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High-Dimensional Graphical Networks
of Self-Avoiding Walks

Mark Holmes, Antal A. Járai, Akira Sakai and Gordon Slade

Abstract. We use the lace expansion to analyse networks of mutually-avoiding self-avoiding walks,

having the topology of a graph. The networks are defined in terms of spread-out self-avoiding walks

that are permitted to take large steps. We study the asymptotic behaviour of networks in the limit

of widely separated network branch points, and prove Gaussian behaviour for sufficiently spread-out

networks on Z
d in dimensions d > 4.

1 Introduction and Results

1.1 Introduction

A single self-avoiding walk is often used as a model of a linear polymer in a good

solution. Networks of mutually-avoiding self-avoiding walks can be used to model
networks of polymers containing monomers capable of making more than two chem-
ical bonds, leading to branching. The rich critical behaviour of polymer networks has
been studied in the physics literature [2], but is mainly open mathematically.

Recently [5], the lace expansion was used to prove Gaussian behaviour for suffi-
ciently spread-out networks of mutually-avoiding self-avoiding walks on Z

d, for net-
works with the topology of a tree in dimensions d > 4. The results of [5] are in the

limit as the length of the self-avoiding walks comprising the network grow to infinity.
In this paper, we consider networks with the topology of a general graph. We study
the asymptotic behaviour of networks consisting of self-avoiding walks of arbitrary
length, weighted at criticality, in the limit in which the network’s branch points are

fixed at lattice sites that are widely separated. The graph giving the topology of the
network may contain cycles or multiple edges between vertices. Edges joining a ver-
tex to itself (self-lines) are not permitted, as these are not relevant in the limit we
study.

We prove Gaussian behaviour for sufficiently spread-out graphical networks on
Z

d in dimensions d > 4. The proof is based on the lace expansion on a tree [5], but

major modifications are required to extend the expansion from a tree to a general
graph. The proof is also based on the result of [4] that the critical two-point func-
tion for sufficiently spread-out self-avoiding walks on Z

d, with d > 4, decays like a
multiple of |x|2−d as |x| → ∞.
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1.2 Networks

The term graph will be reserved for graphs that arise in the lace expansion. We there-
fore refer to the underlying graph that determines our network as a shape. A shape

ν = (S, E) consists of a finite set S of vertices and a finite set E of directed pairs
e = (e1, e2) of vertices (edges). We allow repeated elements in E (multiple lines) but
do not allow e ∈ E with e2 = e1 (no self-lines). We do not assume that ν is connected;
our methods and results apply whether ν is connected or not. Given a shape ν, we

call one of its vertices the root and label it by 0. The remaining vertices are labelled in
a fixed but arbitrary manner as 1, . . . , |S| − 1. We also label the edges in a fixed but
arbitrary manner, as 1, . . . , |E|.

For ~n = (n1, . . . , n|E|) ∈ N
|E|, we let N = N(ν,~n) denote the subdivision of ν

obtained by inserting ne − 1 vertices on each e ∈ E. We refer to the inserted vertices
as path points, and to the remaining vertices of N, which are identical to the original
vertices in S, as branch points. We denote the degree of a branch point i by ∆i . We

write S for the set of vertices of N and E for the set of edges of N, so that N = (S,E).

A network is a mapping ω : S → Z
d (although we occasionally refer also to N as a

network). The relation between the shape ν, its subdivision N, and the embedding

into Z
d by ω is indicated in Figure 1. We require that ω maps the root 0 to the origin

in Z
d. At this point, we do not assume that ω is one-to-one. To each embedding

we associate a weight. This weight is defined in terms of a parameter z > 0, and a
function D : Z

d → [0, 1] of the form given in Definition 1.1 below, by

(1.1) Wz(ω) =

∏

e∈E

zD
(

ω(e2) − ω(e1)
)

.

In the degenerate case of a network consisting of a single vertex and no edges, we
interpret the empty product in (1.1) as 1. Definition 1.1 involves a positive param-

eter L, which serves to spread out the embeddings, and which we take to be large,
providing a small parameter L−1.

Definition 1.1 Let h be a non-negative bounded function on R
d which is piece-

wise continuous, invariant under the lattice symmetries of reflection in coordinate
hyperplanes and rotation by 90◦, supported in [−1, 1]d, and normalised so that
∫

[−1,1]d h(x) ddx = 1. Then for large L we define

(1.2) D(x) =
h(x/L)

∑

x∈Zd h(x/L)
.

Since
∑

x∈Zd h(x/L) ∼ Ld (using a Riemann sum approximation to
∫

[−1,1]d h(x) ddx),
the assumption that L is large ensures that the denominator of (1.2) is nonzero. We
also define σ2

=
∑

x |x|
2D(x).

The sum
∑

x |x|
pD(x) can be regarded as a Riemann sum, and is asymptotic to a

multiple of Lp for p > 0. In particular, σ and L are comparable. A basic example
obeying the conditions of Definition 1.1 is given by the function h(x) = 2−d for
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x ∈ [−1, 1]d, h(x) = 0 otherwise, for which D(x) = (2L + 1)−d for x ∈ [−L, L]d ∩
Z

d, D(x) = 0 otherwise. For this example, Wz(ω) is either [z(2L + 1)−d]|E| or 0,

depending on whether or not ‖ω(e2)−ω(e1)‖∞ ≤ L for every edge e = (e1, e2) ∈ E.
We refer to an undirected pair {s, t} of distinct vertices in S as a bond, and write

simply st for {s, t}. Let BN denote the set of bonds of N. Given b = st ∈ BN and an
embedding ω, let

(1.3) Ub(ω) = Ust (ω) = −1[ω(s)=ω(t)],

where 1[·] is the indicator function. The product
∏

b∈BN
[1 + Ub(ω)] is nonzero if

and only if the embedding ω is one-to-one. In other words, this product is nonzero
precisely when the network of embedded walks specified by ω is a self-avoiding net-
work.

ν

0 1

2

3

1

2

3 4

5

N(ν,~n)

0 1

2

3

0 v1

v2

v3

Figure 1: A shape ν and subdivision N(ν,~n) with~n = (8, 2, 6, 4, 4), and a nearest-neighbour

self-avoiding network in ΩN(~x) with ~x =
(

(2, 0), (2, 0), (1, 3), (−1, 3), (2, 2)
)

; see (1.4)–

(1.5).

Given N and an embedding ω, we denote the location of the embedded branch
points by

(1.4) vi = ω(i) (i ∈ S).

Given ~x = (x1, . . . , x|E|) ∈ Z
d|E|, we denote by ΩN(~x) the set of embeddings such

that

(1.5) ve2
− ve1

= xe (e = (e1, e2) ∈ E).

Note that~x uniquely determines~v = (v0, . . . , v|S|−1). Our object of study is

(1.6) Gν(~x) =

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∏

b∈BN

[1 + Ub(ω)],
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where zc is chosen to be the critical value of z. The critical value is defined as follows.
Let ν1 denote the shape consisting of a single edge joining two vertices. The self-

avoiding walk two-point function is defined by

(1.7) G(x) = δ0,x + Gν1
(x),

with Gν1
(0) = 0. With zc replaced by z in the definition of Gν1

(x) in (1.6)–(1.7), it is
well-known that there is a critical value zc such that

∑

x∈Zd G(x) converges for z < zc

and diverges for z ≥ zc (see, e.g., [4]). We use this value zc in (1.6).
The asymptotic behaviour of G(x) was determined in [4], for d > 4 and L suffi-

ciently large. (For a related result for nearest-neighbour self-avoiding walks in very

high dimensions, see [3].) To state the result of [4], we define

(1.8) ε2 = 2(d − 4) ∧ 2.

For d ≥ 5, ε2 is simply equal to 2. However, it is instructive to keep the d-dependence
explicit in (1.8) to reveal the critical nature of d = 4. Theorem 1.2 presumably holds

with α = 0, but it has been proved only for α > 0. We think of α as small.

Theorem 1.2 ([4]) Let d > 4 and fix any α > 0. There is a finite constant A =

A(d, L), and an L0 = L0(d, α), such that for L ≥ L0,

(1.9) G(x) =
A

σ2(|x| ∨ 1)d−2

[

1 + O
( 1

(|x| ∨ 1)ε2−α

)]

.

The amplitude A obeys A =
1
2
dΓ( d

2
− 1)π−d/2 + O(L−2+α). In addition,

(1.10) G(x) ≤ O
( 1

L2−α(|x| ∨ 1)d−2

)

(x 6= 0).

The constant in the error term in (1.9) depends on α and L, while the constant in (1.10)
depends on α but not on L.

In this paper, we extend Theorem 1.2 to general networks.

1.3 Main Result

Our main result is the following theorem.

Theorem 1.3 Let d > 4. Fix ν = (S, E) and ε1 < (d − 4) ∧ 1. There exist L0 =

L0(d, ν) and constants V∆ = V∆(d, L) such that for L ≥ L0,

(1.11) Gν(~x) =

[

∏

i∈S

V∆i

]

∏

e∈E

A

σ2(|xe| ∨ 1)d−2

[

1 +
∑

i, j∈S:i 6= j

O
( 1

(|vi − v j | ∨ 1)ε1

)]

,

where~v and~x are related by (1.5). Constants in the error term depend on L, d, ν and ε1.
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The constants V∆ appearing in the theorem will be referred to as vertex factors,
and are identical to the vertex factors in [5]. By definition, V1 = 1. It is proved in [5]

that V∆ = 1 + O(L−d) for ∆ ≥ 2. Theorem 1.3 states that the leading asymptotic
behaviour of the network is that of a network of independent self-avoiding walks,
apart from the vertex factors. Each vertex factor takes into account the local effect
of the mutual avoidance of the walks that meet at that vertex. The mutual avoidance

diminishes the number of allowed configurations, and this is reflected by the fact that
there is a positive constant c∆ such that

(1.12) V∆ ≤ 1 − c∆L−d (∆ ≥ 2).

Although not explicitly stated in [5], (1.12) follows easily from the results of [5].
Theorem 1.3 gives the leading behaviour of Gν(~x) in the limit where the embedded

network branch points are widely separated, i.e., in the limit mini, j∈S |vi − v j | → ∞.

Note that each xe is equal to some vi − v j , so this limit requires |xe| → ∞ for all
e, in particular. On the other hand, one cannot hope to exclude terms with non-
adjacent i, j ∈ S from the error term. This is because if |vi − v j | is small, the effect of
the interaction between the walks incident on vi with those incident on v j does not

decouple into a product of V∆i
and V∆ j

.
Our proof of the theorem is restricted to large L, although we expect the result to

remain true for all L ≥ 1 (subject to a degree restriction on the network to allow for
a one-to-one embedding). We have made no attempt to optimise the error estimate

in (1.11), neither with respect to the power of |vi − v j | nor the L-dependence. Theo-
rem 1.3 is a new result also for networks with the shape of a tree, as the asymptotics
in (1.11) involve a different limit than the one studied in [5].

The remainder of the paper is devoted to the proof of Theorem 1.3. We begin the

proof in Section 2, where the graphical expansion leading to the lace expansion is
described and the proof of Theorem 1.3 is reduced to several propositions.

2 The Expansion and Proof of Theorem 1.3

In this section, we perform an expansion of the factor
∏

b∈BN
[1 + Ub] in (1.6). Due

to the possibility of cycles in the network, new difficulties arise that have not been en-
countered in previous work using the lace expansion. These difficulties are described

and overcome in Section 2.1. The expansion is then used in Section 2.2 to rewrite
Gν(~x) as a sum of a main term plus error terms. In Section 2.3, we state several
propositions and use these propositions to prove Theorem 1.3.

2.1 Classification of Bonds

We refer to a set of bonds as a graph. For a network with the shape of a tree, each bond
st determines an interval, namely the unique path in the tree joining s and t . In the

lace expansion, these intervals are used to define a notion of connectivity for graphs.
However, if a shape contains a cycle, then a bond st with both s and t on the cycle
does not determine a unique interval joining s and t . This can be seen, for example,
in the “bubble” shape of Figure 2. There are some bonds to which it will turn out to
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be unnecessary to associate an interval. But for many bonds we will need to associate
an interval, and the choice of interval will be made according to the embedding ω of

the network.

0 1

s

t

Figure 2: The solid lines represent the bubble shape ν consisting of vertices 0, 1 joined by a pair

of edges (0, 1), (0, 1). The dotted line represents a bond st on a subdivision N of ν. The bond

st does not determine a unique interval on N.

We describe this together with a classification of bonds that depends on the em-
bedding ω. Fix ν = (S, E), ~x = (x1, . . . , x|E|) ∈ Z

d|E|, and ω ∈ ΩN(~x). We denote

by T◦
e the set of path points of N that were inserted on the edge e = (e1, e2) of ν, and

define Te = T◦
e ∪ {e1, e2}. For w, x ∈ Z

d, let

(2.1) Bw(x) = {y ∈ Z
d : |y − w| ≤ 1

3
|x|}, B(x) = B0(x).

