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ON THE NUMBER OF DIFFEOMORPHISM CLASSES IN A
CERTAIN CLASS OF RIEMANNIAN MANIFOLDS

TAKAO YAMAGUCHI

§0. Introduction

The study of finiteness for Riemannian manifolds, which has been
done originally by J. Cheeger [5] and A. Weinstein [13], is to investigate
what bounds on the sizes of geometrical quantities imply finiteness of
topological types, —e.g. homotopy types, homeomorphism or diffeomorphism
classes— of manifolds admitting metrics which satisfy the bounds. For
a Riemannian manifold M we denote by R, and K, respectively the
curvature tensor and the sectional curvature, by Vol (M) the volume, and
by diam (M) the diameter.

CHEEGER’S FINITENESS THEOREM I [5]. For given n, 4, V>0 there
exist only finitely many pairwise non-diffeomorphic (non-homeomorphic) closed
n(s£4)-manifolds (4-manifolds) which admit metrics such that |K,| < A,
diam (M) < 1, Vol (M) > V.

He proved directly finiteness up to homeomorphism for all dimension,
and then for n # 4 used the results of Kirby and Siebenmann which show
that finiteness up to homeomorphism implies finiteness up to diffeomor-
phism. For n = 4, he put a stronger bound on ||VR|, where VR denotes
the covariant derivative of curvature tensor R. For given n, 4, 4,, V>0,
we denote by IM*(4, 4,, V) a class of closed n-dimensional Riemannian
manifolds M which satisfy the following bounds;

|Ku| < £, PRyl < 4, diam(M) <1, Vol(M)>V,
and set M4, 4,, V) = U, |4, 4,, V).

CHEEGER’S FINITENESS THEOREM II [5]. For given n, 4, 4,, V> 0, the
number #4i:c M™(4, A;, V) of diffeomorphism classes in M*(4, 4,, V) is finite.

In the proof of the Cheeger finiteness theorem and our results as
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well, an estimate of the injectivity radius i(M) of the exponential map
on M plays an important role. But since in his proof Ascoli’s theorem
is used essentially, it seems to us that it is impossible to bound the
number #a: M™(4, 4, V) explicitly from above by using the proof as in
[6]. The main purpose of this paper is to show the existence of an upper
bound for #u M(4, 4,, V) and express upper bounds for #; M™(4, 4,, V)
and #ae M4, 4, V) explicitly in terms of a priori given constants. For
a Riemannian manifold we denote by d the distance function induced
from the Riemannian metric.
We obtain the following theorems.

TueoreM 1. For given n, A, A;,, R>0 there exist ¢, = ¢(n) >0, r, =
ri(n, 4, 4;, R) > 0 such that if complete n-dimensional manifolds M and M
satisfy the following conditions, then M is diffeomorphic to M;

1) |Kyl, |Kg| < A&, PRy, [VRg| < 4, (M), (M) > R,

2) for some r, r<r, and e, ¢<e¢, there exist 2-"**r-dense and
2-+9 r.discrete subsets {p;} C M, {q.;} € M such that the correspondence
D:i—>q, is bijective and (1 + ¢)~' < d(q;, q;)/d(p:, p;) < 1+ ¢ for all p,, p,
with d(p,, p;) < 20r. ¢, and r, can be written explicitly; e.g.

g, = 107%(n + 1)~3(n!)-22-@n2+4n
r, = min {R/140, £,/204, ¥10-n=52- @A 71 (102n° 42 + 1))} .

For a metric space X a subset A is §-dense iff for any x e X, d(x, A)
< §. A subset A is §-discrete iff any t wo points of A have the distance

at least 4.

Let w, denote the volume of the standard unit n-sphere. If we set
R = min {z/4, (n — 1)V|Qw,_,e" ")}, then R gives a lower bound of the
injectivity radii i(M) for all M in IM™(4, 4,, V), and every M in (4, 4, V)
has the dimension at most n,, where n, = 2max {[log (8***/k! V)], k} + 3,
k= [re¥*'] 4+ 1, (§ 1. Lemma). Let ¢ = ¢(n), r, = r(n, 4, 4,, R) be as in
Theorem 1.

THEOREM 2.
# n( ’ Al’ ) < (2%“7/517'3)@70)—'-1]\,0 ’
diff
# ( » 4 V ) < 2"0: (2%“7/517'%)(?’0)4-1]\[3’
diff =

where, N, = [e?™-V/(A2~+9pr)"],
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Here we descrive another application of Theorem 1. For a bi-Lipschitz
map f: X—Y between two metric spaces X and Y, set

Uf):= inf{L; L=* < d(f(x), f(y)]d(x, y) < L for all x,y € X}.
DerFiniTION. Define po(X, Y) by

{inf {log 1{f); f: X—Y is bi-Lipschitz map}
oo if any bi-Lipschitz map does not exist.

It is clear that p is symmetric and satisfies the triangle inequality.
In the case X and Y are compact, Ascoil’s theorem implies

o(X,Y) =0 iff X is isometric to Y.

