. REMARK. Referring to the equivalence relation on a regular space introduced in [14, page 11], we note that if F^* is closed then $F \subseteq \overline{F} \subseteq F^*$ and therefore F is g-closed; moreover, if F is compact then F^* is closed [14, Theorem 4.1].
- 4.9. REMARK. Corollary 3.2 together with Corollary 4.2 is the Theorem 5.1 of [15], which, in the case $T = Z^{\gamma}$, contains the Ascoli theorem 4.1 of [4, page 635]. This latter generalizes the Ascoli theorems of Kelley-Morse [10, page 236], Bagley-Yang [2, page 704], Noble [18, Corollary 4.4] and Kaul [9, Theorem B].

- 4.10. REMARK. If we take $T = (Z^{mY})_0$ in Corollaries 3.3 and 4.3, we obtain a k_3 -space generalization of Theorem 10.10 of [14, pages 23-24], which in turn contains the function Ascoli theorem of Gale [5, page 304] and the multifunction Ascoli theorem of Mancuso [12, page 470].
- 4.11. REMARK. If we take $T = (Z^{mY})_0$ in Corollaries 3.4 and 4.4 we obtain, because of Theorem 12.2 of [14, page 28], a k_3 -space generalization of Theorem 12.8 of [14, page 31], which in turn contains the function Ascoli theorems of Arens [1, page 491], Myers [17, pages 497-498] and Bagley-Yang [2, page 705], also the multifunction Ascoli theorem of Smithson [22, page 259].
- 4.12. Remark. If we take $T = Z^{\gamma}$, Corollary 3.7 together with Corollary 4.7 generalizes the Ascoli theorem of Noble [18, Corollary 4.3 (i)], which in turn generalizes the Ascoli theorem of Glicksberg [6, page 257].
- 4.13. REMARK. There has recently appeared another definition of even continuity in the space $(Z^{mY})_0$ [20, page 14]. Using a suitable modification of the arguments used in the proofs, it can be shown that this "even continuity" has the properties stated in Lemma 4.1, and, with the additional point-compact condition, has the property stated in Lemma 4.2 of [15]. These properties established, we can deduce, with greater generality, the Ascoli theorem 3.1 of [20, page 150] from Theorems 3.1 and 4.1.

References

- [1] R. Arens, 'A topology for spaces of transformations', Ann. of Math. 47 (1946), 480-495.
- [2] R. W. Bagley and J. S. Yang, 'On k-spaces and function spaces', Proc. Amer. Math. Soc. 17 (1966), 703-705.
- [3] C. Berge, Topological spaces (Macmillan Company, New York, 1965).
- [4] G. Fox and P. Morales, 'A non-Hausdorff Ascoli theorem for k₃-spaces', Proc. Amer. Math. Soc. 39 (1973), 633-636.
- [5] D. Gale, 'Compact sets of functions, and function rings', Proc. Amer. Math. Soc. 1 (1950), 303-308.
- [6] I. Glicksberg, 'Representation of functionals by integrals', Duke Math. J. 19 (1952), 253-282.
- [7] A. W. Hager and S. G. Mrówka, 'Compactness and the projection mapping from a product space', *Notices Amer. Math. Soc.* 12 (1965), 368 (abstract 65T-167).
- [8] E. Hewitt, 'Rings of real-valued continuous functions I', Trans. Amer. Math. Soc. 64 (1948), 45-99.
- [9] S. K. Kaul, 'Compact subsets in function spaces', Canad. Math. Bull. 12 (1969), 461-466.
- [10] J. Kelley, General topology (C. Van Nostrand, New York, 1965).
- [11] N. Levine, 'Generalized closed sets in topology', Rend. Circ. Mat. Palermo Ser. (2) 19 (1970), 89-96.

- [12] V. J. Mancuso, 'An Ascoli theorem for multivalued functions', J. Austral. Math. Soc. 12 (1971), 466-472.
- [13] E. Michael, 'Topologies on spaces of subsets', Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [14] P. Morales, 'Non-Hausdorff Ascoli theory', Dissertationes Math. 119 (1974), 1-37.
- [15] P. Morales, 'A non-Hausdorff multifunction Ascoli theorem for k₃-spaces', Canad. J. Math. 27 (1975), 893-900.
- [16] S. G. Mrówka, 'Compactness and product spaces', Collog. Math. 7 (1959), 19-22.
- [17] S. B. Myers, 'Equicontinuous sets of mappings', Ann. of Math. 47 (1946), 496-502.
- [18] N. Noble, 'Ascoli theorems and the exponential map', Trans. Amer. Math. Soc. 143 (1969), 393-411.
- [19] N. Noble, 'The continuity of functions on Cartesian products', Trans. Amer. Math. Soc. 149 (1970), 187-198.
- [20] H. W. Pu, 'Another Ascoli theorem for multi-valued functions', Bull. Inst. Math. Acad. Sinica 1 (1973), 145-153.
- [21] R. E. Smithson, 'Topologies on sets of relations', J. Natur. Sci. and Math. (Lahore) 11 (1971), 43-50.
- [22] R. E. Smithson, 'Uniform convergence for multifunctions', Pacific J. Math. 39 (1971), 253-259.

Université de Sherbrooke Sherbrooke, Ouébec, Canada