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A SPECTRAL PROBLEM IN ORDERED BANACH ALGEBRAS

S. MOUTON

We recall the definition and properties of an algebra cone C of a complex unital
Banach algebra A. It can be shown that C induces on A an ordering which is com-
patible with the algebraic structure of A, and A is then called an ordered Banach
algebra. The Banach algebra L(E) of all bounded linear operators on a complex
Banach lattice E is an example of an ordered Banach algebra, and an interesting
aspect of research in ordered Banach algebras is that of investigating in an ordered
Banach algebra-context certain problems that originated in £(E). In this paper we
investigate the problems of providing conditions under which (1) a positive element
a with spectrum consisting of 1 only will necessarily be greater than or equal to 1,
and (2) f(a) will be positive if a is positive, where f(a) is the element defined by the
holomorphic functional calculus.

1. INTRODUCTION

An interesting problem in Banach algebra-theory is that of finding conditions under
which an element a with Sp (a) = {1} will be the unit element; or, in an operator-context,
provide conditions such that if T is a bounded linear operator on a Banach space with
Sp (T') = {1}, then T is necessarily the identity operator. Naturally, in certain cases
the problem has an obvious answer. For instance, if a Banach algebra A is commutative
and semisimple, then if a € A is any element with Sp (a) = {1}, it follows from the
Spectral Mapping Theorem that a—1 € QN (A) = Rad (A4) = {0}, so that a = 1. Other
interesting answers have been obtained in, for instance, [4] and [3].

Huijsmans and de Pagter (see [12]) asked the following more general question: under
which conditions will it be true that if T is a positive bounded linear operator on a complex
Banach lattice with Sp (T") = {1}, then T > I? This question has been investigated by
Zhang in his papers [11] and [12]. In this paper we introduce the problem in the context
of an ordered Banach algebra. In [8] and (7], and later [5] and [6], some spectral theory
of positive elements in ordered Banach algebras was developed. We recall some of this
information in Section 3. In Section 4 we investigate the mentioned problem in an
ordered Banach algebra-context, that is, find conditions under which a positive element
a in an ordered Banach algebra with Sp (a) = {1} will be greater than or equal to the
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unit element. We extend the problem somewhat and provide some answers in the finite
dimensional case, the case where the spectral radius of a is a pole of a certain order of
the resolvent of a, and the case in which the algebra cone is inverse-closed.

We also consider the more general problem of obtaining conditions which imply that
if a € C, then f(a) € C, where f is analytic in a neighbourhood of the spectrum of a.

Throughout we seek to obtain our results using only the intrinsic properties of Ba-
nach algebras, and therefore without using operator-theoretic arguments or relying on
properties which are unique to Banach lattices.

2. PRELIMINARIES

Throughout A (or B) will be a complex Banach algebra with unit 1. A homomor-
phism ¢ from a Banach algebra A into a Banach algebra B is a linear map ¢ : A — B
such that ¢(ab) = @(a)p(b) for all a,b € A and ¢(1) = 1. The spectrum of an element
a in A will be denoted by Sp (a), the spectral radius of @ in A by p(a) and the distance
d(0, Sp (a)) from 0 to the spectrum of a by §(a) (or by Sp (a, A), p(a, A) and 6(a, A) if nec-
essary to avoid confusion). Recall that if a is invertible, then p(a™') = 1/(8(a)) ([1, The-
orem 3.3.5]). A map ¢ : A — B is called spectrum preserving if Sp (a, A) = Sp (¢(a), B)
for all a € A. It is easy to see that a bijective homomorphism is spectrum preserving. We
denote the peripheral spectrum {) € Sp (a) : |A| = p(a)} of an element a in A by psp (a),
the set of quasinilpotent elements in A by QN (A) and the radical of A by Rad (4). A
Banach algebra is called semisimple if its radical consists of zero only.

3. ORDERED BANACH ALGEBRAS

In ([8, Section 3]) we defined an algebra cone C of a complex Banach algebra A
and showed that C induced on A an ordering which was compatible with the algebraic
structure of A. Such a Banach algebra is called an ordered Banach algebra. We recall
those definitions now and also the additional properties that C may have.

