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On Log Q-Homology Planes
and Weighted Projective Planes

Daniel Daigle and Peter Russell

Abstract. We classify normal affine surfaces with trivial Makar-Limanov invariant and finite Picard

group of the smooth locus, realizing them as open subsets of weighted projective planes. We also show

that such a surface admits, up to conjugacy, one or two Ga-actions.

Let k be an algebraically closed field of characteristic zero and consider algebraic
surfaces over k. Let M be the class of normal affine surfaces U satisfying ML(U ) = k,
where ML(U ) stands for the Makar-Limanov invariant of U , that is, the intersection

of the kernels of all locally nilpotent derivations OU (U ) → OU (U ). The aim of this
paper is to describe the class

M0 =
{

U ∈M | Pic(Us) is a finite group
}

,

where Us denotes U \ Sing(U ). In the special case wher k = C, the class M0 can also
be defined as that of log Q-homology planes with trivial Makar-Limanov invariant.
This explains our title but note that we will never assume that k = C.

1 Statement of Some Results

Given positive integers a0, a1, a2, the weighted projective plane P(a0, a1, a2) is defined
by P(a0, a1, a2) = Proj R, where R = k[X0, X1, X2] is the polynomial ring in three

variables with the grading given by deg(Xi) = ai . As is well-known, P(a0, a1, a2)
is isomorphic to P(a ′

0, a ′

1, a ′

2) for some pairwise relatively prime positive integers
a ′

0, a ′

1, a ′

2. Whenever we consider a weighted projective plane P(a0, a1, a2), we will
choose a0, a1, a2 to be pairwise relatively prime.

We use the set T∗, in Definition 3.1, to parametrize the class M0. One of our main
results is:

Theorem A Given T ∈ T∗, define (a0, a1, a2) ∈ Z3 and f ∈ k[X0, X1, X2] as follows:

(i) If T =
(

p
c

)
∈ T1, let (a0, a1, a2) = (c − p, c, 1) and f = X1.

(ii) If T =
(

p 1
c a

)
∈ T2, there exists a2 ∈ Z satisfying:

(c − p)a2 ≡ 1 (mod c), gcd(a2, a) = 1 and 0 < a2 < ac.

Choose any such a2 and define a0 = ac − a2, a1 = a and f = X0X2 + Xc
1.
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1146 D. Daigle and P. Russell

Then a0, a1, a2 are pairwise relatively prime positive integers and f is homogeneous
with respect to the grading of k[X0, X1, X2] given by deg Xi = ai (i = 0, 1, 2). Let the

surface UT be the complement of the curve f = 0 in P(a0, a1, a2). Then:

(1) Up to isomorphism, UT depends only on T (i.e., UT is independent of the choice of
a2 made in case (ii), in the above statement).

(2) UT belongs to the class M0 and each member of M0 is a UT for some T.
(3) Given T, T ′ ∈ T∗, UT is isomorphic to UT ′ if and only if T ′ ∈ {T, Ť} (see Defini-

tion 3.3 for Ť).

Remarks (1) Since UT is the complement of the curve f = 0 in P(a0, a1, a2), it
follows that it is a quotient of the hypersurface f = 1 of A3 by a finite cyclic group

action.

More precisely, in case (ii) UT is the quotient of the surface Y in A3 with equation
X0X2 + Xc

1 = 1 by the group Ωac of ac-roots of 1, acting with weights −a2, a = a1,

a2. Since gcd(a2, ac) = 1 we can pick j such that ja2 ≡ 1 (mod ac). Then j ≡ c − p
(mod c) and we can replace the above weights by−1, a(c− p), 1. Precisely the points{

(0, x1, 0) | xc
1 = 1

}
have non-trivial stabilizer, namely the group Ωa of a-roots of 1.

The invariants for Ωa are generated by y0 = xa
0, y2 = xa

2, x0x2, y1 = x1. Hence Y/Ωa,

which is the universal covering space of UT in case k = C, is the Danielewski surface
with equation Y0Y2 = (1− Y c

1)a.

In case (i) of Theorem A, a similar argument shows that UT is a quotient of A2

by a cyclic group. So, if k = C, UT is contractible and is its own universal covering
space.