For a positive integer n we denote by U™ a class of complete n-dimensional
Riemannian manifolds M with

|Ku| < oo, [[FRy| < oo, iM)>0.

Of course A" contains all compact Riemannian manifolds of dimension n.
Conversely, according to [7] every noncompact n-manifold admits a metric
which belongs to the class A". A theorem of Shikata [12] states that
there exists an e(n) > 0 depending only on n such that if compact n-
dimensional Riemannian manifolds M and N satisfy o(M, N) < e(n), then
they are diffeomorphic. We do not know whether p is distance on %~,
but can extend the Shikata theorem to the class U*. Let ¢ = &,(n) be as
in Theorem 1 again.

CorOLLARY 3. If M and N e A" satisfy p(M, N) < log (1 + &), then
they are diffeomorphic.

Recently M. Gromov [8], [9] states without giving detail of the proof
that a similar result to Theorem 1 holds without the assumption for ||FR|.
But our Theorem 1 is still valid for noncompact manifolds. However the
assumption for ||[FR|| is essential in the proof of our Theorem 1. Our
proof is of course different from Gromov’s one. The main tool of our
proof is a technique of center of mass which is developed in [2].

The remainder of the paper is organized as follows: Assuming The-
orem 1, the proofs of Theorem 2 and Corollary 3 are given in Section 1.
Theorem 1 is proved in Section 2- Section 4.

The author wishes to thank Professor K. Shichama for his advice
and encouragement.
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§1. Proofs of Theorem 2 and Corollary 3

For a § > 0, a system of points {x;} in a metric space X is called a
d-maximal system of X if {x;} is maximal with respect to the property that
the distance between any two of them is greater than or equal to 4.
{x;} is a d-maximal iff it is a §-dense and §-discrete subset. We show
that there exists a d-maximal system of every Riemannian manifold M,
Take a sequence X, of compact subsets of M such that U, X, = M,
}0(“1 5 X,, where A denotes the interior of a set A. We denote by i(X,)
the infimum of the injectivity radius of the exponential map at points
of X,, and set r,:= % min {0, i(X,)}. Take a J-maximal system {p}}icicn,
of X,. Notice that since the balls B(pj}, r,) have compact closure, they
are contained in some X,, and together with the fact that B(p;, r,) are
disjoint, this implies

N, < Vol (X,,)/min Vol (B(p;, 1)) .

By induction, it is possible to take a d-maximal system {pf}<.<n, of X,
such that p* = p!/ for every j <k and every i,1< i< N,. Then the
system (Ui-1 {Pi}w,_,s1<i<n, 18 @ d-maximal system of M, where N,:= 0.

Proof of Corollary 3 assuming Theorem 1. By the assumption there
exists a bi-Lipschitz map f: M — N such that I(f) <1+ &(n). We may
assume

| Kl | Kn| < £, PRy, [VRy || < 4y, dM), iN) > R,

for some 4, 4, R>0. Let r,=r(n, 4, 4,, R) be as in Theorem 1, and
take a (1 4 &)2-"*¥r-maximal system {p,} of M. Since f is bi-Lipschitz,
it is surjective. Therefore it is easy to show that {f(p,)} is 2-"*¥r,-dense
and 2-®+¥r -discrete. Q.E.D.

To prove Theorem 2 we recall an injectivity radius estimate. From
now on, for given n and § > 0, let v(6) (resp. ©(5)) denote the volume of
a ¢-ball in the n-dimensional hyperbolic space with constant curvature
— /* (resp. n-sphere with constant curvature 4*). The following lemma is
a dimension independent version of [5], [10] and [11].

LemMA. For given A, V > 0, there exist n,= n(4, V) and R,= R4, V)
> 0 such that if M is an n-dimensional compact Riemannian manifold such
that |[K,| < A2, diam (M) < 1, Vol (M) > V, then
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1) n=dmM<n,
@) (M) > min {z/4, (n — DV/|Cw, ™ ")} > R,
where n, and R, can be written explicitly as

n, = 2max {[log (**4k! V)|, k} + 8, k= [re**'] + 1,
R, = min {z/4, (n — V|20, "}

2<n<no
Proof. For (1), the Rauch comparison theorem yields
V< Vol (M) < u(l) < 0,1,
where
2z™/(m — 1)! (n = 2m)
G-t = {2(27r)’"/(2m —1@m — 8)---3-1 (n=2m+1).
Notice that

lim w,_e" " =0,

n—co

It is an easy calculation to estimate such an n, that o,_,e" "4 <V for
all n>n, For (2), it suffices to bound the lengths of closed geodesics
from below. Suppose that there is a closed geodesic with length I. The
Rauch comparison theorem implies that Vol (/) is not greater than the
volume of the tublar neighborhood of radius 1 of a geodesic segment
with length 7 in the n-dimensional hyperbolic space with constant cur-
vature —/A*. Therefore we get

Vol(M) < Lo, , j ' (sinh At/ 4)"~ cosh Atdt
0

= [-@,_,(sinh A)"~Y/(n — 14"~
< 1-w,_pe™(n — 1).