A vertex u of N is said to be near a branch point i if there is an edge e incident on i

such that u ∈ T◦
e ∪ {i} and ω(u) ∈ Bvi

(xe). We classify bonds as follows:

1. For e ∈ E, we denote by HN,e the set of bonds st with s ∈ Te, t ∈ T◦
e . Note that

HN,e is independent of ω. Let HN = ˙⋃
e∈E HN,e. To st ∈ HN,e, we associate the

interval consisting of the vertices in the path from s to t in Te, excluding s and t .

2. For i ∈ S, we denote by VN,i = VN,i(ω) the set of bonds st such that s and t are
both near i, with s ∈ T◦

e , t ∈ T◦
e ′ for two different edges e, e ′ incident on i. Let

VN = ˙⋃
i∈S VN,i . To st ∈ VN,i , we associate the interval consisting of the vertices

in the path from s to t (excluding s and t) which includes no branch point except i.

3. Let RN = RN(ω) = BN \ (HN ∪̇ VN).

Note that a bond in HN ∪ VN either has both endpoints on the same branch Te, or
on adjacent branches. The classification is depicted in Figure 3.

Given ω and~x, the above classification partitions BN into the disjoint union

(2.2) BN = VN ∪̇ HN ∪̇ RN.

Therefore,

(2.3)
∏

b∈BN

[1+Ub] =

∏

b∈VN∪HN

[1+Ub]−
[

∏

b∈VN∪HN

[1+Ub]
][

1−
∏

b∈RN

[1+Ub]
]

.
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0 1 2 3

b1 b2

b3

b4

Figure 3: The solid lines represent a shape with branch points 0, 1, 2, 3. The dotted lines repre-

sent bonds on a subdivision N of the shape. The bonds depicted are classified as: b1, b2 ∈ HN;

b3 ∈ RN; b4 ∈ VN if its endpoints are both near 1 or both near 2, otherwise b4 ∈ RN.

We define ψν(~x) by replacing
∏

b∈BN
[1 + Ub] in (1.6) with the second term of the

right side of (2.3), i.e.,
(2.4)

ψν(~x) = −
∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

[

∏

b∈VN∪HN

[1 + Ub(ω)]
][

1 −
∏

b∈RN

[1 + Ub(ω)]
]

.

This will turn out to be an error term.

To gain some insight into the classification of bonds, consider ψν(~x) when ν has

the bubble shape of Figure 2 and~x = (x, x), so that one branch point is embedded at
the origin of Z

d and the other is embedded at x. The final factor of (2.4) is nonzero
only if there is a bond b = {s, t} ∈ RN such that ω(s) = ω(t). This implies an
intersection as indicated in Figure 4. When the intersection takes place outside the

balls B(x) and Bx(x), as required by RN, decay of the form |x|−(3d−8) can be proved
(see Proposition 2.4 below). This is smaller than the leading behaviour |x|−(2d−4)

given in Theorem 1.3, by a factor |x|−(d−4). On the other hand, when an intersection
takes place close to 0 or x, we have a contribution to the vertex factor at that vertex

and the same behaviour as the leading term.

0

w

x

w ∈ B(x)

0

w

x

w ∈ Bx(x)

0

w

x

w /∈ B(x) ∪ Bx(x)

Figure 4: The bottom configuration contributes to an error term, whereas the other two con-

tribute to the leading term.
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2.2 Expansion and Extraction of the Main Term

In this section, we extract the main contribution to Gν(~x) and obtain a representation
for it. This requires the notion of a connected graph, which we will define for graphs

consisting of bonds in VN ∪ HN.

Definition 2.1 Let ω ∈ ΩN(~x) be fixed.

1. Let GN = GN(ω) denote the set of graphs on N consisting of bonds in VN ∪HN.
2. A bond b ∈ VN ∪ HN is said to cover all vertices in the interval associated to b as

in Section 2.1. In addition, if a vertex of b is identical to a leaf of ν, we say that b

covers that leaf. Given a graph Γ ∈ GN, a path point u is said to be fully covered by
Γ if there is a bond b ∈ Γ covering u. A branch point i is said to be fully covered

by Γ if there are bonds s1t1, . . . , sktk in Γ such that each one covers i and such that
each Te incident on i has at least one vertex among s1, t1, . . . , sk, tk. This requires

k ≥ d∆i

2
e. We say that Γ is a connected graph on N if every vertex of N is fully

covered by Γ.
3. Let A be a connected subnetwork of N. Given Γ ∈ GN, we denote by Γ|A the

restriction of Γ to A, i.e., Γ|A consists of bonds b ∈ Γ such that the endvertices of

b and all vertices covered by b are in the set of vertices of A.

Let S0 ⊂ S denote the set of branch points that are not leaves. If S0 = ∅, then ν is a
single edge or a union of disjoint edges, and Theorem 1.3 is implied by Theorem 1.2.
We therefore restrict attention to shapes with S0 nonempty.

Expanding the first term of (2.3) gives

(2.5)
∏

b∈VN∪HN

[1 + Ub] =

∑

Γ∈GN

∏

b∈Γ

Ub,

where the empty product is 1. Given a graph Γ ∈ GN and a branch point i ∈ S0, we
denote by Ai = Ai(Γ) the largest connected subnetwork of N that includes i (not
as a leaf of Ai), such that Γ|Ai

is a connected graph on Ai . If Γ does not contain a
bond that covers i, then we set Ai = {i}. We define Gmain

N
= Gmain

N
(ω) to be the set of

graphs in GN such that no Ai contains more than one element of S0, except possibly
as a leaf. Let Gerr

N = GN \ Gmain
N . See Figure 5. Then

(2.6)
∏

b∈VN∪HN

[1 + Ub] =

∑

Γ∈Gmain
N

∏

b∈Γ

Ub +
∑

Γ∈Gerr
N

∏

b∈Γ

Ub.

We define Mν(~x) and ϕν(~x) by

Mν(~x) =

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∑

Γ∈Gmain
N

∏

b∈Γ

Ub(ω),(2.7)

ϕν(~x) =

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∑

Γ∈Gerr
N

∏

b∈Γ

Ub(ω).(2.8)
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0
1

2

3

A0 6= A1

0
1

2

3

A0 = A1

Figure 5: Contributions to Gmain
N and Gerr

N , using the convention that a bond is drawn to cover

the interval on its concave side. The subnetworks A0 and A1 are indicated in bold.

Therefore, recalling (2.3)–(2.4) and (1.6),

(2.9) Gν(~x) = Mν(~x) + ϕν(~x) + ψν(~x).

The main term in (2.9) is Mν(~x), and we now analyse this term further.

Let τ∆ denote the star shape consisting of a single vertex of degree ∆ (the root)

joined to ∆ leaves by ∆ edges. In particular, τ0 consists of a single vertex and no
edges. Given Γ ∈ Gmain

N , to each branch point i ∈ S0 there corresponds a star-shaped

subnetwork Ai , as described above. We denote the leaves of Ai by a(i)
1 , . . . , a

(i)
∆i

, whose

ordering obeys the original ordering of edges in E. Each a(i)
k may coincide with i.

However, Ai cannot have degree 1 at i, by definition. Thus Ai is star shaped of degree
∆

′
i for some ∆

′
i ∈ {0, 2, 3, . . . ,∆i}. For e = (e1, e2) ∈ E, let Ie = Ie(Γ) denote the

interval on Te between Ae1
and Ae2

, including the leaves of Ae1
and Ae2

on Te. See
Figure 6. Then

(2.10)
∑

Γ∈Gmain
N

∏

b∈Γ

Ub =

∑

Γ∈Gmain
N

[

∏

i∈S0

[

∏

b∈Γ|Ai

Ub

]

]

∏

e∈E

[

∏

b∈Γ|Ie

Ub

]

.

In (2.10), we isolate the connected component of Γ around each vertex in S0. This is
different than the approach of [5], where a connected component of Γ is isolated at
only one branch point.

0 1

a(0)
1

a(0)
2

a(1)
1

a(1)
2

A0

I1

I2

A1

Figure 6: For i ∈ {0, 1}, the subnetwork Ai associated to i has leaves a(i)
1 and a(i)

2 . The interval

Ie connects a(0)
e to a(1)

e . We use the convention that a bond is drawn to cover the interval on its

concave side.
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Next, we introduce concepts and notation that will be used to analyse a single
connected component Γ|Ai

. Let A be a network with star shape τ of degree at most

∆, and let 0 denote the root. We regard A as a star-shaped network of degree ∆ with
some branches possibly having length zero. Since A is a tree, there is no possible
ambiguity in associating an interval to a bond, and hence in defining the notion
of a connected graph on A. This natural notion of connectivity is the same as in

Definition 2.1, but it applies to a larger class of bonds (all bonds) without reference
to the notion of nearness. With this natural notion of connectivity, we define Gconn

A

to be the set of connected graphs on A consisting of bonds in BA.
Given ȳ ∈ Z

d∆, fixω ∈ ΩA( ȳ) (with yi = 0 if branch i has zero length), so that the

leaves of A are embedded at the components y j ∈ Z
d of ȳ. In our application, these

y j represent the locations to which the vertices a(l)
j defined above are embedded, for

some specific l ∈ S0. We must also keep track of the vector~x of displacements of the

embedding of our original network N. These determine the notion of nearness that
was used in defining the set GN of graphs on the network N, and therefore the notion
of nearness is implicitly present in defining a connected component Ai . With this in
mind, given x̄ ∈ Z

d∆, we let ṼA,x̄ = ṼA,x̄(ω) denote the set of bonds st , s, t 6= 0, such

that s ∈ T j , t ∈ T j ′ for distinct edges j, j ′ of τ and such that both s, t are near 0 in

terms of x̄, i.e., ω(s) ∈ B(x j) and ω(t) ∈ B(x j ′). Note that ṼA,x̄ depends on x̄ only via
the absolute value of the components of x̄, as these absolute values define the notion
of nearness. We define G̃conn

A,x̄ = G̃conn
A,x̄ (ω) ⊂ Gconn

A
to be the set of connected graphs

on A consisting of bonds in ṼA,x̄ ∪̇ HA.

We also define

JA =

∑

Γ∈Gconn
A

∏

b∈Γ

Ub, J̃A,x̄ =

∑

Γ∈G̃conn
A,x̄

∏

b∈Γ

Ub,(2.11)

π(∆)( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω) JA(ω), π̃(∆)

x̄ ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω) J̃A,x̄(ω),

(2.12)

where the j-th component of m̄ is the length of the j-th branch of A, and Z+ =

N ∪{0}. The term in (2.12) due to m̄ = 0̄ is δ0̄, ȳ , and other terms are zero unless two
or more components of m̄ are strictly positive.

Given ν = (S, E), i ∈ S0 and ~x = (x1, . . . , x|E|) ∈ Z
d|E|, let x̄(i)

= (x(i)
1 , . . . , x

(i)
∆i

)

be the projection of~x on Z
d∆i defined by x(i)

j = xe, where e ∈ E is the j-th edge of ν

incident on i. Let |∆| =
∑

i∈S0
∆i .

Proposition 2.2 Using the above notation, and assuming that (2.13) and the sum

defining π̃(∆)
x̄ ( ȳ) in (2.12) both converge absolutely,

(2.13) Mν(~x) =

∑

~y∈Zd|∆|

[

∏

i∈S0

π̃(∆i )
x̄(i) ( ȳ(i))

]

∏

e∈E

G(xe + δye),

where ~y = ( ȳ(1), . . . , ȳ(|S0|)) and δye = y(e2)
l − y(e1)

k , with e the k-th edge of ν incident

on e1 and the l-th edge of ν incident on e2.
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Proof By (2.7) and (2.10),
(2.14)

Mν(~x) =

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∑

Γ∈Gmain
N

[

∏

i∈S0

[

∏

b∈Γ|Ai

Ub(ω)
]

]

∏

e∈E

[

∏

b∈Γ|Ie

Ub(ω)
]

.

We reorganise the summations by fixing the displacements y(i)
k = ω(a(i)

k ) − ω(i) for

each Ai , and then summing over ~y = ( ȳ(1), . . . , ȳ(|S0|)) ∈ Z
d|∆|. This is allowed by

our absolute convergence assumption. Thus (2.14) is equal to

(2.15)
∑

~y∈Zd|∆|

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∑

Γ∈G
main
N

:

ω(a(i)
k

)=ω(i)+y(i)
k

(all i,k)

[

∏

i∈S0

[

∏

b∈Γ|Ai

Ub(ω)
]

]

∏

e∈E

[

∏

b∈Γ|Ie

Ub(ω)
]

.