Let A be a complex Banach algebra with unit 1. We call a nonempty subset C of A
a cone of A if C satisfies the following:

1. C+CCC,
2. MCCCforall A20.

If in addition C satisfies C N —C = {0}, then C is called a proper cone.
Any cone C of A induces an ordering “<” on A in the following way:

(3.1) a<bifandonlyifb—aeC

{a,b € A). It can be shown that this ordering is a partial order on A, that is, for every
a,bce A
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(a) a < a (< is reflezive),

(b) ifa < bandb<ec, then a < ¢ (< is transitive).
Furthermore, C is proper if and only if this partial order has the additional property of
being antisimmetric, that is, if a < b and b < @, then @ = b. Considering the partial order
that C induces we find that C = {a € A : ¢ > 0} and therefore we call the elements of
C positive.

A cone C of a Banach algebra A is called an algebra cone of A if C satisfies the

following conditions:

3. CCcCc,

4. 1€C.
Motivated by this concept we call a complex Banach algebra with unit 1 an ordered
Banach algebra if A is partially ordered by a relation “<” in such a manner that for
every a,b,c€ Aand Ae C

1. a,b20=>a+b20,

2. az0,A20=Aa20,

3. ¢,b20=2ab20,

4. 120
Therefore if A is ordered by an algebra cone C, then A, or more specifically (4, C), is an
ordered Banach algebra.

An algebra cone C of A is called proper if C is a proper cone of A and closed if it
is a closed subset of A. Furthermore, C is said to be normal if there exists a constant
a > 0 such that it follows from 0 € a < b in A that ||a|| < «||b]|. It is well-known that if
C is a normal algebra cone, then C is proper. If C has the property that if a € C and a
is invertible, then a~! € C, then C is said to be inverse-closed.

The following theorem is well-known in an operator-context:

THEOREM 3.2. ([8, Proposition 5.1]) Let (A, C) be an ordered Banach algebra
with C closed and normal. If a € C, then p(a) € Sp {a).

It is interesting to note that also é(a) € Sp (a), under the additional assumption
that C is inverse-closed:

THEOREM 3.3. Let (A,C) be an ordered Banach algebra with C closed, normal
and inverse-closed. If a € C, then é(a) € Sp (a).

PROOF: If a is not invertible, then d(a) = 0 € Sp (a), so suppose that a is invertible.
Since @ € C and C is inverse-closed, it follows that a=! € C. The normality and closedness
of C implies that p(a~!) € Sp (a™!), so that p(a™') = 1/(A), for some A € Sp (a). Since
p(a™') = 1/(8(a)), it follows that 8(a) = Ao € Sp (a).

Note that the condition that C is inverse-closed in Theorem 3.3 is essential. Consider,
for instance, the Banach algebra A of all 2 x 2 complex matrices. If C is the subset of A
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of matrices with only non-negative entries, then C is a closed and normal algebra cone
(see Example 3.5), but C is not inverse-closed and d(a} € Sp (a) does not hold for all

a € C. This can be seen by considering the element a = ; f € C, which is invertible
1 -2
with ™! = —(1/3) 5 1 ) ¢ C. Also, Sp (a) = {-1,3}, so that §(a) =1 & Sp (a).

Let A and B be Banach algebras and ¢ : A — B a homomorphism. If C is an
algebra cone of A, then ¢(C) is an algebra cone of B. If ¢ is injective, then if C is proper,
so is ¢(C). Furthermore, if ¢ is continuous and bijective, then if C is closed, so is ¢(C).

We conclude this section with a number of examples, which serve to illustrate the
concepts.

Let £(X) denote the Banach algebra of all bounded linear operators on a Banach
space X.

EXAMPLE 3.4. Let E be a complex Banach lattice and let C := {z € E: z = [z]}. If
K :={T € L(E): TC C C}, then K is a closed, normal algebra cone of L(E). Therefore
(L(F), K) is an ordered Banach algebra.

The nontrivial part of the above example follows from ([9, Lemma 3]).

Let M,(C) denote the (Banach) algebra of n x n complex matrices.

ExaMPLE 3.5. Let n € N, C the subset of M,(C) of matrices with only nonnegative
entries and C' the subset of M,(C) of diagonal matrices with only non-negative entries.
Then C and C’ are closed, normal algebra cones of M,(C). Therefore (M,(C),C) and
(Mp(C),C") are ordered Banach algebra.

