
379 

COST SCALING LAWS AND THEIR ORIGIN: DESIGN STRATEGY FOR AN OPTICAL ARRAY 

TELESCOPE 

CM. Humphries*, V.C. Reddish"1" and D.J. Walshawx 

* Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK. 

+ Dept. of Astronomy, University of Edinburgh, Blackford Hill, 

Edinburgh EH9 3HJ, UK. 
x Hollowgate, Burncross, Sheffield S30 4TZ, UK. 

ABSTRACT: Power law relationships between cost and aperture of optical 

telescopes are shown to be approximations to polynomial expressions. 

These polynomials, which are derived for telescopes of traditional and 

cost-reduced design, have implications for the cost-effective design of an 

optical array telescope. 

1. Introduction 

In recent years it has become common practice to seek a simple scaling law 

between the construction cost (C) of a telescope and its aperture (D) so 

that, for some range of D, the construction cost is represented by 

C • L D a (1) 

This power law representation is, we suggest, only an approximation to a 

polynomial expression which is discussed below, and if one wishes to 

determine analytically how such a scaling law arises or if, for example, 

one wishes to examine how C for a given aperture can be minimised, it is 

necessary to consider the aperture dependence and relative importance of 

the individual contributions which go to make up the total cost. 

C is taken here to be the total construction cost of a telescope, and its 

enclosure so that it includes contributions from the mechanical structure, 

the drive and control system, bearings, optics, cabling, and dome and site 

preparation etc., but excludes focal plane instrumentation which is 

considered later. Some of these cost contributions (such as the tube 

trusses in an equatorial telescope, and other components which experience 
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high bending stresses) are expected to increase as D (see footnote * ) ; 

others (such as the mirror blank; concrete foundations; and possibly the 

mirror cell and the dome) where the principal dimensions each scale as D, 

arise also from the cost of materials but with a DJ dependence; other 

labour intensive costs (such as machining of mechanical parts, mirror 

grinding and polishing, painting, etc.) are dependent on surface area and 
2 

are expected to increase as D ; others (such as cabling) lead to a linear 

dependence on D; and others (such as assembly costs if there are a fixed 

number of components; computers; commissioning costs; and certain 

overheads) have little or no dependence on D. This leads to the cost-

aperture relationship being expressed as a power series in D 

C = LQ + LXD + L2D
2 + L3D3 + L4D

4 + ... (2) 

where the coefficients L, determine the magnitude of each contribution to 

the total cost and hence the value of the exponent a in the power law 

approximation (1). It is assumed of course that (2) is applied only to 

the inter-comparison of telescopes which use similar designs and methods 

of construction, and that C is a continuous function of D over the range 

of D to which it is applied. 

2. Influence of telescope/enclosure design 

For traditionally designed telescopes (those built prior to the late 

1970's) the power law exponent a was driven strongly by (a) the dome cost 
2 5 3 which could be taken to increase as D " or D (and which in many projects 

contributed as much as 30-50 percent of total project cost); and (b) the 

cost of the mechanical structure to support a heavy primary mirror in an 

equatorial mount - a design which necessarily caused several major 

components (the fork or yoke, the tube, etc.) to experience high bending 

stresses and hence a high power dependence on D. By plotting the 

inflation-adjusted cost against D for telescopes in a range of sizes built 

* A simple example is a cantilevered beam, anchored at one end and 
uniformly loaded, of length x and square-section of dimension d. The 
deflection at the free end produces a slope proportional to x /d , so that 
If the length is doubled the beam depth has to be Increased by a factor /8 
for the same slope; for the tube structure of an equatorially mounted 
telescope the beam width would also have to be increased by /8, so the new 
volume (and hence weight) of the beam has increased by 2.Z8./8 • 2 . 
This applies to beams with hollow cross-sections as well as to solid 
beams. For the same beam in an altazimuth telescope where extra 
stiffness may be required in only one dimension, the weight need increase 
only as the power 2.5 of the increase in length (since 2./8 = (2) ). 
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prior to the late 1970's it was found empirically (see Meinel 1978, Meinel 

and Meinel 1980) that the power law exponent in (1) took the value of a -

2.6. For a much smaller number of telescopes built in the 1960's with 

apertures in the range 0.4 - 4.0m, Abt (1980) reported o = 2.37. 