We may now perform the summations over Γ|Ai
and Γ|Ie

independently to see that
(2.15) is equal to

∑

~y∈Zd|∆|

[

∏

i∈S0

[

∑

m̄∈Z
∆i
+

∑

ω∈ΩAi
( ȳ(i))

Wzc
(ω)

∑

Γ∈G̃conn

Ai ,x̄
(i)

∏

b∈Γ

Ub(ω)
]

]

×
∏

e∈E

[

∑

l∈Z+

∑

ω∈ΩI(xe+δye)

Wzc
(ω)

∑

Γ∈GI

∏

b∈Γ

Ub(ω)
]

,

(2.16)

where Ai and I respectively denote a star-shaped network and an interval, with
|I| = l. By (2.11) and (2.12), the quantity in the product over i is π̃(∆i )

x̄(i) ( ȳ(i)). Since
∑

Γ∈GI

∏

b∈Γ
Ub =

∏

b∈BI
[1 +Ub], the quantity in the product over e is G(xe +δye).

2.3 Proof of Theorem 1.3 Assuming Several Propositions

In this section, we state several propositions and show that they imply Theorem 1.3.
The propositions are proved in Sections 4–9. Each of the propositions requires as
hypotheses that d > 4 and L ≥ L0(d, ν) for some large L0, and we do not repeat these

hypotheses below.
For x̄ = (x1, . . . , x∆) ∈ Z

d∆, we define a multidimensional version of the ball
defined in (2.1) by

(2.17) B(x̄) =

{

ȳ ∈ Z
d∆ : |yk| ≤

1

3
|xk| (k ∈ {1, . . . ,∆})

}

.

We denote summation over ȳ(i) ∈ B(x̄(i)) for all i ∈ S0 by
∑

~y∈B(~x). For x ∈ Z
d, we

will use the notation

(2.18) |||x||| = |x| ∨ 1.

Although (2.18) does not define a norm on R
d, it does obey the triangle inequality.

The following proposition gives bounds on π̃(∆)
x̄ ( ȳ).
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Proposition 2.3 There exists C = C(d,∆) <∞ such that

(2.19)
∑

ȳ∈Zd∆ :ye=y

|π̃(∆)
x̄ ( ȳ)| ≤

C

|||y|||2d−4
(e ∈ {1, . . . ,∆}, x̄ ∈ Z

d∆).

The bound (2.19) also holds when π̃(∆)
x̄ ( ȳ) is replaced by π(∆)( ȳ), and when JA and

J̃A,x̄ are replaced by their absolute values in (2.12). In addition,

∑

ȳ∈Zd∆

|π̃(∆)
x̄ ( ȳ)|

∆
∏

e=1

1

|||ye − we|||d−2
≤ C

∆
∏

e=1

1

|||we|||d−2
(w̄, x̄ ∈ Z

d∆),(2.20)

∑

ȳ /∈B(x̄)

|π̃(∆)
x̄ ( ȳ)|

∆
∏

e=1

1

|||ye − xe|||d−2
≤ C

[ ∆
∏

e=1

1

|||xe|||d−2

]

∑

e∈E

1

|||xe|||d−4
(x̄ ∈ Z

d∆).

(2.21)

For ∆ ≥ 2, we define

(2.22) V∆ =

∑

ȳ∈Zd∆

π(∆)( ȳ), Ṽ in
∆,x̄ =

∑

ȳ∈B(x̄)

π̃(∆)
x̄ ( ȳ),

and V1 = Ṽ in
1,x̄ = 1. By (2.19) and the remark following (2.19), the series defining

Ṽ in
∆,x̄ and V∆ converge absolutely. Also, the absolute convergence in (2.12) required

as a hypothesis in Proposition 2.2 follows. It was shown in [5] that V∆ = 1 + O(L−d)

for every ∆ ≥ 2, and we will give an alternate proof of this fact in Section 6.
The following five propositions will be used to prove Theorem 1.3.

Proposition 2.4 There exists C = C(d, ν) <∞ such that

(2.23) |ψν(~x)| ≤ C

[

∏

e∈E

1

|||xe|||d−2

]

∑

i, j∈S:i 6= j

1

|||vi − v j |||d−4
(~x ∈ Z

d|E|).

Proposition 2.5 Fix ε1 < (d − 4) ∧ 1. There exists C = C(d, ν, ε1) <∞ such that

∑

~y∈B(~x)

[

∏

i∈S0

|π̃(∆i )
x̄(i) ( ȳ(i))|

]

∑

Ē⊂E:Ē 6=∅

[

∏

e∈E\Ē

G(xe)
]

∏

e∈Ē

|G(xe + δye) − G(xe)|

≤ C

[

∏

e∈E

1

|||xe|||d−2

]

∑

e∈E

1

|||xe|||ε1
(~x ∈ Z

d|E|).

(2.24)

Proposition 2.6 There exists C = C(d, ν) <∞ such that

∑

~y /∈B(~x)

[

∏

i∈S0

|π̃(∆i )
x̄(i) ( ȳ(i))|

]

∏

e∈E

G(xe + δye)

≤ C

[

∏

e∈E

1

|||xe|||d−2

]

∑

e∈E

1

|||xe|||d−4
(~x ∈ Z

d|E|).

(2.25)
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Proposition 2.7 Let x̄ = (x1, . . . , x∆). There exists C = C(d,∆) <∞ such that

(2.26) |V∆ − Ṽ in
∆,x̄| ≤ C

∆
∑

e=1

1

|||xe|||d−4
.

Proposition 2.8 There exists C = C(d, ν) <∞ such that

(2.27) |ϕν(~x)| ≤ C

[

∏

e∈E

1

|||xe|||d−2

]

∑

e∈E

1

|||xe|||2(d−4)
(~x ∈ Z

d|E|).

Propositions 2.4–2.6 are proved in Section 4, using Proposition 2.3 in the proofs of

Propositions 2.5–2.6. Proposition 2.3 is proved in Sections 6–7, using the notion of
lace introduced in Section 5. Finally, Propositions 2.7 and 2.8 are proved in Sections 8
and 9, respectively.

Proof of Theorem 1.3 assuming Propositions 2.3–2.8 Recall the decomposition of
Gν(~x) given in (2.9). By Propositions 2.4 and 2.8, ψν(~x) and ϕν(~x) contribute to the

error term in (1.11). By Proposition 2.6, the contribution to Mν(~x) in (2.13) due
to the summation over ~y /∈ B(~x) is also an error term. The remaining term can be
written as

(2.28)
∑

~y∈B(~x)

[

∏

i∈S0

π̃(∆i )
x̄(i) ( ȳ(i))

]

∏

e∈E

[

G(xe) + [G(xe + δye) − G(xe)]
]

.

We expand the product over e in (2.28). By Proposition 2.5, the contribution from
terms in which one or more factors [G(xe + δye)−G(xe)] occur is an error term. The

remaining term is equal to
(2.29)

∏

i∈S0

Ṽ in
∆i ,x̄(i)

∏

e∈E

G(xe) =

[

∏

i∈S0

V∆i

]

∏

e∈E

G(xe) −
[

∏

i∈S0

V∆i
−

∏

i∈S0

Ṽ in
∆i ,x̄(i)

]

∏

e∈E

G(xe).

By Theorem 1.2, the first term in the right side of (2.29) gives the desired leading
asymptotics of Gν(~x). Using a telescoping representation,

(2.30)
∏

i∈S0

V∆i
−

∏

i∈S0

Ṽ in
∆i ,x̄(i) =

|S0|
∑

j=1

[

j−1
∏

i=1

Ṽ in
∆i ,x̄(i)

]

[V∆ j
− Ṽ in

∆ j ,x̄( j) ]
[

|S0|
∏

i= j+1

V∆i

]

(with empty products equal to 1). By Proposition 2.7, and using the bounds on
Ṽ in

∆ j ,x̄( j) and V∆ j
that follow from Proposition 2.3, the second term on the right side

of (2.29) is therefore also an error term. The above estimates also show that (2.13)
converges absolutely.
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3 Convolution Bounds

We will make frequent use of the following elementary convolution lemma, whose
bounds are depicted diagrammatically in Figure 7.

Lemma 3.1 The following bounds hold for all z, z1, z2, z3, z4 ∈ Z
d. For a ≥ b > 0,

there exists C = C(a, b, d) <∞ such that

(3.1)
∑

w∈Zd

1

|||z − w|||a
1

|||w|||b
≤

{

C|||z|||−b (a > d)

C|||z|||d−a−b (a < d < a + b).

For d > 4, there exists C = C(d) <∞ such that

∑

w∈Zd

1

|||z1 − w|||2(d−2)

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2

≤ C
1

|||z2 − z1|||d−2

1

|||z3 − z1|||d−2
,

(3.2)

∑

w∈Zd

1

|||z1 − w|||d−2

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2

≤ C
1

|||z1 − z2|||d−2

∑

i 6= j

1

|||zi − z j |||d−4
,

(3.3)

∑

w∈Zd

1

|||z1 − w|||d−2

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2

1

|||z4 − w|||d−2

≤ C
1

|||z1 − z2|||d−2

1

|||z3 − z4|||d−2

∑

i 6= j

1

|||zi − z j |||d−4
.

(3.4)

Proof The bound (3.1) is proved in [4, Proposition 1.7 (i)]. The bound (3.2)
follows from [4, (4.17)], and is also a consequence of the special case z1 = z3 of
(3.4). For (3.3), note that for any w either |||z1 − w||| ≥ 1

2
|||z1 − z2||| or |||z2 − w||| ≥

1
2
|||z1 − z2|||. Thus the left side of (3.3) is bounded by

(3.5)
2d−2

|||z1 − z2|||d−2

∑

w∈Zd

( 1

|||z1 − w|||d−2
+

1

|||z2 − w|||d−2

) 1

|||z3 − w|||d−2
,

and (3.3) follows from (3.1) with a = b = d − 2. For (3.4), assume first that

(3.6) |||z1 − w||| ≥ 1
2
|||z1 − z2|||, |||z3 − w||| ≥ 1

2
|||z3 − z4|||.

The contribution to the left side of (3.4) from this case is bounded by

(3.7)
22(d−2)

|||z1 − z2|||d−2 |||z3 − z4|||d−2

∑

w

1

|||z2 − w|||d−2

1

|||z4 − w|||d−2
.
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(a)

0 z ≤ 0 z

(b)

z
z

z
1

2

3

≤ z
z

z
1

2

3

(c)

z
z

z
1

2

3

≤ z
z

z
1

2

3

(d)
z

z

2

4

z

z3

1
≤

z

z

2

4

z

z3

1

Figure 7: Diagrammatic depiction of (3.1)–(3.4) in (a)–(d) respectively. A diagram line from

w to z represents |||w − z|||2−d, and the unlabelled vertex w is summed over Z
d. For (3.1), we

take a = 2d − 4 > d and b = d − 2. Factors decaying like |||zi − z j |||
4−d in (3.3)–(3.4) are not

shown.

Applying (3.1), this gives a bound of the desired form. There are three similar cases,
where one or both of the inequalities in (3.6) is changed to |||z2 − w||| ≥ 1

2
|||z1 − z2|||

or |||z4 − w||| ≥ 1
2
|||z3 − z4|||, respectively.

4 Proof of Propositions 2.4–2.6

We prove Propositions 2.4–2.6 in Sections 4.1–4.3 respectively. In the remainder of

the paper, we use c to denote a finite positive constant which may depend on d, ε1 and
the shape ν of the network, but whose exact value is unimportant and may change
from line to line.

4.1 Proof of Proposition 2.4

Recall the definition of ψν(~x) in (2.4). For e, e ′ ∈ E, we denote by R
e,e ′

N
the set of

bonds st ∈ RN such that s ∈ Te and t ∈ Te ′ . If the indicator function

1 −
∏

b∈RN

[1 + Ub]

equals 1, then there exists at least one R
e,e ′

N
such that

1 −
∏

b∈R
e,e ′

N

[1 + Ub] = 1.
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Therefore

(4.1) 1 −
∏

b∈RN

[1 + Ub] ≤
∑

e,e ′∈E

[

1 −
∏

b∈R
e,e ′

N

[1 + Ub]
]

.

Using 1 + Ub ≤ 1 to estimate the product over VN in (2.4), we obtain
(4.2)

|ψν(~x)| ≤
∑

e,e ′∈E

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

[

∏

b∈HN

[1 + Ub(ω)]
][

1 −
∏

b∈R
e,e ′

N

[1 + Ub(ω)]
]

.