ExaMPLE 3.6. Let n € N and A; an ordered Banach algebra, with algebra cone C;, for
eachi=1,...,n. Let A:= A, @ - ®A,and C := {(c1,...,cn) € A: ¢; € C; fori
=1,.. .,n}. Then (A,C) is an ordered Banach algebra, and if C; is closed (proper,
normal) for all i = 1,...,n then C is closed (proper, normal).

The preceding two examples imply
EXAMPLE 3.7. Letn € N, k,...,k, € Nand A .= M, (C)® -+ & M, (C). Let
C = {(cl, ..-,Cn) € A : ¢ is a k; x k; matrix with only non-negative entries, for all 1
=1,.. .,n} and C' := {{c1,...,¢n) € A : ¢ is a diagonal k; X k; matrix with only non-
negative entries, for all i = 1,...,n}. Then both (4, C) and (A, C’) are ordered Banach
algebras and both C and C’ are closed, normal algebra cones of A.

EXAMPLE 3.8. Let A =1® and C = {(ci,¢cz,...) € I® : ¢; > O for all i € N}. Then
(A, C) is an ordered Banach algebra, and C is a closed, normal and inverse-closed algebra
cone of A.

A proof of part of the contents of this example was given in ({5, Example 4.14]).
The closedness and inverse-closedness of C follow easily from the definition of C and the
definition of the (sup-) norm in [*.
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EXAMPLE 3.9. Let A be a commutative C*-algebra, C = {z € A: z = z* and Sp (z)
C [0,00)}. Then (A,C) is an ordered Banach algebra, and C is a closed, normal and
inverse-closed algebra cone of A.

References giving the proof of part of the contents of this example was given in ([6,
Example 3.3]). The inverse-closedness of C follows easily from the definition of C.

4. A SPECTRAL PROBLEM

Let A be an ordered Banach algebra with an algebra cone C'. Under which conditions
will it follow that if @ € C with Sp (a) = {1}, then a— 1 € C? This problem is equivalent
to the problem stated in the introduction, that is, the problem of providing conditions
under which it will follow from a positive and Sp (a) = {1}, that @ > 1. Originally this
problem has been investigated for bounded linear operators on a Banach lattice (see [11]
and [12]).

Another way to look at this problem is by considering the analytic function f(\)
= A —1. Then a—1is f(a), the element defined by the holomorphic functional calculus.
So the problem becomes: provide conditions which imply that if Sp () = {1} and a € C,
then f(a) € C. This problem will be investigated in a more general form.

Returning to the original problem, what can be said in the case that A is a finite
dimensional Banach algebra? We begin by investigating the Banach algebra M, (C) of
all n x n complex matrices, in which case the following holds:

THEOREM 4.1. Let n € N and C the algebra cone of M,(C) consisting of all
complex n X n matrices with only non-negative entries. If a € C and Sp (a) = {1}, then
a-1€eC.

PROOF : Suppose a = (;;). Then a;; = 0foralli,5€ {1,...,n}. Letb=0a—-1.
In the matrix b® the i-th diagonal element is a; on; + oypg; + -+« + Qi(i-1)0(i-1)i + (s
-1)2%+ Qi(i+1)0i+1)i T *** + QinOyq, Which is greater than or equal to zero. Since Sp b?
= (Sp (a — 1))® = {0}, the trace Tr b of b2 is zero, and Tr b? is the sum of all the
diagonal elements of ?. Hence each diagonal element of b is zero. Also, each term in
such an element is greater than or equal to zero, so that each term must be zero. In
particular, oy; = 1 for all i = 1,...,n (and a;;a;; = 0 for all ¢ # j). Hence each entry of
b is non-negative, so that b € C. Thereforea — 1 € C. 0

The above proof is essentially the same as the one X.-D. Zhang used to prove a similar
result for positive operators on finite dimensional Banach lattices (see [12, Theorem 4.1]).