The project cost data published by Meinel (1978) for traditionally 

designed optical telescopes (including dome and site development costs but 

excluding focal plane instrumentation) are fitted, according to Meinel, by 
2 fi^ 

a power law with index 2.63, so that project cost S = 0.42 D**DJ where the 

aperture D is expressed in metres and S (inflation adjusted) is in $ 

million U.S. (1980). The points actually plotted in Meinel's Figure 3 

appear to have a power law index no higher than 2.58, however, and the 

power law approximation is taken here to be** 

S = 0.37 D2*58 (3) 

This is shown in Figure 1. It is our purpose to suggest how that 

particular relationship arises for traditionally designed telescopes and 

to predict how it may change in cost-reduced designs. 

Bearing in mind the comments which were made in the introductory Section, 

we seek a quartic polynomial which, when approximated by a power law, is 

least squares fitted by equation (3) over the range of D for which data 

are available and which has acceptable coefficients as defined below. It 

is found by trial and error that a polynomial which satisfies these 

requirements is that which has the coefficients shown in the first row of 

Table 1. This is labelled PI and is shown also in Figure 1. By 

altering the coefficients of PI it is possible to obtain slightly closer 

fits but in doing so the set of power term coefficients may then become 

unacceptable. 

The coefficients in Pl are considered acceptable in the sense that (a) 

they all have positive sign, (b) the correlation coefficient of (3) and PI 

is close to unity, and (c) the individual power terms give fractional 

contributions to the total cost, at chosen values of D, which are sensible 

as judged by practical experience. That the coefficients are presented 

** This is obtained as a least squares fit by excluding the five points to 
the left of Meinel's 'optical' line (which otherwise would reduce the 
index even further) and by excluding the MMT (which is of non-traditional 
design). See Figure 1. 
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Table 1 Coefficients of terms ln the suggested polynomial cost/aperture 
expressions for traditional and cost-reduced telescopes 

Polynomial 

PI 

P2 

Design 

t r a d i t i o n a l 

cos t - reduced 

L4 L 3 L 2 . 5 L2 L l Lo 

0.015 0.109 - 0.145 0.032 0.119 

0.0033 0.0145 0.005 0.178 0.032 0.119 

Table 2 Fractional contributions to total construction cost by individual 
terms in the polynomial expressions PI and P2 

Polynomial 

PI 
( t r a d i t i o n a l ) 

P2 
(cos t - reduced) 

Aperture 
(m) 

D = 1 

D = 4 

D = 1 

D = 4 

L4D4 

0.04 

0.29 

0.01 

0.17 

L3D3+L2 # 5D2-5 

0.26 

0.52 

0.05 

0.21 

L2D2 

0.34 

0.17 

0.51 

0.57 

LXD 

0.08 

0.01 

0.09 

0.03 
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FIGURE 1. Comparison of polynomial cost-aperture relationship with power law for 
traditional designs. Circled data are those of Meinel (1978). Only the filled 
circles have been used here. Projects which may be described arguably as excess­
ively expensive (open circles) have been ignored in order to improve homogeneity 
in the original sample which covered projects of different design and performance, 

and which were costed by different institutes. 
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in Table 1 with the number of decimal places shown merely reflects the 

need to obtain a self-consistent set such that PI is least-squares fitted 

by (3); it is not an indication of the accuracy with which it is 

considered that the various cost contributions can be estimated. 

For D = 4m and D = lm the fractional contributions of the individual terms 

in PI are given in Table 2. As explained above, the D contribution in a 

fork or yoke mounted equatorial telescope will arise from those parts of 

the tube structure and mount which experience high bending stresses; the 
3 

D contribution is taken to arise partly from the dome and partly from the 
o 

telescope; the D contribution arises from several sources but 

principally the optics. 