The factor
∏

b∈HN
[1 +Ub] equals 1 if and only if the embedded path correspond-

ing to each edge of ν is a self-avoiding walk. When e = e ′ = (e1, e2), the only

bond in R
e,e
N

is the bond e1e2, and hence 1 −
∏

b∈R
e,e
N

[1 + Ub] is equal to −Ue1e2
=

1[ω(e1)=ω(e2)] = 1[ve1
=ve2

]. This does not contribute to the behavior of ψν(~x) in the
limit we are concerned with, in which |ve1

− ve2
| → ∞. We may therefore restrict the

summation over e, e ′ in (4.2) to e 6= e ′. When e 6= e ′, the factor 1−
∏

b∈R
e,e ′

N

[1 + Ub]

equals 1 only when the embedded path from ve1
to ve2

intersects the embedded path

from ve ′1
to ve ′2

at some w ∈ Z
d. Moreover, by definition of RN, this w must lie in the

set Re,e ′ , defined below, and hence the right side of (4.2) is bounded above by

(4.3)
∑

e,e ′∈E:e6=e ′

[

∏

f 6=e,e ′

G(x f )
]

∑

w∈Re,e ′

G(ve1
− w)G(w − ve2

)G(ve ′1
− w)G(w − ve ′2

).

Recall the definition of Bv(x) from (2.1).

(i) If e and e ′ are not adjacent, then Re,e ′ = Z
d;

(ii) if e and e ′ are adjacent at a unique vertex i ∈ S0, then Re,e ′ = Bvi
(xe)

c∪Bvi
(xe ′)

c;
(iii) if e and e ′ both have the same endvertices i, j ∈ S0, then |xe| = |xe ′ | and Re,e ′ =

Bvi
(xe)

c ∩ Bv j
(xe)

c.

Recall from (1.10) that G(y) ≤ c|||y|||2−d . The contribution to (4.3) due to case (i)

gives a bound of the desired form, by (3.4). In case (ii), if w ∈ Bve1
(xe)

c we use the

bound G(ve1
− w) ≤ c|||xe|||

2−d and apply (3.3), and similarly for the other contri-
bution to this case. In case (iii), we extract two factors |||xe|||

2−d as in case (ii), and
then apply (3.1) to bound the remaining convolution. (Case (iii) corresponds to the

bottom picture in Figure 4.)

4.2 Proof of Proposition 2.5

We first consider the product [
∏

e∈E\Ē G(xe)]
∏

e∈Ē |G(xe + δye) − G(xe)|, for a fixed

nonempty subset Ē ⊂ E. Fix f ∈ Ē. The first product can be estimated using
the upper bound of Theorem 1.2. For the second product, since ~y ∈ B(~x) we have
|xe + δye| ≥

1
3
|xe| > 0 and thus |G(xe + δye) − G(xe)| ≤ |G(xe + δye)| + |G(xe)| ≤

c|xe|
2−d. Applying this bound for all e 6= f gives

(4.4)
[

∏

e∈E\Ē

G(xe)
]

∏

e∈Ē

|G(xe+δye)−G(xe)| ≤ c|G(x f +δy f )−G(x f )|
∏

e∈E:e6= f

|xe|
2−d.
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Recall from (1.8) that ε2 = 2(d − 4) ∧ 2. We will show below that

(4.5) |G(x f + δy f ) − G(x f )| ≤ c|x f |
1−d(|δy f | + |x f |

1−ε2+α),

with α > 0 arbitrarily small. It therefore suffices to show that

(4.6) |x f |
−1

∑

~y∈B(~x)

[

∏

i∈S0

|π̃(∆i )
x̄(i) ( ȳ(i))|

]

(|δy f | + |x f |
1−ε2+α) ≤ c|x f |

−ε1 .

But by (2.19), the left side of (4.6) is bounded above by

(4.7) c|x f |
−1

∑

y,y ′∈B(x f )

|y ′ − y| + |x f |
1−ε2+α

|||y|||2d−4|||y ′|||2d−4
≤ c ′|x f |

−1
∑

y∈B(x f )

|y| + |x f |
1−ε2+α

|||y|||2d−4
,

which gives (4.6).
It remains to prove (4.5). By (1.9) and the inequality |x + δy| ≥ 1

3
|x| > 0,

(4.8) G(x + δy) − G(x) = Aσ−2[|x + δy|2−d − |x|2−d] + O(|x|2−d−ε2+α).

By Taylor’s theorem, the quantity in brackets equals

(4.9)
d

ds

[ 1

(s|x + δy| + (1 − s)|x|)d−2

]

s=s0

=
−(d − 2)(|x + δy| − |x|)

(

s0|x + δy| + (1 − s0)|x|
) d−1

,

for some s0 ∈ (0, 1). Since |x + δy| ≥ 1
3
|x|, the denominator is bounded below by

c−1|x|d−1, and since
∣

∣ |x + δy| − |x|
∣

∣ ≤ |δy|, the absolute value of (4.9) is bounded

above by c|x|1−d |δy|. This proves (4.5).

4.3 Proof of Proposition 2.6

The left side of (2.25) is bounded by the sum over j ∈ S0 of

(4.10)
∑

~y∈Z
d|∆| :

ȳ( j) /∈B(x̄( j))

[

∏

i∈S0

|π̃(∆i )
x̄(i) ( ȳ(i))|

]

∏

e∈E

c

|||xe + δye|||d−2
.

Given j ∈ S0, we order the set S0 \ { j} in an arbitrary but fixed manner. We perform
the sums over ȳ(i) for i ∈ S0 \ { j} in this order, using (2.20). For a given i, we sum

the factor |π̃(∆i )
x̄(i) ( ȳ(i))| together with any factors |||x(i)

e + δy(i)
e |||2−d or |||x(i)

e − y(i)
e |||2−d,

with e incident on i, depending on whether or not the other endpoint of e has already
been taken into account. Letting E( j) denote the edges of ν that are incident on j,
and applying (2.21), it follows that (4.10) is bounded above by

∏

e ′∈E\E( j)

c

|||xe ′ |||d−2

∑

ȳ( j) /∈B(x̄( j))

|π̃
(∆ j )

x̄( j) ( ȳ( j))|
∏

e∈E( j)

1

|||x
( j)
e − y

( j)
e |||d−2

≤ c

[

∏

e∈E

1

|||xe|||d−2

]

∑

e∈E( j)

1

|||xe|||d−4
.

(4.11)
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5 The Lace Expansion

The lace expansion was introduced by Brydges and Spencer [1] to analyse weakly
self-avoiding walks indexed by a “time” interval, for d > 4. In [5], the expansion was
extended from an expansion on an interval to an expansion on a tree. In this section,

we recall from [5] the definitions and properties that we will require. Throughout
this section, we restrict attention to a star-shaped network A = A(τ∆, m̄), rooted at
the branch point 0 of degree ∆ ≥ 2 and with leaves a1, . . . , a∆. The path in A from 0
to ae has length me, and will be referred to as branch Te. We assume in this section

that me > 0 for all e. We will use the content of this section to prove Propositions 2.3,
2.7 and 2.8.

5.1 Laces and Resummation

Definition 5.1 Given a connected graph Γ on A (see Definition 2.1) and a branch
Te, let Γe = Γe(Γ) denote the set of bonds st covering the branch point 0 such that

either s or t is in Te, say Γe = {s1t1, . . . , sltl} with each sk /∈ Te, tk ∈ Te. From Γe, we
select the element or elements for which the distance from tk to 0 is maximal. If there
is a unique such bond, then we say it is the bond of Γ that is associated to branch Te. If
there is more than one such bond in Γe, then we select from those with tk maximally

distant from 0 the one with sk furthest from 0. If this still does not specify a unique
bond, then we choose the sk that lies on the branch with the highest label, and refer to
sktk as the bond associated to branch Te. We denote the bond associated to Te by b(e).

Definition 5.2 A lace on A is a connected graph L such that:

1. if b ∈ L covers the branch point, then it is associated to branch Te for some e;
2. if b ∈ L does not cover the branch point, then L \ {b} is not connected.

We denote by LA the laces consisting of bonds in BA, and by L̃A,x̄ = L̃A,x̄(ω) ⊂ LA

the set of laces on A consisting of bonds in ṼA,x̄ ∪ HA.

Definitions 5.1–5.2 correspond to [5, Definitions 2.3–2.4]. The following pre-

scription, which associates to a connected graph Γ on A a lace L ⊂ Γ, was introduced
in [5, Section 2.3]. Given a connected graph Γ and a branch Te, we first construct
a lace LΓ(e) = {s1t1, . . . , sltl} on an interval in A that contains Te, according to the
Te-lace construction defined as follows. First we choose s1t1 as b(e) with s1 /∈ Te,

t1 ∈ Te. If t1 6= ae, then we determine t2, s2, . . . by

tk = max{t : ∃s < tk−1 such that st ∈ Γ}, sk = min{s : stk ∈ Γ},

where the order implied by the max and min is the order on Te obtained by identi-
fying Te with the interval [0,me] (0 is the branch point of degree ∆). The procedure

terminates as soon as tl = ae. The prescription that associates to a connected graph
Γ a lace LΓ is then given by

(5.1) LΓ =

∆
⋃

e=1

LΓ(e).
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By [5, Proposition 2.5], LΓ is a lace.
Given a lace L ∈ LA, we define CA(L) to be the set of bonds b ∈ BA \ L such that

LL∪b = L. Similarly, given L ∈ L̃A,x̄ (or L ∈ LA), we define C̃A,x̄(L) to be the set of
bonds b ∈ ṼA,x̄ ∪HA \ L such that LL∪b = L. Bonds in CA(L) or C̃A,x̄(L) are said to
be compatible with L. It follows from [5, Proposition 2.6] that for Γ ∈ Gconn

A , LΓ = L

if and only if L ⊂ Γ is a lace in LA and Γ \ L ⊂ CA(L). Similarly, given Γ ∈ G̃conn
A,x̄ ,

LΓ = L if and only if L ⊂ Γ is a lace in L̃A,x̄ and Γ \ L ⊂ C̃A,x̄(L). Recalling (2.11),

this leads, as in [5, Section 2.4], to the resummation identities
(5.2)

JA =

∑

L∈LA

[

∏

b∈L

Ub

]

∏

b∈CA(L)

[1 + Ub], J̃A,x̄ =

∑

L∈L̃A,x̄

[

∏

b∈L

Ub

]

∏

b∈C̃A,x̄(L)

[1 + Ub].

For N ≥ 1, let L̃
(N)
A,x̄ ⊂ L̃A,x̄ and L

(N)
A

⊂ LA denote the sets of laces on A

consisting of exactly N bonds. We define

(5.3)

J(N)
A

=

∑

L∈L
(N)
A

[

∏

b∈L

[−Ub]
]

∏

b∈CA(L)

[1 + Ub],

J̃(N)
A,x̄ =

∑

L∈L̃
(N)
A,x̄

[

∏

b∈L

[−Ub]
]

∏

b∈C̃A,x̄(L)

[1 + Ub].

Both quantities in (5.3) are non-negative, by definition.

5.2 Classification and Properties of Laces

We recall the classification of laces, and some related lemmas, from [5]. Further
details can be found in [5, Section 3].

Definition 5.3 Let A = A(τ∆, m̄) with ∆ ≥ 2.

(a) A lace L ∈ LA is reducible if there is a proper subset F ⊂ {1, . . . ,∆} such that L

can be written as a disjoint union of laces on each of
⋃

e∈F Te and
⋃

e∈Fc Te. An
irreducible lace is a lace that is not reducible.

(b) A lace is cyclic if it is irreducible and its bonds covering the branch point can
be ordered as {ik jk : k = 1, . . . ,∆}, with jk and ik+1 on the same branch for

1 ≤ k ≤ ∆. By convention, i∆+1 = i1.
(c) An irreducible lace that is not cyclic is called acyclic.

A lace L uniquely determines a partition I1, . . . , Ik of {1, . . . ,∆} into subsets of
cardinality at least 2, such that L is the disjoint union of the irreducible laces obtained
by restricting L to

⋃

e∈I j
Te. We refer to these irreducible laces as the irreducible

components of L.

Definition 5.4 A connected graph (in particular, a lace) is called minimal if removal
of any of its bonds results in a graph that is not connected. A lace that is not minimal
is called non-minimal.
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Although it is possible for a lace to be non-minimal, any minimal connected graph
is a lace.

Lemma 5.5 ([5, Lemma 3.7]) Let A = A(τ∆, m̄) with ∆ ≥ 3 and suppose L ∈ LA

is acyclic. Then there is a branch Ta such that there is only one bond covering the branch

point 0 with an endpoint in Ta, and such that the restriction of L to
⋃

e6=a Te is a lace on
⋃

e6=a Te.

Lemma 5.6 ([5, Lemma 3.12]) Let A = A(τ∆, m̄) with ∆ ≥ 2. Let L be a non-

minimal cyclic lace on A, and let i, j ∈ A be such that L \ {i j} ∈ LA. Then L \ {i j} is

an acyclic lace on A.