Hence I > (n — 1) V/(w,-,e" %), and this yields (2). Q.E.D.

Proof of Theorem 2 assuming Theorem 1. For each M, e IN"(4, 4,, V),
take a 2-**®r,-maximal system {p;}, of M,. Note that since diam (M,) < 1,

§{(pi}, < vQ/B@ " *7r) < [e-94(42-"*r)] = N,.

Set m:= #4::M™(4, 4,, V), L:= 1/2""*®r)) and ¢] ;= /(21 + ¢)L). Suppose
that

m > @ jer)EIVN, > (Li2eh] + DEOON,.
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Then M"(4, 4, V) contains at least [m/N,] pairwise non-diffeomorphic
manifolds {M,}.., with the 2-**®r-maximal systems whose numbers are
all the same, say N,, N, < N, We concider the set

3= {(ik, J; 1<k< (§V>= N‘}

of all the distinct pairs of the indices of the systems {p;}; for {M,},c..
For each M, and M, (o, f€ A), and for each (i, j.) € 2, we set U, B; k) =
d(pt, p5)ld(ps, ps.). Notice that L' < Ue, B; k) < L. We fix some a € A.
For (i,,j) e 2 there is a ¢, €[L~, L] such that if

A= {BeA; U, B; 1) elt, — &, t, + €I}

then # A, > [m/NJ(IL/2] + 1)='. By induction, for (i;,j.) €2 there is a
t, € [L7', L] such that if

Avi={BeAcs; Ua, B; R) €[t — &, t: + &}

then # A, > [m/NJ([L/2¢;] + 1)-*. By the assumption on m, it is possible
to take distinct pair g and B in Ay, Then |, 8; k) — U, §'; k)| < 2¢;
for all 2, 1 < k < Nj, and this implies (1 + ¢)"' < I(8, f'; k) <1+ ¢. This
is a contradiction since by Theorem 1 M, is diffeomorphic to M,. The
estimate for #4: IM(4, 4,, V) is an immediate consequence of the previous
lemma (1) and the estimate for #u. M"(4, 4,, V). Q.E.D.

§2. Construction of local diffeomorphisms

The rest of this paper is devoted to the proof of Theorem 1. For
given n, 4, R>0, set R,:= }min {R, n/4} and let r and ¢ be adjustable
parameters with 0 <r < R,/70, 0 < ¢ < 2-*"_ From now on we denote by
M and M complete n-dimensional Riemannian manifolds which satisfy the
conditions in Theorem 1 for r and . In the final part of the proof, we
will set r < r, and e <e¢. We use the bound for |FR| actually only in
Section 4. Let {p,} € M and {q;} € M be 2-***r-dense and 2-**r-discrete
subsets as in Theorem 1. For given pe M and § > 0, we denote by M,
the tangent space of M at p, and by B(p,d) the §-ball with center p.
Note that all &-balls with 6 < R, in M and M are convex and that by
the Rauch comparison theorem, for any v, w € M, with ||v|, |w| <t < R,

sin At/ At < d(exp, v, exp, w)/|v — w| < sinh At/A¢.

The purpose of this section is to prove the following lemma.
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LemMA 2.1. For each i there exists a linear isometry I, from M, te M,,
such that if F,:= exp,, ol oexp;': B(p;, R)— B(q,, R,), then d(F(p,),q,)
< &r for every p, with d(p,, p;) < 10r, where

8, = 2n + 1)(6™+2n120 Y1240 Ar + 2e) .

Proof. Set p,:= exp;(p;) and §,:= exp;(q,). Then {p;} and {G,} are
2-™*r.dense and 2-"*""r-discrete subsets of the 10r-ball around 0 and
satisfy (1+¢)7'e™™" < [@; — @I/l B; — Bell < (L + )™ for all j, &, j +# k.
Hence Lemma 2.1 is a direct consequence of the following.

Lemma 2.1. Let {x;} be a 2-"*"r-dense and 2~ "*'“r-discrete subset
of B(0,r) C R* with x, = 0. If a system {y,} of points in B(0, r) with y, = 0
satisfies (1 + &)' < ||y, — v l/llx; — x;]] <1+ ¢ for every i j. Then there
exists a linear isometry I of R™ such that

[1(x) — p:ll < (0 + 1)(8"** - nl.20/D7. gl2)/ey
for every i.

For the proof of the Lemma 2.1, it is convenient to introduce the
following notion, a normal system, and to investigate some properties of
a normal system. This is done in Lemma 2.3 - Lemma 2.5.

DeriNiTiON 2.2. For 0 < <1 and r > 0, we say that a system of n
points {p}icic. of R" is (r, p)-normal if (1 — pr < ||p; || <7, Kps P < 97
for every i #j.