THEOREM 4.2. Let (A,C) denote the ordered Banach algebra A; & --- @ A, of
Example 3.6, that is, each (A;, C;) is an ordered Banach algebra with an algebra cone C;,
and C = {(cl,...,cﬂ) €EA:g€C;fori= 1,...,n}. Suppose that foreachi=1,...,n
the following holds: if ¢; € C; with Sp (¢;) = {1}, then ¢; — 1 € C;. Then if c € C with
Spec= {1}, thenc-1€C.
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Proor: It follows easily by recalling that if ¢ = (¢,...,¢q), then Spec
= UL,Sp ;. 0

Using Theorems 4.1 and 4.2, we obtain

THEOREM 4.3. Letn,k;,...,k, € N and let A denote the ordered Banach al-
gebra My, (C) @ - - - & My, (C), with algebra cone C = {(c1,...,¢,) € A: ¢ € C; fori
=1,..., n}, where C; denotes the algebra cone of My, (C) consisting of all complex k; x k;
matrices with only non-negative entries, foreachi=1,...,n. Ifc € C with Sp (¢) = {1},
thenc—-1¢€ C.

An application of the Wedderburn-Artin Theorem ([1, Theorem 2.1.2]), together
with Example 3.7 and Theorem 4.3, yield

THEOREM 4.4. If B is a semisimple finite-dimensional Banach algebra, then B
is isomorphic (as an algebra) to an ordered Banach algebra A (as in Theorem 4.3) with
a closed and normal algebra cone C (as in Theorem 4.3) which has the property that if
ce€ C and Sp (c) = {1}, thenc—1 € C.

Finally, we have

THEOREM 4.5. Let B be an ordered Banach algebra with a proper algebra cone
C, and with B isomorphic (as an algebra) to an ordered Banach algebra A, with a proper
algebra cone C which has the property thatifc € C and Sp (¢, A) = {1}, thenc—-1€ C.
If C is the only proper algebra cone of A, then if ¢; € C) and Sp (ci, B) = {1}, then
a-1€d(C.

PROOF: Suppose ¢ : B — A is a bijective homomorphism. Then ¢ is spectrum-
preserving. Let ¢; € C) and Sp (¢;,B) = {1}. Then ¢(c;) € ¢(C1). The remarks
preceding the examples in Section 3 show that ¢{C) is a proper algebra cone of A. Hence,
by the assumption, ¢(C;) = C, so that ¢(c;) € C. Since Sp (¢(c1),4) = Sp (e1, B)
= {1}, it follows by assumption that ¢(c;) ~ 1 € C, that is, ¢(c; — 1) € ¢(C)). Since ¢
is injective, it follows that ¢; — 1 € C}. 0

Unfortunately, it is not possible to say more than Theorem 4.4 about the semisimple
finite-dimensional case (at least by using Theorem 4.5), since the algebra cone C in
Theorem 4.4 is not the only proper algebra cone of A (see Example 3.7).

We now consider the case where the spectral radius of a is a pole of the resolvent
(Al —a)~! of a, and extend the problem to the case where Sp (a) = {p(a)} with p(a) > 1
(see Corollaries 4.9 and 4.15). The following proposition is vital in solving this problem:

PROPOSITION 4.6. Let (A,C) be an ordered Banach algebra with C closed,
and let a € C. If A > p(a), then (A1 —a)~! > 0.
Proor: For |A\| > p(a), the resolvent of a has a Neumann series representation

(Al —a)7! = 3 (a®/A™*1). Since A > p(a), all the terms of this series are positive, so
n=0

that (A1 —a)~! > 0, since C is closed. 0
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PROPOSITION 4.7. Let A be a Banach algebra and a € A such that Sp (a)
= {/\0} If A # /\0, then

o

(A=) =) "ba(A— X))

n=1
where b_,, = (a — Ag1)"!
PROOF: If A # A, then |A — Ag] > 0 = p(a — Agl), so that

(,\1—a)‘ _((/\ ,\01_—(0,—/\01 z ;’_;‘0017‘11"2(1()%)‘0/\10);1__1

n=1
Hence the result follows. 0

Since this series is clearly the Laurent series of the resolvent of a around )y, we have
the following

COROLLARY 4.8. Let A be a Banach algebra and a € A such that Sp (a)
= {Xo}. If A is a pole of order k of the resolvent of a, then (a — A\o1)* = 0 and
lim (A — A)¥(Al — @)™ = (a — Aol)* L.

A=Ao

PrOOF: If Aq is a pole of order & of the resolvent of a, then by Proposition 4.7, the

coefficient b_(x4+1) = 0. Hence (a — Ag1)* = 0. Furthermore, since

1 n a— Nl bt (a - /\ol)k_l
X2 A=A EEE

M —-a)?t=

the result follows. 0
Using the preceding elementary result, we can state some conditions which imply
that if e € C and Sp (a) = {p(a a)} with p(a) > 1, thena—1€ C.