6 Proof of Proposition 2.3

In this section, we state a bound on π̃ in Proposition 6.1 and use this bound to prove

Proposition 2.3. The proof of Proposition 6.1 will be given in Section 7.

The statement of the bound requires several definitions. We recall (5.3), and for
N ≥ 1 we define

(6.1)

π(∆)
N ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω) J(N)

A
, π̃(∆)

x̄,N ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω) J̃(N)

A,x̄(ω).

We also define π(∆)
0 ( ȳ) = π̃(∆)

x̄,0 ( ȳ) = δ0̄, ȳ , so that

(6.2) π(∆)( ȳ) =

∞
∑

N=0

(−1)Nπ(∆)
N ( ȳ), π̃(∆)

x̄ ( ȳ) =

∞
∑

N=0

(−1)N π̃(∆)
x̄,N ( ȳ).

In the sum over laces implicit in J(N)
A

or J̃(N)
A,x̄, branches of A with zero length (for

which me = 0) are ignored. Thus laces on star shapes of degree 2, . . . ,∆ contribute
to (6.1), depending on the number of non-zero components of m̄ (which must be at
least two for N ≥ 1). Let

(6.3)

Π
(∆)
N ( ȳ) =

∑

m̄∈N∆

∑

ω∈ΩA( ȳ)

Wzc
(ω) J(N)

A
, Π̃

(∆)
x̄,N ( ȳ) =

∑

m̄∈N∆

∑

ω∈ΩA( ȳ)

Wzc
(ω) J̃(N)

A,x̄(ω)

denote the restriction of (6.1) to the case where all ∆ branches have positive length.

For I ⊂ {1, . . . ,∆}, let ȳI denote the vector whose components are y j with j ∈ I.

For N ≥ 1, π̃(∆)
x̄,N ( ȳ) is a sum of terms of the form δ0̄, ȳIc Π̃

(|I|)
x̄,N ( ȳI) over subsets I ⊂

{1, . . . ,∆} of cardinality 2 ≤ |I| ≤ ∆, and similarly for π(∆)
N ( ȳ).
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For ∆ ≥ 2, we write z∆+1 = z1 and define

C(∆)( ȳ, z̄) =

∆
∏

j=1

1

|||z j |||d−2

1

|||z j+1 − y j |||d−2

1

|||y j − z j |||2(d−2)
,(6.4)

C̃(2)(y1, y2, z1, z2) = δz1,z2

2
∏

j=1

1

|||y j |||d−2

1

|||y j − z1|||2(d−2)
,(6.5)

P(∆)( ȳ, z̄) =

{

C(∆)( ȳ, z̄) (∆ ≥ 3)

C(2)( ȳ, z̄) + C̃(2)( ȳ, z̄) (∆ = 2).
(6.6)

Given 2 ≤ ∆
′ < ∆, and given a mapping u with domain {∆ ′ + 1, . . . ,∆} and with

u( j) ∈ {0, y1, . . . , y j−1, z1, . . . , z j−1}, let

(6.7) Qu, j( ȳ, z̄) =
1

|||y j |||d−2

1

|||y j − z j |||2(d−2)

1

|||z j − u( j)|||d−2
.

Finally, for ∆ ≥ 2, we define

(6.8) B(∆)( ȳ) =

∆
∑

∆ ′=2

∑

z̄∈B(x̄)

∑

u

P(∆ ′)( ȳ, z̄)

∆
∏

j=∆ ′+1

Qu, j( ȳ, z̄),

where the third sum is over all mappings u of the type indicated above, and where
P(∆ ′)( ȳ, z̄) depends only on the first ∆

′ components of ȳ and z̄. Diagrammatic rep-
resentations of B(2)( ȳ) and B(3)( ȳ) are given in Figure 8. For B(3)( ȳ), the first diagram

is the ∆
′

= 3 term of (6.8), and the remaining nine terms arise from the ∆
′

= 2
term, with five choices for u(3) for C (2) and four choices for C̃(2).

For I ⊂ {1, . . . ,∆}, we write ΣI for the set of permutations of I. Given p ∈ ΣI ,

we let p( ȳI) denote the vector with components y p( j), j ∈ I. We write β = Lα−2 for
the small factor appearing on the right side of (1.10).

Proposition 6.1 Let d > 4 and ∆ ≥ 2. Fix ȳ ∈ Z
d∆. There are constants C and L0

(depending on d and ∆) such that for L ≥ L0,

(6.9)

∞
∑

N=1

Π̃
(∆)
x̄,N ( ȳ) ≤ Cβ∆

∑

I1,...,Ik

k
∏

j=1

∑

p j∈ΣI j

B(|I j |)
(

p j( ȳI j
)
)

,

where the first sum on the right side is over all partitions of {1, . . . ,∆} into subsets

I1, . . . , Ik of cardinality at least 2. The same bound holds for Π
(∆)
N ( ȳ), with the sum over

z̄ in (6.8) extended from B(x̄) to Z
d∆.

Under the hypotheses of Proposition 6.1, and in view of the relationship between

π̃(∆)
x̄,N and Π̃

(∆)
x̄,N described below (6.3), the sum π̃(∆)

x̄ ( ȳ) =
∑∞

N=0(−1)N π̃(∆)
x̄,N ( ȳ) obeys

the bound

(6.10) |π̃(∆)
x̄ ( ȳ)| ≤ δ0̄, ȳ + Cβ2

∑

I1,...,Ik

δ0̄, ȳÎc

k
∏

j=1

∑

p j∈ΣI j

B(|I j |)
(

p j( ȳI j
)
)

.
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B(2)( ȳ) =

∑

z̄∈B(x̄)











z

y

z

y1

1

2

2
0

+ y y

0

= zz

1

1

2

2










B(3)( ȳ) =

∑

z̄∈B(x̄)















z

z

z

y

y

y

1

1

2

3

2

3

0
+ z

z

z

y

y

y

0
1

1

2

2

3

3

+

0

z

z

z

y

y

y

1

1

2

2

3
3

+ 7 terms















Figure 8: Diagrammatic representations of B(2)( ȳ) and B(3)( ȳ).

In (6.10), the sum over I1, . . . , Ik is a sum over disjoint subsets of {1, . . . ,∆}, each

of cardinality at least 2, whose union Î may be smaller than {1, . . . ,∆}. The same
bound holds for π(∆)( ȳ), with the sum over z̄ in (6.8) extended from B(x̄) to Z

d∆.

Proof of Proposition 2.3 assuming Proposition 6.1

Proof of (2.19) We deduce (2.19) from (6.10), and the corresponding statement for
π(∆)( ȳ) will follow from the comment below (6.10). This will automatically prove

the absolute convergence statement given under (2.19). In fact, using J(N)
A

and J̃(N)
A,x̄

in (6.3) and summing over N in (6.9) gives an upper bound on the sums in (2.12)
when JA and J̃A,x̄ are replaced by their absolute values.

We analyse the factor
∑

p∈ΣI
B(|I|)

(

p( ȳI)
)

. For this we relabel ȳI as y1, . . . , y|I|
for convenience. We will prove

(6.11)
∑

ȳ∈Zd|I| :ye=y

∑

p∈ΣI

B(|I|)
(

p( ȳ)
)

≤
c

|||y|||2d−4
,

∑

ȳ∈Zd|I|

∑

p∈ΣI

B(|I|)
(

p( ȳ)
)

≤ c,

for any e ∈ I. This suffices by the following argument. Given the index e and y in
(2.19) first assume that y 6= 0. Then only terms with e ∈ Î = I1 ∪ · · · ∪ Ik contribute
to (6.10). We apply the first inequality of (6.11) to the unique I j such that e ∈ I j , and

apply the second one otherwise, to get (2.19). If y = 0, we also have terms with e /∈ Î,
and for these we only need the second inequality in (6.11).

The second inequality in (6.11) follows from the first one, since the bound is
summable. In proving the first inequality it is enough to consider terms where p
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is the identity. Indeed, if we can prove the bound in (6.11) without summation over
permutations and for any e ∈ I, (6.11) follows as well. To analyse B(|I|)( ȳ) recall (6.8).

Let 2 ≤ ∆
′ ≤ |I|, and let K( ȳ, z̄) denote a general term from (6.8) with ∆ = |I|, that

is

(6.12) K( ȳ, z̄) = P(∆ ′)( ȳ, z̄)

|I|
∏

j=∆ ′+1

Qu, j( ȳ, z̄).

We will prove that

(6.13)
∑

ȳ,z̄∈Zd|I| :ye=y

K( ȳ, z̄) ≤
c

|||y|||2d−4
,

∑

ȳ,z̄∈Zd|I| :ze=z

K( ȳ, z̄) ≤
c

|||z|||2d−4
,

for any e ∈ I and for any mapping u. This is sufficient for our claim on the sum of
B(|I|)( ȳ). In fact, the first inequality of (6.13) is sufficient, but it will be convenient

for the proof to have the second one as well.
To prove (6.13), we consider first the case ∆

′
= |I|, so that K( ȳ, z̄) = P(|I|)( ȳ, z̄).

The proof for this case is by induction on |I|. We begin the induction with |I| = 2,
and consider P(2)

= C(2) + C̃(2). Recall the diagrams in the first line of Figure 8.

We will make frequent use of (3.1)–(3.4), and the reader is encouraged to draw the
diagrams involved and make use of the pictures in (a)–(d) of Figure 7. The cases
when y1 or y2 is kept fixed are symmetric, and similarly for z1 and z2. To bound the
sum over y2, z1, z2 of C(2), we proceed as follows. First, we use (3.2) to perform the

sums over z1 and z2. This gives a bound of the form

(6.14)
c

|||y1|||d−2

∑

y2∈Zd

1

|||y2|||d−2

1

|||y2 − y1|||2d−4
≤

c

|||y1|||2d−4
,

where (3.1) was applied with a = 2d − 4 > d and b = d − 2 in (6.14). To bound
the sum over y1, y2, z2 of C(2) we use (3.1) to perform the sums over y1 and y2. This

leaves an expression similar to the left side of (6.14) with y1 and y2 replaced by z1

and z2. This can be easily seen from the diagrams as well. From here we proceed as
before. For C̃(2) first consider the case when y1 is fixed. We bound the sum over y2

using (3.1), and then bound the resulting sum over z1 using (3.1) again. This gives

an upper bound of the form |||y1|||
4−2d, as required. When z1 is fixed, we apply (3.1)

twice to bound the sums over y1 and y2, which yields an upper bound |||z1|||
4−2d, as

desired.
To advance the induction, for the case ∆

′
= |I|, we may assume by symmetry that

e 6= |I|. We use (3.2) to perform the sum over z|I|. The part involving y|I| becomes

(6.15)
∑

y|I|∈Zd

1

|||y|I| − y|I|−1|||d−2

1

|||y|I||||d−2

1

|||y|I| − z1|||d−2
≤

c

|||y|I|−1 − z1|||d−2
,

by (3.3). This gives rise to P(|I|−1), and the desired estimate then follows from the
induction hypothesis. This completes the inductive proof of the case ∆

′
= |I|.
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Consider now the general case ∆
′ ≤ |I|. The proof for this case is by induction on

the value of |I| −∆
′. The base case |I| = ∆

′ has just been proved. Assume |I| > ∆
′.

Then separating the last Qu, j factor appearing in K( ȳ, z̄) we can write

(6.16) K( ȳ, z̄) = K0( ȳ, z̄)Qu,|I|( ȳ, z̄),

where

(6.17) K0( ȳ, z̄) = P(∆ ′)( ȳ, z̄)

|I|−1
∏

j=∆ ′+1

Qu, j( ȳ, z̄).

Note that K0( ȳ, z̄) depends only on the first |I| − 1 components of ȳ and z̄, and by
the induction hypothesis K0( ȳ, z̄) satisfies (6.13). We distinguish between the cases

e < |I| and e = |I|. In the first case we bound
∑

y|I|,z|I|
Qu,|I|( ȳ, z̄) by a constant using

(3.1) first with a = 2d − 4, b = d − 2 and then with a = b = d − 2. Then we use
(6.13) for K0. In the case e = |I| we distinguish between the subcases u(|I|) = 0 and
u(|I|) 6= 0. In the first subcase we bound the sum of K0( ȳ, z̄) over all of its variables

(which factors from the remaining sum) by a constant, using that the bounds in
(6.13) are summable. We bound the remaining sum over y|I| or z|I| using (3.1). In
the subcase u(|I|) 6= 0 we bound the sum of K0( ȳ, z̄) with the variable u(|I|) fixed
by c|||u(|I|)|||4−2d using the induction hypothesis. The product of this bound with

Qu,|I|( ȳ, z̄) can be estimated using two applications of (3.1).
In the above analysis, the sum over z̄ in (6.8) has been extended from B(x̄) to all

of Z
d|I|. Since (6.10) holds also for π(∆)

N ( ȳ) with this extension of the sum over z̄, this
proves (2.19) also for π(∆)( ȳ).