LemMma 2.3. For every L>n + 1, let {p;hicicn be an (r,2-%)-normal
system for R". If we set pj:=p, — Py, Uty — -+ — Dy, Uy_1PUs_y, Uyi=
PPl inductively, then

D pill =@ — 279 > (1 — 27 9)r,

@ Kpwupl<27%0r
for every i, k with k > 1.

Proof. For i =1, (1) and (2) are trivial. Assume (1), (2) for j, 1 <j
< i. Then we get

NDrci 2 = 1 Dssr P — {Dsus, r)* — + o — D1, Us)*
> (1 — 275 — 273D L QAL
>(1—2°% 0 > (1 — 9-&-i-D)2p2

and for k >1 4+ 1,
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[{Pws Uisi)| < N Dsi | 'K Pws Posi)| + [{Disss UD||[{Pws )| + - -+

+ [{Piss, W[ Pws %))
< 227F 4 27MED oL QML) L Y Lritlp

Thus for L > n + 1, the Gram-Schmidt orthonormalization procedure
yields the orthonormal basis {u;} for R" via an (r, 2-%)-normal system {p.}.

LemmA 2.4. If {p;hicicn 18 an (r, 27 %)-normal system for R", and if for
some 6 > 0,x and y in R™ satisfy

Il Iyl < vy il = 12 <6, Hllx —poll = ly —pull| < 6
for all i, 1 < i< n, then ||x — y| < 3(n + 27%*"**)a.

Proof. Notice that

[{po x—=y| = 27" |lx|* — I¥I* + llp: — ¥I* — llp:s — x[*| < 3ér.
By induction, we show that
() [{ws, x — ¥ < 3(1 + 275 +)%.
This is trivial for i = 1. Assume (x) for j, 1 < j < i. Then we have with

Lemma 2.3

Ktrry,  — ¥ < 1D5eall (L Diss, & — D] + [{Dias, ud|[<tts,  — YD + - - -
+ P Ui ||ty X — 3]
< B(L — 27E )L 4 2 EO(L 4 27
-+ 2—(L—i)(1 + 2—L+i+l)2)5
< 31 + 2_L+“2)(1 4 27142 4L 27 ErieYG
< 3(1 + 2—L+i+2)25.

Hence we conclude that
I — 3l < 32 1<uey % — D] < 35 3(1 4 27544416 < 3(n + 275" +)5.
1 1
Q.E.D.

LemMmA 25. For k,1<k<n,and L >k + 2, let {e}1cic CR" be a
(1, 2-%)-normal system for the linear subspace spanned by {e;} with |e;]| =1
for all i. If two unit vectors x and y which belong to Span {e;},.;<
satisfy the following inequalities;

|§:(ei’ x) - @:(euy)l g [24 (1 S i g k - 1)9 <x) ek> 2 3/4’ <y’ ek> 2 3/4a
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then < (x,5) < 6((k— 1) + 27%+**)a, where < (x,y) denotes the angle
between x and y.

Proof. Notice that [{e;, x) — {e;, )| < a1 <Li<k—1), and
27 (%, ¥) < sin (%, 9) < [lx — vl

Hence it suffices to estimate ||x — y|| from above. Let {u;} be an ortho-
normal basis for Span {e;} obtained by the Gram Schmidt process from {e,}.
From Lemma 2.4 (x), we get |[{u;,, x — )| < (1 +2 " Ha(1l<i< k- 1)
By Lemma 2.3,

(U, 2 2 el "' (Cew %) — [<ews widl[{tr, 2] — - -+ — [{ew, Un-|[<Ui-1, £D])
2 <ek, x> _— 2-L+1 e e e — 2—L+lc—1 2 3/4 _— 2—L+k 2 1/2‘

Hence the inequality;

[ty 237 — ot ] = |5ty 03 — Gt 39| < 253 iy 2 — )|
implies
Kty % = )1 < 2351w ® = 9,

and this yields that —

L k=1
lx — ¥l < Zl:Ku“ x—y <3 le (1 + 2 L+ivtyy
<3 — D + 25, QED.

From now we return to the situation in Lemma 2.1’. Let {x;} be a
2-+Dpr.dense and 2-"*“r-discrete subset of B(0,r) and let {y,} be a
system of points in B(0, r) with y, = 0 such that

A+ 97" < |lye —yill/llxs — x| <14 ¢ for every i +j.
LeEMMA 2.6. |0 (x;, x;) — <L (¥, )| < 202+%'2 for every i + j.