Such fractions are broadly in line with those which have been encountered 

in building traditional 4m and lm telescopes. Individual telescope 

designs may show wide variations from the situation described, of course, 

and the examples given here should be taken to be illustrative only. 

And, since the source data do not comprise a homogeneous set of designs 

covering the aperture range of interest with similar bases for their 

costings, it is not possible to verify that the observational points are 

fitted better by PI than by (3). Of possible significance is that 

Meinel's data show quite a wide scatter at low D and this may conceal 

evidence for the levelling off predicted by PI. However, the polynomial 

interpretation given here is entirely consistent with Abt (1980) finding a 

lower value for a (a = 2.37) when applied to telescopes in a range which 

includes smaller aperture sizes. 

Consider now a weight-reduced telescope in which cost savings have been 

made principally by: (a) the use of an altazimuth mount in which the 

stresses are mainly compressive rather than bending; (b) the use of 

optimised stiffness to weight ratios for all components including the 

primary mirror, i.e. finding a minimum weight design solution which just 

allows the performance requirements to be met; (c) replacement of the 

traditional dome and support building by an enclosure consisting of a 

simple steel framework with low cost cladding. As a result of (a), the 
4 

mounting structure is now more compact and the D contribution is largely 
2 5 removed. The bending stresses in the tube now give rise to a D term; 

(b) leads to weight reduction all round and a decrease in the coefficients 

of the telescope D terms; and (c) reduces that part of the D term 
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contributed by the dome and replaces It by a term which is more nearly D . 

Suppose then that polynomial PI is modified to incorporate these changes 

for a cost-reduced telescope as shown in Table 3. No attempt is made 

here to give a strict justification of the magnitude and nature of these 

changes. They are merely rough estimates based upon an approximate 

weight apportionment between (telescope tube)/(fork or york)/(base 

support) for traditional telescopes plus the knowledge that for D ~ 4m the 

total weight of a telescope of traditional design can be reduced by at 

least a factor of 3 (the 3.6m CFHT and 3.8m UKIRT indicate that this is 

so, though it raises also whether similar levels of performance are 

attained). Thus, replacing the D and D terms of PI by those in column 
2 5 2 3 of Table 3, and adding the new D * and D terms, gives the polynomial 

labelled P2 with coefficients shown in Table 1. The least-squares fitted 

power law approximation to P2 is now 

S = 0.31 D2,0 (4) 

and the fractional contributions to the total construction cost given by 

P2 for D = 4m and D = lm are then as shown in the second row of Table 2. 

For the D = 4m example, instead of some 80 per cent of total project cost 

being locked up in the D and D terms for traditional telescopes, 

polynomial P2 predicts that for cost-reduced telescopes the terms higher 
2 

than D contribute only about 40 per cent of total project cost and the 
2 

main contributor is now the D term. 

What is interesting is that cost savings on the scale indicated above 

appear already to have been made, or to have been considered feasible, in 

the cost-reduced telescope construction projects completed or proposed 

within the last five years. These include the Australian Universities' 

Telescope, 2.3m; UKIRT, 3.8m; and MMT, 4.4m. Although there are 

insufficient data for any firm conclusion to be reached, the Indication is 

that new, low-cost telescopes already have a scaling law index close to 

2.0. And, we take this as providing some evidence at least that the 

polynomial form of the aperture dependence of telescope construction costs 

as described in this paper, although possibly deficient in precise detail, 

may indeed be close to the true situation. For all these reasons we 

choose to use (4) as our best estimate of the approximate cost-aperture 

relationship for the present generation of low-cost optical telescopes. 
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Table 3 Transformation of polynomial expression PI to give P2 

Term In 
PI 

0.015D4 

0.109D3 

Presumed origin and 
apportionment for 
traditional designs 

• 

Tube, trusses, top 
end (0.005D4) 

Telescope mount 
(0.010D4) 

Dome (0.0654D3) 

Telescope 
(0.0436D3) 

Terms for cost-
reduced telescopes 

0.005D2,5 

0.0033D4 

0.0327D2 

0.0145D3 

Reason for change 

Altazimuth design 
(see footnote In 
Section 1). 