COROLLARY 4.9. Let A be a Banach algebra and a € A such that Sp (a)
= {p(a)}.
1. If p(a) is a pole of order k of the resolvent of a, then (a — p(a)l)'C =0.

2. If p(a) is a simple pole of the resolvent of a, then a = p{a)l. It follows
that, if C is an algebra cone of A, then

play 21 = a-1€C.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and a € C.
3. If p(a) is a pole of order k of the resolvent of a, then (a ~ p(a)l )k ‘ec.
4. If p(a) is a pole of order 2 of the resolvent of a, then a > p(a)l. It follows

that
pla)21 = ae-1€C.

PRroOOF:
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Follows directly from Corollary 4.8.
2. Follows from 1.

It follows from Corollary 4.8 that (a — p(a)1)*™' = /\lin(l )()\ - p(@))* (A1
—p(a

—a)~!. Restricting A to an interval of the form (p(a), p(a) + R), we obtain
(a— p(@)1)* ' = lim (A-p(a))*(A1—a)=!. Since C is closed, it follows

A—=p(a)*
from Proposition 4.6 that (a — p(a)1)"” € C.
4. Follows from 3. 0
We note that Corollary 4.9 4 in one sense extends, and in another sense is included
by, (12, Theorem 5.3], in the case A = L(E) (see Example 3.4).
Suppose that f is a complex valued function which is analytic on a neighbourhood
Q of the spectrum of a. Then an element f(a) = (1/2m5) f. f(A)(A1 —a)"'dAin A is
defined, where T is a contour in Q\Sp (a) surrounding Sp (a) ([1, p. 43]). An interesting
question arises, namely: if ¢ € C, when does it follow that f(a) € C? Naturally, for
certain functions, answers can be obtained easily. We collect some of these in

k-1

PROPOSITION 4.10. Let (A,C) be an ordered Banach algebra and a € C.
1. Ifp(A) = apA™ + - - + oy A + o with ay,...,ap real and positive, then
pla) € C.
2. Suppose, in addition, that C is closed. If f()\) = e*, then f(a) € C.
Proor:

1. By definition, C is closed under addition, multiplication and multiplication
by positive scalars. Since p(a) = ana™ + --- + ;ya + p, it follows that

p(a) € C.
2. First note that f(a) = €* = i (1/nY)e™ ([2, p. 38]). Then f(a) € C follows
n=0

from the defining properties of C, together with the fact that C is closed. [
We provide a more general result in Theorem 4.14, if a satisfies certain spectral
properties. We begin with

THEOREM 4.11. Let A be a Banach algebra and a € A such that p(a) is a pole
of order k of the resolvent of a. Suppose that f is a complex valued function, analytic
at least on an open disk of the form D(p(a), R). Let g(A) = f(A\)(Al — a)~! and let a,
denote the coefficient of (A — p(a.))'l in the Laurent series of g around p(a), for alln € Z.

1. If f(p(a)) = 0 and the order of f at p(a) is k, then a_; = 0.
Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, a € C and
f(X) > 0 for all ) in the real interval (p(a), p(a) + R).

2. If f(p(a)) >0, then a_y € C.

3. If f(p(a)) = 0 and the order of f at p(a) isk —1, thena_, € C.
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Proor:
1. If f(p(a)) = 0 and the order of f at p(a) is k, then the order of g at p(a)
is zero, so that the residue of g at p(a) is zero. Hence a_, =
2. If f(p(a)) > 0, then the order of g at p(a) is —k, so that a_x

= /\liII(l )(/\ - p(a))k (A). Restricting A to the interval (p(a), p(a) + R),
—pla i

we obtain a_x = R lim ()\ p(a)) F(A)(A1 = a)~1. Since C is closed, the

assumption on f, tog(ether with Proposition 4.6, yield a_; € C.
3. If f(p(a)) = 0 and the order of f at p(a) is k — 1, then the order of g at
pla) is —1, so that a_; = lim (A= p(a))g(A) = lim (X — p(a)) f(A)(A1

A-p(a) Aop(a)t
— a)~!. Once again the assumptions, together with Proposition 4.6, yield
a_, €C. 0
By taking f(A) = 1 in Theorem 4.11 we rediscover a well-known ordered Banach
algebra-result ([7, Theorem 3.2}):

COROLLARY 4.12. Let(A,C) be an ordered Banach algebra with C closed, and
a € C such that p(a) is a pole of order k of the resolvent of a. Let g(\) = (A1 —a)~! and
let a, denote the coefficient of (\ — p(a))'l in the Laurent series of g around p(a), for all
n&Z. Thena_ € C.