Proof. Set «; ;:= J(x,, x;) and B, ;:= L (¥;,¥;). First we show that
lcosa; ; — cos B;,;] < 2"+®e, Set £k = 1 + ¢, then we get
cos at;; = ([la]l* + lloe;l1* — lloce — 2;11)/2] 2] || 2, |
< Elyall® + Myl — &%y — ylIH/20 2 1]
= (Qlly:lllly;ll cos Bi; + ly: — ¥ — £ y: — y5lID/2]|% ]

= x*cos B ;- [yallllysll/ sl |l + 6 — £7)ye — ;172012 |2
< k*cos fi,; + (B — )"0, 4 £,
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cos a;,; — cos B;; < (k' — 1) cos B,,; + (8° — £~k + £F)
S Qn+13), .
Hence we can get that |cos a;,; — cos f,,;| < 2"*P¢, and this yields
2sin (a;,; — Bi,s|/2))" < 20+,
l@; — Bi,4] < 2sin7'((2"%)')
S 2(n/2)+8€1/2 (6 g 2—(n+14)) . Q.E.D>

LemmA 2.7. There exist {X,}ic;<n C {x:} and {y,}i<j<n C {y:} such that
they are (r, 2-"*¥)-normal systems for R".

Proof. Take an orthogonal basis {w,} for R™ such that |w;|| =
(1 —2-“*r, and by denseness, take {x,}<;<. C {x;} such that ||x,, — w;|
< 2-**?r.  An easy calculation shows that {X,}, ;.. and the correspond-
ing {¥.}<;<n have the required properties. Q.E.D.

Proof of Lemma 2.1'. Let {u,} and {v;} be the orthonormal bases for
R* obtained by applying the Gram-Schmidt process to {x,} and {y,}
respectively. A required linear isometry I of R™ is defined by I(u,): = v,.
If we set X, = I(x,)/lI(x,,)] and Yy = ¥n./l|¥n.ll, then we have with
Lemma 2.3 (1)

<Uky Xk>, <Uk, Yk> > 1 — 2-(n+e-k)
This yields

(X, Yi) = cos (LL(X,, vi) + L (g, Vi)
>2cos’0 — 1 (cos f:=1 — 2-(n+¢-0)
>1— 2-+2-k) > 3/4,
AssERTION 1. L (I(x,,), ¥my) < (B — 5Y6* %k — 1)1e’. &/i= 2/D3%\2
Proof. From the triangle inequality and Lemma 2.6, we have
Loy L(0,)) < LT () L)) + L T(Xy)s Vo)
L L Wiy Ymd) + LA(x,), Vi) + €
and similarly,

@:(ymi, I(xmk)) > @:(ymk’ y'm.z) - {(I(xmi)r ymi) - ¢ ’

hence,

| L Wmor L)) — LYo Y| < LT (X ), V) + €
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Clearly, {(I(xn),Ym) = 0. Assume the assertion for i, 1<i<k—1,
then we get for every i (1 <i<k —1)

l@:(ymn I(x‘mk)) - {(ymu ymk)l S (61' - 5)61_2(1: - 1)!5’ 'l"' 5,
< ((6k — 11)6*~(k — 2)! + 1)¢.

Notice that {¥n./|lYmll}i<i<x 18 a (1, 27"*9)-normal system for its spanning
subspace. Hence applying Lemma 2.5 to {y.,/||¥nl}i<i<i, Xi and Y, in
place of {e;}i<:<x, ¥ and y, we conclude

A (Xpy) Ymz) < (6k — 5)6 -2k — 1)1€’. Q.E.D.

ASSERTION 2. [[1(x) = Yl — 172 = Ymylll < (2R16)'r
for every i and every k, 1 < k < n.

This and Lemma 2.4 complete the proof of Lemma 2.1’

Proof of Assertion 2. Assertion 1 and the triangle inequality imply
that

{(I(xt)s ymk) g {(I(xi), I(xmk) + {(I(xmk)s ymk)
< Lo Im) + (6 — 5)6* (R — D! + 1),

and similarly,

LA(®x), Ymi) = L (Vi Ymi) — (6k — 5)8°*(k — ! + 1)¢’,
hence,

| LA, Yme) — L (Vi Ymd| < ((6k — 5)6“*(k — 1! + 1)e’.
Therefore we have

HHI(x) = Ymell® = 156 — Fmell*]
< @ — 1yall*] + 20 Ymell Y3l cos L(Yis Yma)
— [H(x)ll cos LA (%), Vi)
where |[|I(x,)||* — [|3:]|*| < 2er* and

1721l cos (¥ Ym) — (x| cos LT(Xe), Yms)|
S r(lé:(yiy ymk) - {(I(xz)? ymk) + 6)
< ((6k — 5)8*-*(k — 1)! + 2)é'r.

Hence the inequality

l”I(xi) - ymk” - “y'l - ymk[H S HII(xi) - ymk“2 - “yi - ymk“2ll/2
implies the required estimate. Q.E.D.
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3. Reduction and C’-estimates
§

In this section we average the local diffeomorphisms F;, constructed
in the previous section, with a center of mass technique to obtain a
smooth map F: M — M and control the C° error between F and F,. Let
v be a smooth function such that

¥|[0,4] =1, ¥|[5,0)=0, 0>+ > —2.
For every x € M, define the weights'¢,(x) of Fi(x) by
$u(x):= (d(x, p.)[r)] Z]] Y(d(x, p,)r) .