Small D4 term for 
residual bending 
stresses. 

2 
D dependence due 
to design + 
reduction of 2X 
using low cost 
cladding. 

Weight reduction 
by factor 3. 

o 1 5 

CO 

CO 

•°o 

•" 1-0 
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g 

u 

Power few. «»2" 
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FIGURE 2. Predicted aperture dependence of project cost (including instrument­
ation) per unit collection area using polynomials (solid curves) and scaling law 
approximation (dashed curves). I is the instrumentation cost per telescope. 
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3. Telescope arrays; preliminary comments 

Consider what happens if instead of increasing the aperture D of a single 

optical telescope by a multiplying factor n to obtain a collection area 
2 2 n D (ignoring multiples of ir/4), one obtains the desired collection area 

2 
by keeping the aperture constant and building an array of n telescopes. 

The cost of the contributions which rise in (2) as D will now increase 

only as n D (instead of n D* for a single telescope). Those which rise 
o 2 3 3 3 

as D will increase only as n D (instead of n D ). There will be no 
2 2 2 

change in the D terms (both rise as n D ) but the costs which depend 
o 

linearly on D will now rise as n D (instead of nD) and many of the costs 
which are independent of D will also be greater than those of the single 

2 
telescope; for example, there will be n as many components to assemble, 
2 2 

n as many telescopes to commission, and at least n as much cabling. It 

follows from this that an array can compete with a single telescope on 

grounds of cost if, in terms of the polynomial coefficients in (2), 
(n+1) L + L«D S n L,,D3 + n(n+1)L.D4 
n o 1 3 4 

or, in terms of the power law approximation, if 

n2 L Da < L (nD)a 

i.e. if a > 2. In general these conditions are satisfied only if those 

terms which scale as D or D° form a small part of the total cost. If, as 

we suspect already, cost-reduced telescopes have a cost scaling law with a 
2 

- 2 then construction costs are approximately independent of N = n for an 

N-element array where N can take any value including N = 1. However, the 

latter statement assumes that the scaling law is valid for large D and, so 

far, we have not considered the effect of instrumenting the array. Both 

of these shortcomings are rectified in the next Section. 

4. Cost optimised optical arrays, including instrumentation 

Disney (1972) compared the overall photon detection effectiveness of an 

array with that of a single telescope built for the same total expenditure 

including instrumentation. The optimum number and size of the array 

units were shown to depend on the observational mode (e.g. direct imaging 

or photometry; slitless spectroscopy; grating-limited spectroscopy etc.) 
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and on the proportion of the total cost spent on instrumentation but, 

assuming that the telescope cost contribution was at that time governed by 

a cubic scaling law (at = 3), the performance of the optimised array as 

defined by Disney was found in nearly all cases to surpass that of the 

single telescope built for the same expenditure. In a later paper 

(Disney 1978) the consequences of a having a value lower than 3 were 

considered. 

It can be argued alternatively that the effectiveness of a telescope 

system should be measured only by the total number of photons collected 

from a given area of sky in a given time and not by technological 

limitations imposed by the instrumentation (which may change during the 

lifetime of the telescope) or by the various observational modes in which 

it can be used. Otherwise, one would need to know before the telescope 

was designed the frequency of use for each mode of observation during the 

lifetime of the telescope so that appropriate weights could be assigned. 

This cannot be done with confidence. Thus the effectiveness of a 

telescope system is taken here to be determined simply by the collection 

area A =• irND /4 for an N-element array and we examine how the total cost 

per unit collection area can be minimised by an appropriate choice of D. 

Unless stated otherwise it is assumed throughout that the array is to be 

operated by adding the signals from N sets of instrumentation using low-

noise detectors. 