Recalling that a_; = p, where p is the spectral idempotent associated with a and
p(a), we have

COROLLARY 4.13. Let(A,C) be an ordered Banach algebra with C closed, and
a € C such that p(a) is a simple pole of the resolvent of a. If p is the spectral idempotent
associated with a and p(a), thenp € C.

The following theorem gives some results of the form “if a € C, then f(a) € C”.

THEOREM 4. 14 Let A be a Banach algebra and @ € A such that Sp (a)
= {A,.. -, Am} (m ) where Ay = p(a) and ); is a pole of order k; of the resol-
ventofa (7 =1,.. .,m). Let f be any complex valued function, analytic at least on a
neighbourhood of Sp (a), such that f has a zero of order kj at A; (j =2,...,m).

1. If f(p(a)) = 0 and the order of f at p(a) is ky, then f(a) =
Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, a € C and
f(A) > 0 for all ) in a real interval of the form (p(a), p(a) + R).
2. If f(p(a)) >0 and k, = 1, then f(a) € C.
3. If f(p(a)) = 0 and the order of f at p(a) is k; — 1, then f(a) € C.
PROOF: By the holomorphic functional calculus an element f(a) = (1/27%) [ g(A

d\ € A is defined, where g(A) = f(A)(Al — a)~! and we may suppose that I is a
union of small circles (say with radii ry,...,r,) with centres Ay, ..., \,. Therefore f(a)
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= ;(1/271'1') fC('\j ) g(A) dX. Since the order of g at ; is zero, it follows that IC(,\, ) g(A)

7

dx =0, for j =2,...,m, so that f(a) = (1/27%) fc(p(a),n) g(A) dX. Since g is analytic in a
deleted neighbourhood of p(a) containing C(p(a), 1), the quantity (1/2wi) | clotay.rn) I
dX is the residue of g at p(a). Therefore, if a, denotes the coefficient of (A — p(a))" in the
Laurent series of g around p(a), for all n € Z, then f(a) = a_,. The results now follow
from Theorem 4.11. 0

Corollary 4.9 can now be obtained as a consequence of Theorem 4.14:

COROLLARY 4.15. Let A be a Banach algebra and a € A such that Sp (a)
= {p(a)}. Let k € N.

1. If p(a) is a pole of order k of the resolvent of a, then (a — p(a)l)’c =0.

2. If p(a) is a simple pole of the resolvent of a, then a = p(a)l. It follows
that, if C is an algebra cone of A, then

pla) 21 = a-1€C.

Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and a € C.
3. If p(a) is a pole of order k + 1 of the resolvent of a, then (a — p(a)l)lc eC.

4. If p(a) is a pole of order 2 of the resolvent of a, then a > p(a)l. It follows
that
pla}21 = a-1€C.
PROOF: Let f(A) = (A - p(a))k. Then f is an entire function with a zero of order
k at p(a) and f(A) > 0O for all real A > p(a). Furthermore, if f(a) = (1/271) [ f(A)(A1
—a)~!dX (with T a small circle with centre p(a)), then f(a) = (a - p(a)l)k.
1. 1If p(a) is a pole of order & of the resolvent of a, then f(a) = 0, by Theorem
4.14 1. Hence (a — p(a)l)k =0.
2. Follows from 1.
If p(a) is a pole of order k + 1 of the resolvent of a, then f(a) € C, by
Theorem 4.14 3. Hence (a — p(a)1)* € C.
4. Follows from 3. - 0
We conclude this discussion by giving some more corollaries of Theorem 4.14, in-
volving the sine and log functions.
COROLLARY 4.16. Let A be a Banach algebra and a € A such that p(a)
= kn € Sp (a) with k € N an even number, and

Sp (e)\{p(a)} C {nm:n e {0,+£1,...,+k}}.