Notice that all p, with d(x, p;) < br are finite and the corresponding
F,(x) are contained in some convex ball B. It is easy from convexity
argument to see that for a fixed x € M, the function C,: M— R defined
by C.(y) = %> ¢:(x)d*(y, F(x)) is C~ strongly convex on B, and has a
unique minimum point on M. Setting

F(x):= the unique minimum point of C,

we define a map F: M— M. We show that F is smooth. Define a map
V from a sufficiently small neighborhood of the graph of F in M X M to
the tangent bundle TM by

Vi, 9): = =3 4.(x) expy (Fi().

Since V(x,y) = (grad C,)(y), we have V(x, F(x)) = 0. Let K: TTM — TM
be the connection map, and define a map D,V ,,: M, - M, by D,V,, ,,(3(0))
=V, V(x, y(t)), where we consider V(x,y(t)) as a vector field along a
smooth curve y(t) with y(0) = y. Notice that

K(d/dt V(x,y(t))|:=0) = D, Vs, n(5(0),

and D,V ,, is a linear map. From the standard Jacobi fields estimates
(See (4.3) in the proof of Lemma 4.2),

1D,V iz, 1»(3(0)) — 3(0)]] < (304r)[[3(0)]| < || 3(0)]] .
This yields that D,V ,, is a linear isomorphism, and hence for y = F(x),
the space spanned by {d/dt V(x,y(?)|.-s} and the (horizontal) tangent
space of the zero section of TM at (F(x),0) span (TM) .- Therefore

the implicit function theorem implies the smoothness of F.
From now on we fix x,¢ M and set y,:= F(x,).
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Lemma 3.1. dF,, has maximal rank iff
(x) 2. dfdt \(d(x(t), P2)/1)]i=o- XDy (Fi(%o)
+ 25 W(d(%o, p)fr)- d(expy)dF(2(0))) # 0

for every smooth curve x(t) with x(0) = x, and x(0) = 0.

Proof. Differentiating the curve V(x(¢), F(x(t))) in the zero section
of TM, we have

(3.2 dfdt V(x(£), ¥ li=o + D2Vis,, v (@F(2(0))) = 0.
Hence dF,, has maximal rank iff d/dt V(x(t), ¥))|.-o + 0. Since V(x,, y,) =0,
dldt V(x(2), ¥o) -0
(3.3) = — 2. dldt (d(x(®), PIIT)|ewo X0 (F %)/ Z]: ¥(d(%, P,)IT)
— 2. $:(x0)- d(exp; )AF(%(0))) .

This completes the proof. Q.E.D.

We will show in Section 4 that in the above (), the norm of the
first term is smaller than that of the second if r and ¢ are taken sufficiently
small. To do this we must first estimate the numbers of the sum in each
term.

LemMa 3.4. If N,:= §{i; ¥(d(xo, p))[r) = 1} and Ny:= §{i: y(d(x,, p:)[r)
# 0}, then N,/N, < 6.

Proof. Since {p;} is 2-*®r-dense, the union of B(p,, 2 "*®r) with
d(x,, p;) < 4r covers the 3.9r-ball around x, and since {p;} is 2-"*9r-
discrete, the family of B(p,, 2-"*'”r) with d(x,, p;) < 5r are disjoint and
contained in the 5.1r-ball around x,. It follows from the Rauch com-
parison theorem that

N, > 53.90)[v@-""0r), N, < u.1n)[52" 7).
Hence we can get an explicit bound for IV,/NV,. Q.E.D.

Now we fix i and %k such that d(x, p,), d(x, p,) < 5r, and estimate
d(F(xy), Fi(x,)).

Lemma 3.5, |d(q;, Fi(x,)) — d(q;, Fi(x,))| < d.r for every j with d(p:, p)),
d(p:, p;) < 10r, where 6, = 2(3, + 600 Ar).
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Proof. Notice that

e~ < d(F(x0), Fi(py))|d(%, py) < €7
By Lemma 2.1,

|d(g;, Fu(%:)) — d(Fu(py), Fu(x)| < 6ir.
Hence the triangle inequality implies
(3.6) |d(p;, %) — d(q;, Fu(xo))| < (8,7 + 404r-d(p;, x0)) < 6:7/2.
From the same estimate for i, we have the required bound. Q.E.D.

Here we assume the following bound on ¢ and r in order to bound
0. < 1/2;

(%) g, 204r < 27%(n + 1)~4(6"*2n! 2D +T)-2
This bound assures that d(F(x,), Fi(x,)) < 2r/3.
LemMa 3.7. d(Fi(x,), Fi(x,) < 6,r, where 6, = 8(n + 1)d..