For N telescopes each of aperture D the total cost of the instrumented 

array is, as given by Disney, 

SN = N(LDa + I) (5) 

where I is the cost of equipping a single telescope with instrumentation, 

and the scaling law approximation has been used for the individual 

telescope cost contributions. Thus the cost per unit collection area is 

A irND2/4 L D^J 

This function is plotted against D in Figure 2 (shown with dashed curves 

for traditional and for cost-reduced telescopes using scaling laws (3) and 
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(4), respectively). The cost units throughout this paper are those used 

by Meinel, viz. $ million U.S. (1980), and an instrumentation expenditure 

(I) per telescope of $1.5 million U.S. (1980) has been assumed. An 

expression similar to that obtained by Disney for the optimum aperture 

size corresponding to the minimum of the function plotted can be obtained 

for a > 2 by differentiating (5) and equating to zero, but when a = 2 the 

cost per unit area continues to decrease as D increases. 

Since the emphasis in this paper has been to point out that telescope 

construction costs have a polynomial origin, it is of more concern here to 

examine what happens when polynomials PI and P2 are used to obtain the 

cost per unit collection area. In this case the cost of the instrumented 

N-element array is 

SN = N(L4D
4 + L3D

3 + L2D
2 + LXD + LQ + I) (7) 

and the cost per unit area is now 

_1 = iL |~L4D
2 + L3D + L2 + LjD"

1 + (LQ + I) D~
2~| (8) 

When the coefficients of PI or P2 are inserted in (8) (for P2 an extra 

term L? cD0*-5 is required), the labelled curves shown in Figure 2 are 

obtained for the variation of total cost per unit collection area with 

aperture. 

The expenditure per telescope on focal plane instrumentation for the array 

is a matter of policy determined by the range of scientific programmes for 

which the installation is designed. For a special-purpose array with 

very simple instrumentation (or for a beam-combined array using a single 

set of instrumentation), the cost could be almost negligible compared with 

other costs; for a general-purpose array with post-detection addition of 

signals capable of being operated over a wide spectral range, the 

instrumentation cost could be much larger than our initial assumption of I 

» $1.5 x 10 U.S. (1980) per telescope, particularly when it is considered 

that the useful lifetime of the telescope will be well in excess of 20 

years. To cover these cases, separate curves are shown in Figure 2 for I 

=0, I = 1.5 x 106 and I = 3 x 106. 

https://doi.org/10.1017/S0252921100108528 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108528


Cost Scaling Laws and Their Origin: Design Strategy for an Optical Array Telescope 389 

Considering only cost-reduced systems, the following conclusions can be 

drawn from Figure 2: (1) when the polynomial form of the telescope 

construction cost is used, our optimisation criterion (total cost per unit 

area including instrumentation) does indeed show a minimum at some optimum 

aperture size D t« This contrasts with the result predicted by the 

scaling law approximation with a = 2; (2) the value of D depends on 

the cost per telescope of the focal plane instrumentation but, for the 

range of I values which we have used, it lies in the range of monolithic 

primary mirror sizes which already exist or which are currently considered 

feasible; (3) the total cost per unit collection area for a cost-reduced 

telescope array varies only slowly with aperture i.e. the minima are very 

shallow. This is a crucial point since it means that if, for entirely 

separate and overriding reasons, one wished to use array units with 

apertures somewhat different from D 0 D t» then the cost penalty incurred by 

doing so may not be a severe one. For example, if one chose to use D = 

7.5m (with I - 3 x 10 per telescope) instead of D t = 5m, the penalty 

for choosing that non-optimum aperture would be an increase of 15 per cent 

in total project cost; (4) the approximation involved in using a scaling 

law to predict costs is such that large errors are introduced at values of 

D much larger than the range of D for which the scaling law approximation 

is valid. This is obvious but the point here is that for cost-reduced 

designs with a = 2, entirely erroneous conclusions may be reached at large 

D if the scaling law is used. 