Proof of (2.20) The proof is a modification of the proof of (2.19), and we indicate
the necessary changes. Again it is sufficient to prove that for any expression K( ȳ, z̄)
in (6.12) we have

(6.18)
∑

ȳ,z̄∈Zd|I|

K( ȳ, z̄)

|I|
∏

e=1

1

|||ye − we|||d−2
≤ c

|I|
∏

e=1

1

|||we|||d−2
.

In the language of diagrams, there is an extra “arm” reaching out from each ye to
a fixed vertex we. Consider the sum over y1, y2, z1, z2 of C(2) with the extra factors
|||y1 − w1|||

2−d |||y2 − w2|||
2−d. Application of (3.2) to the sums over z1 and z2 gives

an upper bound

(6.19)
∑

y1,y2∈Zd

1

|||y1 − y2|||2d−4

1

|||y1|||d−2

1

|||y2|||d−2

1

|||y1 − w1|||d−2

1

|||y2 − w2|||d−2
.

This gives the desired estimate c|||w1|||
2−d |||w2|||

2−d, after two other applications of
(3.2). In the case of C̃(2) we also arrive at (6.19) after summing over z1 and using
(3.4). When 3 ≤ ∆

′
= |I| we perform the sum over z|I| as before. In (6.15), an extra
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factor |||y|I| − w|I||||
2−d is now present, and an application of (3.4) gives an upper

bound |||y|I|−1 − z1|||
2−d |||w|I||||

2−d. This allows us to use induction on |I| as before.

For the case ∆
′ < |I| we again use (6.16) and induction. Application of (3.2) and

(3.3) gives the bound

(6.20)
∑

y|I|,z|I|

Qu,|I|( ȳ, z̄)
1

|||y|I| − w|I||||d−2
≤

c

|||w|I||||d−2
,

and we get the desired bound by applying (6.18) to K0( ȳ, z̄).

Proof of (2.21) For the first time in the proof, we make use of the fact that the

summation over z̄ is restricted to B(x̄) in (6.8), rather than a full sum over all of Z
d∆.

The proof is again a modification of the proof of (2.19). It is enough to prove

(6.21)
∑

ȳ∈Z
d|I|,z̄∈B(x̄)

ye /∈B(xe)

K( ȳ, z̄)

|I|
∏

j=1

1

|||y j − x j |||d−2
≤ c

[ |I|
∏

j=1

1

|||x j |||d−2

]

1

|||xe|||d−4

for any e ∈ I. For the case of C (2) we bound

(6.22)
∑

y1 /∈B(x1)

∑

y2∈Zd

∑

z1∈B(x1)

∑

z2∈B(x2)

C(2)(y1, y2, z1, z2)
1

|||x1 − y1|||d−2

1

|||x2 − y2|||d−2

as follows. We perform the sum over y2 using (3.2), and bound the resulting factor
|||x2 − z2|||

2−d by c|||x2|||
2−d using z2 ∈ B(x2). We then bound the sums over z1 and z2

using (3.2) and (3.1), respectively. The result is an upper bound of the form

c

|||x2|||d−2

∑

y1 /∈B(x1)

1

|||y1|||2d−4

1

|||x1 − y1|||d−2

≤
c

|||x2|||d−2

1

|||x1|||d−2

∑

y1

1

|||y1|||d−2

1

|||x1 − y1|||d−2
.

(6.23)

By (3.1), the sum on the right side is bounded by c|||x1|||
4−d. Similarly, for C̃(2) we

first perform the sum over y2, and bound |||x2 − z1|||
2−d by c|||x2|||

2−d using z1 = z2 ∈
B(x2). Then applying (3.1) to the sum over z1 we arrive at (6.23) again.

The case 3 ≤ ∆
′

= |I| is handled by induction on |I|. By symmetry we may

assume e 6= |I|. We handle the extra factor |||y|I| − x|I||||
2−d arising in (6.15) as we

did in the proof of (2.20), and extract the extra decay |||xe|||
4−d using the induction

hypothesis.

In the case ∆
′ < |I| we again use induction on |I|−∆

′ and (6.16). We distinguish
between the cases e < |I| and e = |I|. If e < |I|, we apply (6.20) with w|I| replaced

by x|I|, giving a factor |||x|I||||
2−d. The remaining sums are estimated using (6.21)
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for K0( ȳ, z̄), giving the extra decay |||xe|||
4−d. If e = |I|, we extract the extra decay

|||x|I||||
4−d from

∑

y|I| /∈B(x|I|),z|I|∈B(x|I|)

Qu,|I|( ȳ, z̄)
1

|||y|I| − x|I||||d−2

as follows. We bound |||y|I||||
2−d appearing in Qu,|I|( ȳ, z̄) from above by c|||x|I||||

2−d,
using y|I| /∈ B(x|I|). Using (3.1) to bound the sum over y|I|, for the rest of the expres-
sion we get the upper bound

∑

z|I|∈B(x|I|)

1

|||z|I| − x|I||||d−2

1

|||z|I| − u(|I|)|||d−2

≤
c

|||x|I||||d−2

∑

z|I|∈B(x|I|)

1

|||z|I| − u(|I|)|||d−2
,

(6.24)

where z|I| ∈ B(x|I|) was used in (6.24). The sum on the right side of (6.24) is bounded
by a multiple of |||x|I||||

2, uniformly in u(|I|), leading to an upper bound of the de-

sired form c|||x|I||||
2−d|||x|I||||

4−d. Application of (6.18) to K0( ȳ, z̄) with x̄ replacing w̄

completes the proof.

7 Proof of Proposition 6.1

In this section, we prove Proposition 6.1. Our starting point is the expression

(7.1) Π̃
(∆)
x̄,N ( ȳ) =

∑

m̄∈N∆

∑

ω∈ΩA( ȳ)

Wzc
(ω)

∑

L∈L̃
(N)
A,x̄

[

∏

b∈L

[−Ub]
]

∏

b∈C̃A,x̄(L)

[1 + Ub],

which follows from (5.3) and (6.3). Here A is the star-shaped tree with branches of
length m1, . . . ,m∆, all of which are strictly positive.

7.1 Bound on Π̃ in Terms of Diagrams

The set L̃
(N)
A,x̄ depends on the embedding ω, whereas the set L

(N)
A

does not. For L ∈

L
(N)
A

, let 1[L](ω) equal 1 if L ∈ L̃
(N)
A,x̄(ω) and equal 0 otherwise. Then (7.1) can be

rewritten as

(7.2) Π̃
(∆)
x̄,N ( ȳ) =

∑

m̄∈N∆

∑

L∈L
(N)
A

∑

ω∈ΩA( ȳ)

Wzc
(ω)1[L](ω)

[

∏

b∈L

[−Ub]
]

∏

b∈C̃A,x̄(L)

[1 + Ub].

Given L, the factor
∏

b∈L[−Ub] is nonzero only if ω(s) = ω(t) for every st ∈ L. If

st ∈ L covers the branch point 0 with s on branch e and t on branch f , then 1[L](ω) is
nonzero only if the additional restriction ω(s) = ω(t) ∈ B(xe) ∩ B(x f ) applies.

Let L = {s1t1, . . . , sNtN} be a lace on A consisting of N bonds. The vertices si

and ti , together with the branch point 0, determine 2N intervals I1, . . . , I2N on the
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tree A, some of which may have length 0. We group laces according to their “shape”.
We say that laces L and L ′ have the same shape if they only differ in the length of

the intervals I j , and the order of the vertices si and ti on each branch is the same in
L and L ′. Having the same shape does not quite define an equivalence relation on
laces (transitivity may fail in some cases). However this will only lead later to some
harmless overcounting.

We regard ω as consisting of a collection of embeddings ω( j) of the intervals I j .
Note that Wzc

(ω) factors into the product of Wzc
(ω( j)) over the intervals. For each

interval I j , all bonds b ∈ BI j
are compatible with L. This implies that each ω( j) must

be self-avoiding in order to contribute to the right hand side of (7.2). We obtain

an upper bound for (7.2) by replacing [1 + Ub] by 1 for all other bonds compatible
with L.

It is then standard to obtain an upper bound on Π̃
(∆)
x̄,N ( ȳ) in terms of Feynman

diagrams, where laces having different shapes give rise to different diagrams. An ex-

ample is depicted in Figure 9. Diagram vertices have degree 4, except 0 has degree ∆

and each ye has degree 3. The value A(F) of a diagram F is determined as follows.
Given a shape, we let ε j = 1 when the length |I j | of the j-th interval is strictly positive
for all laces with this shape, and ε j = 0 otherwise. Thus ε j depends on a shape. A di-

agram line arising from interval I j and joining vertices u, v corresponds to H j(u− v),
where

(7.3) H j(x) = G(x) − ε jδx,0.

The resulting product of factors H j is then summed over all unlabelled vertices of F.
Vertices corresponding to bond endpoints for a bond that does not cover the origin
are summed over Z

d, whereas a vertex corresponding to bond endpoints for a bond

with endpoints on T◦
e and T◦

f , with e 6= f , is summed over B(xe) ∩ B(x f ). The sum
is the value A(F) of F. Since

(7.4) H j(x) ≤
Cβε j

|||x|||d−2

by (1.10), for an upper bound we will regard the diagram line arising from an interval
I j and joining vertices u, v as Cβε j |||u − v|||2−d. Let D̃N ( ȳ) denote the set of possible

diagrams arising from N-bond laces, where the tilde denotes the restriction on vertex
locations for vertices that correspond to lace bonds that cover 0. Then

(7.5) Π̃
(∆)
x̄,N ( ȳ) ≤

∑

F∈D̃N ( ȳ)

A(F).

The number of distinct diagrams in D̃N ( ȳ) is bounded above by CN for some
C = C(∆). Also, it is not difficult to see that each lace bond that does not cover the

branch point gives rise to at least one nonzero interval, so that
∑2N

j=1 ε j is bounded
below by N − const. Thus we obtain an exponentially small factor in each term in
(7.5), due to the factors β in (7.4). This factor compensates for growing factors C N

due to the number of diagrams and due to constants that occur in bounding each
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Figure 9: A lace shape and corresponding Feynman diagram F. Slashed diagram lines may

have zero length.

line by c|||u − v|||2−d, and permits the summation over N to be performed. Since
∑2N

j=1 ε j ≥ ∆, it leads to the correct power β∆ in (6.9). We therefore take β = 1
in what follows, since we are guaranteed by the above to obtain the necessary factors

of β.

7.2 Reduction of Diagrams

In this section, we show how it is possible to estimate diagrams in terms of a smaller
number of basic diagrams.

Given a lace L and a branch e, let N (e) denote the number of bonds of L that have
both endpoints on branch e. Suppose that N (e) ≥ 2. Then the bonds i j and kl on

branch e that are closest to the leaf of branch e are ordered as i < k < j < l, with l the
leaf. Let L ′ denote the connected graph obtained by replacing i j and kl by the single
bond il. It is not difficult to verify that L ′ is a lace. Let F ∈ D̃N ( ȳ) denote the diagram
corresponding to L, and let F ′ ∈ D̃N−1( ȳ) denote the diagram corresponding to L ′.

We claim that there is a constant C , depending only on d, such that

(7.6) A(F) ≤ CA(F ′).

To prove (7.6), we note that ω(k) = ω(l) = ye. Since L is a lace, j is the only
endpoint of a bond in L that is covered by kl. Let w1 = ω( j) denote the vertex in F

corresponding to j. Let w2 and w3 denote the diagram vertices, other than ye, that

are adjacent to w1 in F. Using (3.2) to perform the summation over w1 in A(F), we
obtain

∑

w1

1

|||w2 − w1|||d−2

1

|||w3 − w1|||d−2

1

|||w1 − ye|||2(d−2)

≤
c

|||w2 − ye|||d−2

1

|||w3 − ye|||d−2
.

(7.7)

See Figure 10. This replaces part of the diagram for F by the corresponding part for
F ′, which proves (7.6).
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Figure 10: Illustration of the bound (7.7). Vertex labels on the upper figure represent the lattice

sites in Z
d to which the vertices are embedded.

If we begin with a diagram in D̃N ( ȳ) that has N(e) ≥ 1 for each e, we can use

(7.6) repeatedly to reduce the diagram to CN times a diagram having N (e)
= 1 for

each e. For convenience, we will also show that a diagram with N (e)
= 0 for some

e can be bounded by a diagram with N (e)
= 1 for all e. Given a lace with N (e)

= 0
and with leaf j on branch e, assume that j is not an endpoint of any other lace bond.