Proof. Take a q,,€{g:} such that d(gu, Fi(x)) <2 "*¥r, and let
%, and x, denote the images of Fy(x,) and Fy(x,) by exp;,. Then from
the above bound (xx) we have that |x.||, |x;]] < r. By Lemma 2.7, we can
choose {gn}i<;<n Out of {g;} such that if §,, denotes the image of g,, by
exp,., then {g,}icj<n 1is an (r, 2°"*Y) normal system for M,,. Notice
that {pn}icj<n corresponding to {@m}ic;<.» are contained in B(py, 10r)N
B(p;, 10r). From Lemma 3.5 we have

IIIQ’”Ej - xk” - HQMJ - xi]” < 2527', 0 S] < n,
and together with Lemma 2.4 this yields
d(F(x0), Fi(x)) < 8(n + 1)dor . Q.E.D.

From the definition of F it is clear that d(F(x,), Fy(x,)) < é;r for
every i with d(x, p;) < 5r. Hence we have with Lemma 3.4

122 dfd Wd(@(), PIIT)]iwo X0 (Fi(%o)|
< N2[r)sr || #0)]| < 2-6"3,N, [|%(0) -

3.8

§4. C’-estimates

To estimate the second term in Lemma 3.1 (x) from below, we must
control the error between d(exp;))(dF(%(0))) and d(exp; ) (dF(%(0))). To
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do this it is essential to estimate |dF,(%(0)) — PdF,(%(0))| from above,
where P denotes the parallel translation along the minimizing geodesic
from F,(x,) to F,(x,). This is done in Lemma 4.5.

Lemma 4.1. For each xe M, let {g,}:= {g.}NB(x,r) and N':=}{q.}.
The map @: B(x, r/2) — R defined by ®(y) = d*(q.,,y) satisfies the follow-
ing;

(1) 9 is an embedding, and |d®(v)| > r|v|| for every tangent vector
v on B(x, r/2),

(2) N’ < gn(n+1t)

Proof. The convexity of each component @ of @ implies the injectivity
of @. For a given tangent vector v on B(x, r/2), let ' be a geodesic with
7(0) = v/||lv|]. Take a g,, such that d(q., 7(r/2)) < 2-"*®r. Comparing the
triangle with vertices (7(0), 7(r/2), q.,) to a triangle with the same edge
length in the sphere with constant curvature A4° we have that cos
L (¥(0), 6(0)) > 1/2, where o denote a unique minimizing geodesic from
7(0) to q., This yields that

1dOW)|| = |dP'(v)| = rijvl| -
The same proof as in Lemma 3.4 implies (2). Q.E.D.

We fix i and & with d(p;, x,), d(ps, x,) < 5r and take an embedding
@: B(Fy(x,), r/2) — RY" defined in the previous lemma for F.(x,), where we
set {g.}:= {g}NB(F(x,), r). For a unit tangent vector v at x,, let 7, o
and o; be geodesics such that 7(0) = v, ¢,(0) = dF,(v) and ¢,(0) = dF,(v).
For every q., we set
fi®) = A (Pay T(®)) ,  8m,s(D) = PUF,-T(D),
P, /(D) = D (o, (t)), m=Fk,i.

Lemma 4.2. On [0, r/2],
D 20— 21F) <f7 <2 + 41,
21 — Ah, Je 4 < R, < 21 + Ak, e,
2 lgm; — byl < Qi
where 92, = 82 + 10n*Qr,

Q = 60n(n — )(104,r* + 44°r + 400n* 2 A(Ar)’)e' @ *4+b7
(2) is the only place where we need the assumption for |V R|.

Proof. We consider geodesic veriations
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a(t, s) = expy, s(expg, F.(1(®) ,
B(t, s) = exp,, s(exp;.on(®)) .

Then for a fixed ¢, we have Jacobi fields

Ji(s) = %‘j(a s) and J(s) = ?O,—f(t, 9,

and the second variation formula yields

8 i(®) = 20V 30, To) + {Jo, Vrd D)D), i, (&) = 2, VI X(1) ,
where T, and T denote the vector fields dx/ds and dB/ds. We assert that
() 1 = 2ITIHIJOIF < I )1) < X+ L[ TIPIJOIF,

which implies (1). Let r be a geodesic with |7|| = ||T'|| in the n-sphere S
with constant curvature 4* and I a linear isometry from M, , to S
and W the vector field along r defined by using the parallel translations
along B, ) and r and I. Then a standard comparison argument implies

I, Q) = I, J") = I(W, W) > I(V, V) =V, V'XQD),

where I, denote the index form and V the dJacobi field along z with
V() =0 and V(1) = W(1). It is easy to check that

e oy greye o Sin?A|T||s e LT\
IVE)IF = s’ IlJ* D] +W(IIJ(1)H MM,

<V, V) = |JTQIF + AT cot AT - (IJDIF — 17D,

where J7 denote the tangential component of J. Hence we have that
(I, Q) = 1 — AITPIJD|> Let P be a parallel vector field along
B, ), then we get

IKJ(8) — sJ'(s), PY'| = |s(R(T, J)T, P)| < 24T ||| J ||s .
The integration implies
“.3) [JD) — J' DI < LITFJD) -
It follows
K, JOM| < NJDIT DI < A + LT JD)*.