1. If each spectral value of a is a simple pole of the resolvent of a, then
sina = 0.
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Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and a € C.
2. Ifeach element of Sp (a)\{p(a)} is a simple pole and p(a) is a pole of order
2 of the resolvent of a, then sina € C.
PRrROOF: Let f(A) =sinA. Then f has simple zeroes at all spectral values of a and
f(X) > 0 for all X in a real interval of the form (p(a), p(a) + R). Since f(a) = sina,
1. Follows from Theorem 4.14 1.
2. Follows from Theorem 4.14 3. g

COROLLARY 4.17. Let(A,C) be an ordered Banach algebra with C closed, and
a € C such that p(a) = (k + (1/2))7 € Sp (a) with k € N an even number, and

Sp (a)\{p(a)} C {nm:n € {0,+1,...,+k}}.

If each spectral value of a is a simple pole of the resolvent of a, then sina € C.

PROOF: Let f()) =sin A. Then f has simple zeroes at all values in Sp (a)\{p(a)}.
Furthermore, f(p(a)) > 0 and f(A) > 0 for all A in a real interval of the form (p(a), p(a)
+ R). Since f(a) = sina, the result follows from Theorem 4.14 2.

COROLLARY 4.18. Let A be a Banach algebra and a € A such that Sp (a)
= {p(a)} with p(a) > 0.
1. Ifp(a) =1 is a simple pole of the resolvent of a, then loga = 0.
Suppose, in addition, that (A, C) is an ordered Banach algebra with C closed, and a € C.
2. If p(a) is a simple pole of the resolvent of a and p(a) > 1, then loga € C.
3. Ifp(a) =1 is a pole of order 2 of the resolvent of a, then loga € C.

PROOF: Let f(A) =log A =log|A| +iargA. Then f is analytic on a neighbourhood
of the spectrum of a, so that the element loga = (1/2m) [ f(A)(Al —a)™'dX € A
(where T' is a small circle with centre p(a) in the right half plane) is defined ([2, p. 40]).
Furthermore, f has a simple zero at 1, and f(A) > 0 for all real A > 1. Hence the results
follow from Theorem 4.14. 0
The final corollary follows in a similar way from Theorem 4.14 2:

CoROLLARY 4.19. Let(A,C) be an ordered Banach algebra with C closed and
a € C such that Sp (a) = {1,p(a)} (with p(a) > 1). If both 1 and p(a) are simple poles
of the resolvent of a, then loga € C.

We now turn our attention to the case in which the algebra cone C of A is inverse-
closed. (Some properties of inverse-closed algebra cones were investigated in the context
of positive operators on Banach lattices in [10].)

Recalling the problem of providing conditions under which f(a) will be positive if
a is positive, we have the following result to complement Proposition 4.10 and Theorem
4.14:
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PROPOSITION 4.20. Let(A,C) bean ordered Banach algebra with C inverse-
closed, and a € C. Let p(\) = apA™ + -+ oA + g and g(A) = BpA™ + -+ BiA+ Fp
with oy, ..., %, Bm,. .., o real and positive. Suppose that q()\) has no zeroes in Sp (a)
and let r(\) = (p(X)/g())). Then r(a) € C.

PRroOF: It follows from Proposition 4.10 1 that p(a) € C and q(a) € C. By the
Spectral Mapping Theorem g¢(a) is invertible, and since C is inverse-closed, (q(a))-1 eC.
Since r(a) = p(a) (q(a))_1 ([1, Lemma 3.3.1]), it follows that r(a) € C.

We now return to the problem of finding conditions such that if a € C and Sp (a)
= {1}, then a — 1 € C, under the assumption that C is inverse-closed. Here we extend
the problem to the case d(a) > 1 (with no other restrictions on Sp (a)) (see Theorem
4.23).

The following lemma is obvious:

LEMMA 4.21. Let (A, C) be an ordered Banach algebra with a and b invertible
elements of A such that a < banda™!,b"! > 0. Then b~! < a™L.

THEOREM 4.22. Let (A,C) be an ordered Banach algebra with C closed and
inverse-closed. If a € C and a is invertible, then

1. a>2al for all @ 2 0 with a < §(a), and

2. a < Bl forall B> p(a).

PROOF:

1. If 0< a < é(a), then (1/6(a)) < (1/e), so that (1/a) > p(a™?). It follows
from Proposition 4.6 that ((1/a)l — a~!)~! > 0. Therefore (1/a)l —a™!
> 0, s0 that a=! < (1/a)1, since C is inverse-closed. The result now follows
by applying Lemma 4.21.