The case in which j is an endpoint of another lace bond or bonds is a degenerate
case that arises from taking an interval or intervals to have zero length in the case we
are assuming. We add a new bond kl to the lace in such a way that kl covers j, and
covers no other endpoint of a lace bond, so that l becomes the new leaf. Since we may

now allow all intervals I j to have zero length (because we have already extracted the
necessary factors β), the diagram with N (e)

= 0 is just a term in the diagram with
N(e)

= 1 in which w1 = ye, in the notation of the previous paragraph. Thus the
diagram with N (e)

= 0 is bounded above by the diagram with N (e)
= 1.

This reduces the estimation of all diagrams to estimation of diagrams having
N(e)

= 1 for all e. We call such diagrams basic diagrams. The number of diagrams in
D̃N ( ȳ) that reduce to a given basic diagram is bounded by CN .

7.3 Bounds on Basic Diagrams

Let D̃basic( ȳ) denote the set of basic diagrams, arising from laces with N (e)
= 1 for

each e. In view of the above analysis, to prove Proposition 6.1 it suffices to prove the
following proposition.

Proposition 7.1 The sum of basic diagrams, with 0 of degree ∆ ≥ 2, is bounded by

(7.8)
∑

F∈D̃basic( ȳ)

A(F) ≤ c
∑

I1,...,Ik

k
∏

j=1

∑

p j∈ΣI j

B(|I j |)
(

p j( ȳI j
)
)

,

where I1, . . . , Ik denotes a partition of {1, . . . ,∆} into subsets of cardinality at least 2.

Proof Recall the classification of laces in Section 5.2. We only consider laces for
which N(e)

= 1 for each e. Also, it suffices to consider only irreducible laces, since
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the diagram corresponding to a reducible lace factors into subdiagrams correspond-
ing to the irreducible components of the reducible lace. The sum over I1, . . . , Ik in

(7.8) represents a sum over irreducible components. Thus we are concerned in what
follows only with k = 1 and I = I1 = {1, . . . ,∆}.

Fix ∆ ≥ 2. We give separate arguments according to whether a basic diagram

corresponds to an irreducible lace that is minimal cyclic, acyclic, or non-minimal
cyclic.

Case 1: Acyclic Laces with ∆ = 2 The basic diagram corresponding to this case has
value

∑

z∈B(x1)∩B(x2) C̃(2)(y1, y2, z, z).

Case 2: Minimal Cyclic Laces Suppose that L is a minimal cyclic lace. Then, up to a
relabelling of the variables, the basic diagram corresponding to L has value C (∆)( ȳ, z̄),

with z̄ summed over z j ∈ B(x j) ∩ B(x j−1). For an upper bound, we relax this to
z̄ ∈ B(x̄). Taking into account the possible relabellings using permutations, and also
taking into account Case 1 if ∆ = 2, this gives the ∆

′
= ∆ term of the expression

(6.8) for B(∆)( ȳ).

Case 3: Non-Minimal Cyclic Laces with ∆ = 2 Fix ∆ = 2. Suppose that L is a
non-minimal basic cyclic lace, and that the bond b associated to branch 2 can be
removed to yield a lace L̃. We claim that the value of the diagram corresponding to
L is bounded by a constant multiple of the value of the diagram corresponding to L̃.

To prove this claim, let w be the diagram variable associated to the endpoints of b,
and let w1,w2 and w3,w4 be the diagram variables corresponding to the lace bond
endpoints adjacent to the two endpoints of b. By (3.4),

(7.9)
∑

w

4
∏

i=1

1

|||w − wi |||d−2
≤

c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2
,

which proves the claim. By Lemma 5.6, the lace L̃ is acyclic. Therefore, the value of
its diagram is bounded by C̃(2)(y1, y2, z1, z2), by Case 1.

By Cases 1–3, it follows that (7.8) holds when ∆ = 2. We assume henceforth that
∆ ≥ 3.

Case 4: Acyclic Laces Let L be an acyclic lace. By Lemma 5.5, there is a branch e such
that there is a unique bond in L that covers 0 and has an endpoint on branch e, with

the restriction L̃ of L to the other branches being a lace. Assume that e = ∆. We show
that it is possible to bound the value of the diagram corresponding to L in terms of
the diagram corresponding to L̃, leading to a recursive estimate.

The diagram variable corresponding to the unique bond with both endpoints on

branch ∆ is y∆. Let z∆ denote the diagram variable of the bond b(∆) ∈ L associated
to branch ∆. Let w1 and w2 be the variables adjacent to z∆ on the branch which is
different from ∆. Then w1 and w2 are chosen from among 0 and y j , z j with 1 ≤ j <
∆. Since either 1

2
|||w1 − w2||| ≤ |||w2 − z∆||| or 1

2
|||w1 − w2||| ≤ |||w1 − z∆|||, it follows
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that

1

|||w1 − z∆|||d−2

1

|||w2 − z∆|||d−2

≤
c

|||w1 − w2|||d−2

[

1

|||w1 − z∆|||d−2
+

1

|||w2 − z∆|||d−2

]

.

(7.10)

The factor |||w1 − w2|||
2−d contributes to the diagram corresponding to L̃, leaving

additional factors

(7.11)
1

|||y∆|||d−2

1

|||y∆ − z∆|||2(d−2)

[

1

|||w1 − z∆|||d−2
+

1

|||w2 − z∆|||d−2

]

that contribute terms Q appearing in the definition of B(∆) of (6.8). The restrictions

on the domain of summation of the zi , due to L ∈ L̃A,x̄, can be relaxed to summation
over z̄ ∈ B(x̄) in an upper bound, as in Case 2.

Case 5: Non-Minimal Cyclic Laces Let L be a non-minimal cyclic lace. By Lemma 5.6,
there is a bond b whose removal leaves an acyclic lace L̃. It then follows, as in Case 3,

that the value of the diagram corresponding to L is bounded above by a multiple of
the value of the diagram corresponding to L̃.

Recursive Bound Given a diagram corresponding to an acyclic or non-minimal
cyclic lace, we apply Cases 4–5 repeatedly until we produce a minimal cyclic lace
or we reduce the degree to 2. Assume that the branches are ordered in such a way

that whenever a branch is removed in applying Case 4, it has the largest label. Then
if j is the branch removed, we have that each of the vertices wi (i = 1, 2) discussed
in Case 4 is in {0, y1, . . . , y j−1, z1, . . . , z j−1}. This gives the desired result, where the
sum over permutations allows for arbitrary orderings of the branches when applying

Case 4.

8 Proof of Proposition 2.7

From the definitions in (2.22), it follows that

(8.1) |V∆ − Ṽ in
∆,x̄| ≤

∑

ȳ∈Zd∆

|π(∆)( ȳ) − π̃(∆)
x̄ ( ȳ)| +

∑

ȳ /∈B(x̄)

|π̃(∆)
x̄ ( ȳ)|.

Given ȳ /∈ B(x̄), there is a component ye /∈ B(xe). We perform an unrestricted sum
over the other components of ȳ and apply (2.19), to see that the second term on the

right side of (8.1) is bounded by c
∑∆

e=1 |||xe|||
4−d, as required.

To bound the first term in (8.1) we use (2.12) to write

(8.2) π(∆)( ȳ) − π̃(∆)
x̄ ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω)[ JA(ω) − J̃A,x̄(ω)].
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To analyse (8.2), we rewrite JA − J̃A,x̄ as follows. Since L̃A,x̄ ⊂ LA, it follows from
(5.2) that

(8.3) JA =

∑

L∈L̃A,x̄

[

∏

b∈L

Ub

]

∏

b∈CA(L)

[1 + Ub] +
∑

L∈LA\L̃A,x̄

[

∏

b∈L

Ub

]

∏

b∈CA(L)

[1 + Ub].

Since C̃A,x̄(L) ⊂ CA(L), in the first term of the right side of (8.3) we can rewrite
(8.4)

∏

b∈CA(L)

[1+Ub] =

∏

b∈C̃A,x̄(L)

[1+Ub]−
[

∏

b∈C̃A,x̄(L)

[1+Ub]
][

1−
∏

b∈CA(L)\C̃A,x̄(L)

[1+Ub]
]

.

The contribution to the first term on the right side of (8.3) due to the first term of
the right side of (8.4) is J̃A,x̄. Therefore

JA − J̃A,x̄ =

∑

L∈LA\L̃A,x̄

[

∏

b∈L

Ub

]

∏

b∈CA(L)

[1 + Ub]

−
∑

L∈L̃A,x̄

[

∏

b∈L

Ub

][

∏

b∈C̃A,x̄(L)

[1 + Ub]
][

1 −
∏

b∈CA(L)\C̃A,x̄(L)

[1 + Ub]
]

.

(8.5)

We insert (8.5) into (8.2), producing two terms. The first of these two terms can
be written as

∑∞
N=1(−1)Nρ(∆)

x̄,N ( ȳ), where

(8.6) ρ(∆)
x̄,N ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω)

∑

L∈L
(N)
A

\L̃
(N)
A,x̄

[

∏

b∈L

[−Ub]
]

∏

b∈CA(L)

[1 + Ub].

Similarly, for the second term of (8.5), we define

µ(∆)
x̄,N ( ȳ) =

∑

m̄∈Z
∆
+

∑

ω∈ΩA( ȳ)

Wzc
(ω)

×
∑

L∈L̃
(N)
A,x̄

[

∏

b∈L

[−Ub]
][

∏

b∈C̃A,x̄(L)

[1 + Ub]
][

1 −
∏

b∈CA(L)\C̃A,x̄(L)

[1 + Ub]
]

.

(8.7)

Then (8.6) and (8.7) are both nonnegative, and

(8.8) |π(∆)( ȳ) − π̃(∆)
x̄ ( ȳ)| ≤

∞
∑

N=1

ρ(∆)
x̄,N ( ȳ) +

∞
∑

N=1

µ(∆)
x̄,N ( ȳ).

We analyse ρ(∆)
x̄,N using diagrams as in the bounds on π̃. Every L ∈ LA \ L̃A,x̄

includes at least one bond b in R̃A,x̄ = BA \ [ṼA,x̄ ∪ HA]. This means that in the
diagram corresponding to L, the variable z associated to b is summed over the set
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B(xe)
c ∪ B(x f )c, where e and f denote the branches containing the endpoints of b.

We obtain a bound analogous to (6.9), except now the sum over z̄ in (6.8) is replaced

by a multiple of
∑∆

e=1

∑

z̄∈Zd∆ :ze /∈B(xe). Using a modification of (6.11) for ρ, we obtain

the desired estimate

(8.9)

∞
∑

N=1

∑

ȳ∈Zd∆

ρ(∆)
x̄,N ( ȳ) ≤ c

∆
∑

e=1

∑

ze /∈B(xe)

1

|||ze|||2d−4
≤ c

∆
∑

e=1

1

|||xe|||d−4
.

It remains to estimate µ(∆)
x̄,N . The difference between µ(∆)

x̄,N and π̃(∆)
x̄,N resides in the

indicator function 1 −
∏

b∈CA(L)\C̃A,x̄(L)[1 + Ub]. The indicator function is nonzero

only if there is a bond b ∈ CA(L) \ C̃A,x̄(L) ⊂ R̃A,x̄ such that the endpoints of b cor-

respond to an intersection in the embedding. Thus µ(∆)
x̄,N can be bounded by diagrams

in the same manner as π̃(∆)
x̄,N , but with an additional new intersection not present in

the diagrams for π̃(∆)
x̄,N . In more detail, the modification to a diagram for π̃(∆)

x̄,N is as

follows. We select a pair of lines in a diagram bounding π̃(∆)
x̄,N , that lie between the

branch point and the endpoint of the bond associated to the branch containing the
line (since a bond b ∈ R̃A,x̄ must cover the branch point), and replace those lines
by four lines that meet at a common vertex. This common vertex w is summed over

B(xe)
c ∪ B(x f )c, where e and f are the indices of the branches occurring in the bond

b. It suffices to show that any new such diagram is bounded above by a small factor
times a diagram that we have already bounded when estimating π̃(∆)

x̄,N . We can restrict
our attention to basic diagrams, since by the above remarks the extra bond does not

interfere with the reduction process of Section 7.2.

Let

(8.10) K( ȳ, z̄) = K0( ȳ, z̄)
1

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2

denote a term in B(∆)( ȳ) with a specific pair of lines, from w1 to w2 and from w3 to
w4, singled out. We assume that this pair of lines is a possible pair for the additional
intersection described above. In bounding µ(∆)

x̄,N , the term K( ȳ, z̄) is replaced by

(8.11) Kµ( ȳ, z̄) = K0( ȳ, z̄)
∑

w∈B(xe)c∪B(x f )c

4
∏

j=1

1

|||w j − w|||d−2
.