For (2), we get with (%)
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gm (&) — hip O] < 2Ky, Jo)(1) — (T, I YD) + 21KV 5edi, Top(D)]
< e017(2 + 8/4%%) — e (2 — 84%°) + 2||F el - 2.37
< 824r + 467|700l -

Let {e;} be an orthonormal basis for M, and {x,}, {y,} the normal coor-
dinate systems on B(p,, 10r), B(q,, 10r) based on {e;}, {I.(e;)} respectively.
Let I'%; and I'%; be the Cristoffel symbols with respect to {x;} and {y,}
and let ¢c: =F, o7. Note that

er=316-0 G+ XTI 0®NE =0,
7 ayi 0 J

Ve = X G0 + ST ()it -2
k 2 9y

= 3 (=T5,0@) + T c®)es, -2

.
Eyird 0y

By the Rauch comparison theorem, we get

léi' é elOAr”é“ S eS()Ar , “_a__ S elOAr’
Y
, 0 - , 0
I} ;] < e Va/azia—xj— s 1 <L e™ Va/aw—a}‘j‘ )

and from a Cheeger’s result (See [4], Lemma 4.3), we can estimate with
(xx) in Section 3

Therefore we conclude that ||[I/ ¢ < 2n%® 2, and this yields (2). Q.E.D.

)
0x;

Va/a.ri

)
Va/aw ay ” S ‘Q
7

The following lemma is used in the proof of Lemma 4.5.

LEMMA 44. Let ¢; [0,¢] — R be a C*-function such that ¢(0) = 0 and
o) < e, |¢”(s)] < & on [0,8]. Then |¢'(0)| < aft + xt/2.

LemMMA 4.5. || PdF;(v) — dF,(v)|| < 2"®+*"2(115, + £2,r/2), where P de-
notes the parallel translation along the minimizing geodesic from F(x,) to
F(x,).

Proof. Let = be a geodesic with #(0) = PdF,(v) and let u,(?): = @’(z(?)).
We apply the previous lemma to A, ; — u;. On [0, r/2] we have with (3.6)
and Lemma 4.2 (2)
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[Pes — Pl <\hiyy — 8eusl + 180y — il + 1 fy — &gl + |86,s — Byl
< 46,0* + Qir¥l4.
and the Rauch comparison theorem implies
|hs,; — uy| < d(a,(0), 7(0)) cosh Ar-4r < 56,r°,

hence

|Bey — u;] < (46, + 56, + 2,r/D)r*.
Together with Lemma 4.2 (1), Lemma 4.4 applied to ¢ = h,,; — u; yields

|d9!(5,(0) — #(0))| < 2(48, + 58, + 2,r/4)r + 824r*/4
< (118, + Q,r/2)r.

By Lemma 4.1, we conclude
|1PAF,(v) — dF,(v)|| < 2""+™2(115, + $2,r/2). Q.E.D.

Let P,, P, denote the parallel translation along the minimizing
geodesics from y, to Fy(x,), F.(x,), and for simplicity, set

vm:: dFm(v)’ 5m:: d(eXp;ol)(dFm(U)), m = i’ k'
LeEMMA 4.6. ||D, — T,|| < 8, where 8, = 2"**W7(125, + Q,r/2).

Proof. From standard estimate of the Jacobi equation and an easy
comparison argument, we get

1Pl — vill, 1Pi've — Uill, [P, — PoP7lv | < A2,
Together with Lemma 4.5, this yields

”51: - b’z” = ”PlcT)k - Pkl~)¢”
< |1Pibe — vill + [lve — Puili + [|[Pv, — PuPiv|
+ |PP7v; — P,
< 2% +2(125, + £,r/2) . Q.E.D.

Proof of Theorem 1. By Lemma 4.6, we have
123 W(d(xo, PI)T: — 25 A, PNl < 6V:
hence with Lemma 3.4
123 9(d(%, p)/1)Tll = (0.9 — 676)N; .

If we set e <, r<r, then we get with (3.8)
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Il‘; W(d(xe, p )T > l@ dldt y(d(1(), p)[T)]: -0 expy (Fi(x)) || + 0.1N;.

By Lemma 3.1, F is an immersion. Furthermore the above inequality
and (3.3) imply

lldlde V(r®), ¥o)le=oll > 0.1 N,/N;.
On the other hand, a standard Jacobi fields estimate (4.3) yields
IV ar o V(o FA@O)DI < 4NL[|F )] -
Hence we have with (3.2) and Lemma 3.4
|@F ()| > N,/A0N; > (2~ +9r)[40-6"v(5.1r) > 0.

This conclude that F must be surjective, and hence injective since it is
a homotopy equivalence by its construction. Q.E.D.

Added in proof. Recently we have received a preprint, S. Peters
“Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian
manifolds”, where the finiteness of diffeomorphism classes of Cheeger
type is proved for all dimensions without the assumption for [[FR| by using
a similar method to our Theorem 1.
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