Notwithstanding conclusion (3) above, the difference in the curves in 

Figure 2 for I - 0 and I greater than, say, 1.5 x 10 is appreciable and 

it is essential to define at the earliest stage of design whether a 

general-purpose array will be operated with beam combination and a single 

suite of instrumentation (small effective I per telescope), or whether 

each unit telescope of the array will be equipped with separate 

instrumentation for post-detection addition. Our views on this matter 

are summarised as follows: Prime focus operation of a large aperture 

telescope should have the highest priority; otherwise, additional 

reflection losses and, for large apertures, pixel mismatch lead to a 

reduction in effective aperture which is unacceptable. For a beam 

combined array with 5 additional reflections (Learner, 1978; NGT Report 

No. 5, 1978) this loss is equivalent to at least 40 per cent of the total 

collection area. Additionally there are problems to be overcome in 

combining the beams if the distances involved are large and it follows 
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also that the resulting field of view will be very small. For these 

reasons we strongly favour post-detection addition as advocated by Disney 

in 1972. 

If such an array started out as a special-purpose system with simple, low-

cost instrumentation, we believe that it would not end up like that; 

pressure to provide a comprehensive set of instrumentation at each 

telescope would be so great that we consider it only realistic to admit at 

the outset that expenditure per telescope on focal plane instrumentation 

is likely to be somewhere at the upper end of the range of I values which 

we considered above. Thus, on the basis of the cost-optimisation 

argument, we are led to believe that a large aperture optical array should 

be designed around units having an aperture in excess of 5m. 

The number of separate units in an N-element array follows from the 

desired collection area A, where N = 4A/TTD and D is equal to or close to 

D t as discussed above. For an 18m equivalent aperture array, this 

would require 13 units if D t = 5m or 6 units if D = 7.5m. Thus for 

equivalent apertures of about 15 to 20m, the cost optimisation argument 

leads to an array comprising a relatively small number of large telescopes 

rather than a very large number of small telescopes. 

The discussion above has been restricted to the comparison of systems in 

which individual telescopes have monolithic (or honeycomb) primary mirrors 

of fixed focal aperture ratio. For multiple-mirror and segmented-mirror 

designs, we expect (for design reasons already stated) the functional form 

of the cost-aperture relationships to be quartic polynomials also but at 

present there are insufficient data to indicate whether these have term 

coefficients similar to those for cost-reduced designs using single 

monolithic primaries. However, a preliminary comparison of the itemised 

costs (excluding focal plane instrumentation) for a 6 x 7.5m multiple-

mirror telescope and an array of six separate 7.5m telescopes suggests 

that the total construction costs for these are the same to within the 

uncertainties involved in the estimates. Regarding the instrumentation 

for a multiple-mirror design or an array of separate singles (assuming the 

same multiplicity, the same total collection area, and the same individual 

focal aperture ratios), identical options exist for each system, viz. beam 

addition or post-detection addition of signals, so that instrumentation 
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costs do not affect the argument here. Both systems also have the 

capability for coherent operation by combining apertures in pairs for 

speckle interferometry• 

However, there are two particular applications where a singles array has 

an inherent advantage over a multiple-mirror design. First, for 

observational programmes where there are many objects to be observed at 

brightnesses above the limiting magnitude of an individual telescope unit 

(or multiplets) of the array, it can be shown that a post-detection array 

can be more efficient in the use of available time (by up to 20 per cent 

for faint object photometry with a 6-element system) than a multiple-

mirror design. This arises from the fact that the acquisition of several 

sky objects can be performed simultaneously with an array, whereas a 

multiple-mirror system on a single mount must by necessity perform each 

acquisition sequentially. Second, an array designed for coherent 

operation is not constrained by the fixed and redundant baseline features 

of a multiple-mirror system on a single mounting. Other advantages of 

incoherent arrays (scheduling flexibility; the capability of being 

enlarged at a later date; design using existing technology leading to 

predictable commissioning results and operational reliability; pixel 

matching considerations) have been given by several authors including 

Code, 1971; Disney, 1972; Angel 1978; Disney 1978; Richardson and 

Grundmann, 1978. 

The cost optimisation results summarised in Figure 2 can also be used to 

compare the expenditure on a giant single-dish telescope with that of an 

optimised array of the same total collection area, assuming that common 

design principles are used and that a single cost polynomial applies over 

the requisite range of aperture sizes. On that basis, using curve [P2, I 

- 3 x 10 ] of Figure 2, a hypothetical monolithic 10m installation would 

be expected to cost one half as much again as an optimised 4 x 5m array 

(the cost for which including enclosures and multiple sets of 

instrumentation is predicted here to be about $50 million U.S. (1980)). 