The sum on the right side of (8.11) can be replaced by
∑

w∈B(xe)c +
∑

w∈B(x f )c , in an

upper bound. The two terms are similar and we consider only the first, in what
follows. We divide the sums over ȳ, z̄ into two cases, and show that each case satisfies
the required bound.

Case 1 Assume that w1,w2,w3,w4 are inside B(xe/2), so their norms are at most
|xe|/6. Then we use |||w − w1||| ≥ 1

6
|||xe||| ≥ 1

2
|||w1 − w2|||, |||w − w3||| ≥ |||w||| −

|||w3||| ≥
1
2
|||w|||, and similarly |||w − w2||| ≥

1
2
|||w3 − w4|||, |||w − w4||| ≥

1
2
|||w|||, to

https://doi.org/10.4153/CJM-2004-005-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-005-1


DRAFT: Canad. J. Math. February 5, 2004 12:33 File: holmes2220 pp.77–114 Page 110 Sheet 34 of 38
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obtain

∑

w∈B(xe)c

4
∏

j=1

1

|||w j − w|||d−2
≤

c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2

∑

w∈B(xe)c

1

|||w|||2d−4

≤
c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2

1

|||xe|||d−4
.

(8.12)

Arguing similarly when w ∈ B(x f )c, we obtain, as required,

(8.13) Kµ( ȳ, z̄) ≤ cK( ȳ, z̄)

(

1

|||xe|||d−4
+

1

|||x f |||d−4

)

.

Case 2 Assume that one of w1,w2,w3,w4 is outside B(xe/2). In this case we extend
the sum over w in (8.11) to a sum over all w ∈ Z

d, and use (3.4) to bound it by

c|||w1 − w2|||
2−d |||w3 − w4|||

2−d. This gives the corresponding diagram for π̃(∆)
x̄,N , but

with one vertex constrained to be large. This can then be bounded by summing (6.13)
over y or z outside B(xe/2), giving the desired result.

9 Proof of Proposition 2.8

Recall the definition of ϕν(~x) from (2.8). Recall from Section 2.2 that Gerr
N is the set

of graphs Γ ⊂ VN ∪ HN such that Ai(Γ) = A j(Γ) for some i 6= j, i, j ∈ S0. Let E0

be the set of edges e = (e1, e2) with e1, e2 ∈ S0. Note that Gerr
N

is empty if E0 is empty,
so we assume that E0 6= ∅. For F ⊂ E0, we define Gerr

N
(F) to be the set of graphs

Γ ∈ Gerr
N such that for each f = ( f1, f2) ∈ F, A f1

(Γ) = A f2
(Γ). Note that branches

in E0 \ F may or may not have this property. By the inclusion-exclusion relation,

(9.1)
∣

∣

∣

∑

Γ∈Gerr
N

∏

b∈Γ

Ub

∣

∣

∣ ≤
∑

F⊂E0 :F 6=∅

∣

∣

∣

∑

Γ∈Gerr
N

(F)

∏

b∈Γ

Ub

∣

∣

∣ .

It suffices to show that the contribution to (2.8) due to each term
∑

Γ∈Gerr
N

(F)

∏

b∈Γ
Ub

obeys the bound of Proposition 2.8.

For Γ ∈ Gerr
N

(F), e = (e1, e2) ∈ F and i = 1, 2, we define Γe,i = Γe,i(Γ) to be the set

of bonds st ∈ Γ that have an endpoint on branch Te and that cover ei . By definition of
Gerr

N (F), Γe,i 6= ∅. We select a unique bond j iki ∈ Γe,i according to the procedure of
Definition 5.1, with j i /∈ Te, ki ∈ Te. We refer to jiki as the bond associated to Te near

ei . Given Γ ∈ Gerr
N

(F) and e ∈ F, we construct a graph PΓ(e) = {s1t1, . . . , sltl} ⊂ Γ

on a subnetwork containing Te as follows. We set s1t1 = j1k1, and then perform the
Te-lace construction of Section 5.1 along Te in the direction from e1 to e2 until k2 is
covered, obtaining s1t1, . . . , sl−1tl−1. Then we set sltl = k2 j2. Let

(9.2) PΓ =

⋃

e∈F

PΓ(e).
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Each PΓ(e) induces a subnetwork Je(Γ), which is either a path or a bubble, con-

sisting of the path from s1 to tl via Te, i.e., the path s1 → e1
e
−→ e2 → tl that contains

no branch points except e1 and e2. This path may close up on itself, as depicted in
Figure 11.

Te

T f

Je(Γ)

J f (Γ)

Figure 11: An example of Γ ∈ G
err
N (F), with its corresponding Je(Γ) and J f (Γ), for F = {e, f }.

A graph bond covers the interval on its concave side.

Now we resum
∑

Γ∈Gerr
N

(F)

∏

b∈Γ
Ub as in (5.2). Let e ∈ F, and let ai be a path point

on one of the branches adjacent to Te at ei (i = 1, 2). Let Je(a1, a2) denote the path

or bubble determined by travelling from a1 to a2 via Te, as above. We write PF,~x =

PF,~x(ω) for the set of all graphs L =
⋃

e∈F Le for which the collection (Le : e ∈ F)
satisfies the following two properties:

1. Le is a lace on Je(a1, a2) for some a1, a2, where we regard Je(a1, a2) as a “path”
even in the case where it is a bubble. See Figure 11. In addition, the only bond in
Le that covers ei is the bond in Le that is associated to Te near ei (i = 1, 2).

2. If b ∈ Le is associated to Te near ei among bonds in Le, then, among all bonds in

L, it is associated to Te near ei .

The decomposition of L ∈ PF,~x into constituents Le is then unique. Given L ∈ PF,~x,

we define QF,~x(L) to be the set of bonds b ∈ VN ∪ HN that are compatible with
L in the sense that PL∪{b} = L. We will not need a precise description of the set
QF,~x(L), only some of its simple properties. First, we need that similarly to the lace
LΓ defined in Section 5.1, given Γ ∈ Gerr

N
(F), we have PΓ = L if and only if L ⊂ Γ is

a graph in PF,~x and Γ \ L ⊂ QF,~x(L). This follows as in [5, Proposition 2.6], because
the bonds in PΓ are selected from Γ according to some optimality conditions, and
QF,~x(L) is precisely the set of bonds whose presence does not destroy these optimality
conditions. Therefore, by resumming as in (5.2), we obtain

(9.3)
∑

Γ∈Gerr
N

(F)

∏

b∈Γ

Ub =

∑

L∈PF,~x

[

∏

b∈L

Ub

]

∏

b∈QF,~x(L)

[1 + Ub].

Now that the resummation has been performed and the interaction has been partially
restored via the compatible bonds, we may take absolute values inside sums.

The contribution to ϕν(~x) due to the term |
∑

Γ∈Gerr
N

(F)

∏

b∈Γ
Ub| in (9.1) is thus

bounded by

(9.4)

∞
∑

N=2

∑

~n∈N|E|

∑

ω∈ΩN(~x)

Wzc
(ω)

∑

L∈P
(N)
F,~x

[

∏

b∈L

[−Ub(ω)]
]

∏

b∈QF,~x(L)

[1 + Ub(ω)],
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where P
(N)
F,~x is the set of graphs in PF,~x consisting of exactly N bonds. To proceed we

need a second property of QF,~x(L), which we now describe. The branch points of the

network together with the endpoints of bonds in L subdivide N into intervals, as in
the discussion following (7.2). Any bond that has both endpoints in one of these
intervals lies in QF,~x, again because of the way PΓ was defined. For example, for each
e ∈ E such that T◦

e is disjoint from J f (L) for all f ∈ F, the path Te comprises an

interval as mentioned above, and we have HN,e ⊂ QF,~x(L). All other Te are broken
up into smaller intervals. It follows that in (9.4) we can restrict the sum over ω so
that each interval is embedded as a self-avoiding walk. We bound the contribution of
all other b ∈ QF,~x using 1 + Ub ≤ 1.

As in Section 7.1, (9.4) is bounded by
∑

F∈D
(N)
F (~x) A(F), where D

(N)
F (~x) is a set of

diagrams. An example of a diagram is given in Figure 12. Diagrams can be quite
complicated when ν is large and F is large. Fortunately, it will not be necessary in the
proof to understand the detailed structure of these diagrams. Instead, we will apply
a reduction process that allows us to analyse in detail just two special cases.

0

1

2

3

4 0 v1v2

v3 v4

Figure 12: An example of an L ∈ P
(2)
F,~x with F = (2, 3), together with the diagram in D

(2)
F (~x)

that bounds its contribution to ϕν(~x).

A power of β will control the sum over N of the diagrams, as before. To see this,

given L ∈ PF,~x, let N(e) denote the number of bonds in Le that have both endpoints
on Te. Using the fact that Le is a lace, it is not hard to show that at least N (e) −1 of the
subintervals of Te induced by Le have positive length (for a lower bound, we count
only the subintervals on Te that are not covered by the bonds in Le that cover e1 and

e2). Thus the exponent of β is at least

(9.5)
∑

e∈F

max{0,N(e) − 1} ≥ max{0,N − const.},

where the constant only depends on ν. We will estimate the diagrams by reducing
them to one of two simple diagrams. The number of diagrams in D

(N)
F (~x) can be

shown to be bounded by cN , so this is still controlled by the power of β.

Fix an arbitrary f ∈ F. Given L ∈ PF,~x, let L f = PL( f ) ⊂ L be the corresponding

lace on J f (L). We obtain an upper bound by eliminating all bonds st ∈ L \ L f .
Indeed, it follows from an application of (3.4) that the elimination of a bond from
a lace gives rise to a diagram that is an upper bound on the diagram corresponding
to the original lace, up to a constant multiple (compare the application of (3.4) in
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Case 3 of Section 7.3). This is natural, since a diagram with an additional intersection
should not be larger than a diagram in which the intersection is not required. We may

therefore restrict attention to the case L = L f . There are two possibilities, depending
on whether J f (L) is a path or a bubble, as in Figure 11.

Suppose that L = L f , and consider first the case where J f (L) is a path. In this
case, L = {s1t1, . . . , sltl}, with s1t1 and sltl associated to T f near the endpoints f1, f2

of f . We claim that, up to a constant cl (which is compensated by a power of β),
the diagram corresponding to L is bounded above by the diagram corresponding to
the lace with just two bonds. To see this, suppose l ≥ 3, let wi = ω(si) = ω(ti) for
i = 1, 2, 3, w = ω( f1), and let u be the variable adjacent to t2 in the direction of tl (so

u = w4 if l ≥ 4 and u = ω( f2) if l = 3). See Figure 13. By (3.4),

∑

w2∈Zd

1

|||w2 − w|||d−2

1

|||w2 − w1|||d−2

1

|||w2 − w3|||d−2

1

|||w2 − u|||d−2

≤
c

|||w − w3|||d−2

1

|||w1 − u|||d−2
,

(9.6)

and this estimate can be applied recursively to prove the claim. It remains to bound
the diagram corresponding to the lace with two bonds. In this diagram there is a
factor |||xe|||

2−d for each e ∈ E such that J f (L)∩T◦
e = ∅. There are either one or two

edges e 6= f , such that J f (L) ∩ T◦
e 6= ∅. For any such edge the portion disjoint from

J f (L) contributes a factor bounded by c|||xe|||
2−d, since both bonds in L are in VN.

Thus the diagram corresponding to the lace with two bonds makes a contribution

[

∏

e∈E\{ f }

1

|||xe|||d−2

]

×
∑

z1,z2∈B(x f )

1

|||z1|||d−2

1

|||z2|||d−2

1

|||x f − z1|||d−2

1

|||x f + z2|||d−2

1

|||x f + z2 − z1|||d−2
,

(9.7)

and the summation is bounded, as required, by a multiple of |||x f |||
4−3(d−2)

=

|||x f |||
−(d−2) |||x f |||

−2(d−4).
A similar analysis can be applied in the case where J f (L) is a bubble, rather than a

path. Let f ′ denote the edge which, together with f , comprises the bubble. This time
the reduced lace gives rise to the diagram with value

[

∏

e∈E\{ f , f ′}

1

|||xe|||d−2

]

×
∑

z1,z2∈B(x f )

1

|||x f − z1|||2(d−2)

1

|||x f + z2|||2(d−2)

1

|||x f + z2 − z1|||2(d−2)
,

(9.8)

and the summation is bounded by a multiple of

|||x f |||
2d−6(d−2)

= |||x f |||
−2(d−2) |||x f |||

−2(d−4),
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Figure 13: (a) Diagrammatic representation of the reduction step (9.6). Vertex labels on the

upper figure represent the lattice sites in Z
d to which the vertices are embedded. (b) The

two-bond laces corresponding to the sums over z1, z2 in (9.7) and (9.8), respectively.
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