2. If 8> p(a), then (81 — a)~! > 0, by Proposition 4.6. Since C is inverse-
closed, it follows that 1 —a 2> 0, and hence a < 1. 0

Using Theorem 4.22, we obtain results of the form “if a € C and é(a) > 1, then
a—1¢€ C” and “ifa € C and Sp (a) = {1}, then a = 1”7 (see Theorem 4.23). Let C(0,1)
denote the circle with centre 0 and radius 1 in the complex plane.

THEOREM 4.23. Let (A,C) be an ordered Banach algebra with C closed and
inverse-closed, and let a € C. Then we have the following implications:
1. é(a)>1 = a>1andé(a)=1= a2 1;henced(a) 21 =>a~-1€C.
2. If a is invertible: p(a) < 1 = a <1 and p(a) =1 = a < 1; hence
pla)£1 =>1—-aeC.
If, in addition, C is proper, then we also have:
3. Sp(a)cCcC(0,1) = a=1.
4. Sp(@)={1} = a=1
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Proor:

1. Suppose 6(a) =2 1. Let (a,) be a sequence of real numbers such that
0 € a, < é(a) and @, > 1 as n — co. Then a > a,1, by Theorem 4.22
1. By taking limits as n — oo, it follows that a > 1, since C is closed. If
d(a) > 1, the case a = 1 is not possible, so that then a > 1.

2. Suppose p(a) € 1. Let (B,) be a sequence of real numbers such that
pla) < B and B, = 1 as n — oo. Then a < B,1, by Theorem 4.22 2, so
that @ € 1, asin 1. If p(a) < 1, the case a = 1 is not possible, so that then
a <l

3. If Sp (a) C C(0,1), then é(a) = 1 = p(a), so that botha > 1 and a € 1
hold. Since C is proper, it follows that a = 1.

4. Follows from 3. 0

Finally we observe that in the case of a normal algebra cone C, the behaviour of the
spectrum in 3 above is quite restricted.

If X is a set, let #X denote the number of elements in X.

LEMMA 4.24. Let A be a Banach algebra and a € A. If there exist a k € N and
a 0 # A € C such that psp (a*) = {\o}, then #psp (a) < k.

PROOF: If A € psp (a), then A* € psp (a*). Equivalently, \¥ = X, for all A € psp (a).
Hence psp (a) consists of some, or all, of the k-th complex roots of Ag, so that the result
follows. 0

THEOREM 4.25. Let (A,C) be an ordered Banach algebra with C closed and
normal. If a € A and there exist a k € N and an o > 0 such that a* > al, then

1. psp (a*) = {p(a)t}, and

2. #psp(a) <k

Proor:

1. Since psp (Ba) = Bpsp (a) for every 8 > 0, we may assume without loss of

generality that p(a) = 1. Let b = a* — a1. Then b > 0. Since a* = b +al,
it follows that 1 = p(a*) = p(b+al), so that 1 = sup{|A+ca|: A € Sp (b)}.
Since p(b) € Sp (b), by Theorem 3 2, this supremum is exactly p(b) + a.
Hence p(b) =1 — @, so that Sp (a¥) C {A+a:|A|<1-a}.
Now suppose z € psp (a*). Then z = X + a with |A\| < 1 — @, so that
|z—a| £1-aq, and |z| = 1. Consequently z € D(,1 — @) N C(0,1). Let
2z =c+di. Then (c—a)?+d? < (1—a)? and 2 +d? = 1, so that 2ac > 2q,
and hence ¢ > 1, since @ > 0. Since ¢ + d% = 1, it follows that ¢ = 1 and
d = 0, so that z = 1. Hence the result follows.

2. Follows from Lemma 4.24. 0
The proof of Theorem 4.25 1 follows the lines of the proof of [12, Theorem 2.10].
Theorems 4.22 1 and 4.25 1 now yield
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THEOREM 4.26. Let (A, C) be anordered Banach algebra with C closed, normal
and inverse-closed. If a € C is an invertible element, then psp (a) = { p(a)}.

The above theorem implies that if the algebra cone C in Theorem 4.23 is normal,
then the only way in which the case Sp (a) C C(0,1) in 3 can occur, is if Sp (a) = {1},
as in 4.
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