Comparison of a segmented-mirror telescope with these systems should also 

be possible using the semi-analytic approach described in this paper 

though we have not attempted this. One obvious design difference in a 

segmented-mirror structure is the extremely low mass per unit area for the 

primary mirror; this will affect several of the term coefficients in the 

cost-aperture polynomial and reduce the cost differential over an 
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optimised array of the type we have been considering. On the other hand, 

if the full development costs for a segmented-mirror telescope are taken 

into account, that benefit could easily be dissipated. 

We conclude by indicating very briefly how an optical/IR array based on 

the principles described in this paper may be realised in practice. The 

equivalent aperture has been taken to be 18m and the system is designed 

for variable baseline interferometry as well as incoherent operation. 

The preferred arrangement is a 6-element array of individual 7.5m f/2 

altazimuth telescopes. The aperture chosen for the individual units was 

determined by the cost optimisation arguments of this paper taking into 

account the likely instrumentation costs during the lifetime of the 

installation for a wide range of optical and IR observing programmes 

including interferometry. Each telescope has provision for operation at 

prime and Nasmyth focii as well as pair-wise beam combination. The 

telescopes and their roll-off enclosures are on separate rail systems with 

traction provided by electric motors. The moving masses are 230 tonnes 

(telescope units) and 175 tonnes (enclosures), and several hard-pad 

stations are provided at fixed locations along each baseline. Each 

enclosure is a simple cover using corrugated aluminium sheet cladding on 

steel section girders and columns (as used in the construction of 

conventional industrial buildings). The base is a rigid box girder with 

powered wheels and the hinged doors are operated hydraulically. Speckle 

interferometry is performed by combining the six pupils in pairs, with 

baselines of up to 200m and a non-redundant layout configuration which 

allows efficient sampling of the (u,v) spatial frequency plane. We have 

also considered an alternative system comprising three twin 7.5m 

altazimuth telescopes; this gives some cost savings but lacks the 

flexibility of the Six-Single Array. Further details of these systems 

and a discussion of interferometric requirements and performance will be 

given elsewhere (Greenaway et al., 1984). 

Acknowledgement; This paper owes much to the stimulation provided by the 
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DISCUSSION 

G. Burbidge; If you build an array of 8m class telescopes, which is the price 

per unit? Also, have you taken into account the cost of equipping each telescope 

with a full set of instruments? 

CM. Humphries: The square power law approximation gives the project cost for a 

single 7»5m unit (excluding instrumentation) as $ 17*10 U.S. (1980). Using the 

polynomial expression, the figure is somewhat higher. Instrumentation costs have 

been taken into account and are discussed in the write-up. 

R.G. Tull; State-of-the-art auxiliary instruments tend to be built in units of 

one or two. This fact argues in favour of a large telescope with a single focus, 

rather than an array of many telescopes. 

CM. Humphries: It means that the instrumentation development costs are high and 

this applies to all telescope systems regardless of their design. Thereafter, for 

an array, the unit instrumentation cost drops rapidly and it is then a matter of 

building in reliability. I think this argues in favour of an array. 
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R. Racine: Would taking into account the operating costs significantly affect 

your conclusions? 

C M . Humphries: We don't find the operating costs for an array to be 

significantly different from those for other systems. However, it is essential to 

build in a high level of reliability for the instrumentation so that the effort 

on repair and maintenance is small. 

G.J. Odgers: Were you aware that Grundmann and I estimated (in paper at Imperial 

College last year) that the boule design for an array is an order of magnitude 

less expensive? 

C M . Humphries: We did not include boule telescopes for consideration since we 

had no experience of building or using them. It would certainly be of interest to 

know more precisely how their costs scale with aperture and hence what the 

optimum size is. 

https://doi.org/10.1017/S0252921100108528 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100108528