(2) Some surfaces belonging to M0 may be embedded in infinitely many (non
isomorphic) weighted projective planes; one can see that this is the case for UT if and
only if T ∈ T1 (this particular claim is not proved in the present paper but see 7.2–7.5
for related questions). Also note that a2, in Theorem A(ii), is not always unique.

Let us explain how Theorem A follows from the results of this paper. In Defini-
tion 6.1 we define a map f̄ : T∗ → M0, where M0 is the set of isomorphism classes
[U ] of surfaces U ∈M0. The fact that f̄ is a well-defined map is not trivial: It is based

on Proposition 5.4, Theorem 3.9 and ultimately result 5.25 of [5]. In Theorem 7.1,
we show that f̄(T) is the isomorphism class of the surface UT defined in Theorem A;
this proves assertion (1) of Theorem A, as well as the first half of assertion (2). The
second half of (2) is the fact that f̄ is surjective (a consequence of Theorem 6.3) and

assertion (3) is a rephrasing of Theorem 6.7.

See also Corollary 6.9, which describes the properties of UT (or f̄(T)) in terms
of T.

There is another way to present the classification of surfaces belonging to M0.
Given a normal surface U , let Gres[U ] denote the resolution graph of U (see §2.1)
and let G∞[U ] denote the equivalence class of weighted graphs which contains the

dual graph of any divisor at infinity of U (see the beginning of §2 for details). Then
Corollary 6.9 contains a description of the set

(1)
{

(G∞[U ], Gres[U ]) | U ∈M0

}
.
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From this description, it follows in particular that
{

Gres[U ] | U ∈ M0

}
is exactly

the set of all admissible chains (an admissible chain is a weighted graph which is a

linear chain and in which every weight is strictly less than −1; the empty graph is
considered to be an admissible chain). It also follows that an equivalence class C of
weighted graphs is an element of

{
G∞[U ] | U ∈ M0

}
if and only if some element

of C has the form:

(2) . . .r
0

r
−1

r
ω1

r
ωq

(where q ≥ 0 and ∀i ωi ≤ −2).

To decide whether two graphs of the form (2) are equivalent, see Lemma 2.17. We

have:

Theorem B Let U and U ′ be surfaces belonging to the class M0. If G∞[U ] = G∞[U ′]

and Gres[U ] = Gres[U
′] then U ∼= U ′. (See Theorem 6.5)

Clearly, this result and the description (Corollary 6.9) of the set (1) constitute a
classification of M0. Note that it is easy to go back and forth between T ∈ T∗ and the
graphs G∞[UT] and Gres[UT]; see §8.

We also classify Ga-actions on these surfaces. Given a surface U = Spec R belong-
ing to M, define:

KLND(R) =
{

ker D | D : R→ R is a nonzero locally nilpotent derivation
}

,

which is a collection of subalgebras of R. It is well-known that the problem of de-
scribing the Ga-actions on U is equivalent to that of describing the set KLND(R).

One can show that KLND(R) has the same cardinality as the ground field k (whenever
U ∈ M), but it is more interesting to count the orbits, relative to the obvious action
of the group Autk(R) on the set KLND(R) (that is, if θ ∈ Autk(R) and A ∈ KLND(R),
define θA = θ(A)). For instance, it was suggested that the action might be transitive

whenever U ∈ M is a smooth surface. The following fact shows that that idea was
not correct:

Theorem C Let T ∈ T∗ and let UT = Spec R be the surface defined in Theorem A.
Then the action of Autk(R) on KLND(R) is such that:

(1) The number of orbits is either one or two.

(2) The action is transitive if and only if T = Ť.

This result is a reformulation of Corollary 6.8, taking into account the fact (The-
orem 7.1) that f̄(T) is the isomorphism class of UT .

We may give a geometric interpretation of the condition T = Ť. Let us say that
a surface U ∈ M is symmetric at infinity if the following equivalent conditions are
satisfied:

• For some element of G∞[U ] of the form (2), (ω1, . . . , ωq) = (ωq, . . . , ω1).
• For every element of G∞[U ] of the form (2), (ω1, . . . , ωq) = (ωq, . . . , ω1).
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(Equivalence follows from Lemma 2.17.) Now, by Corollary 6.9, the condition T = Ť
is equivalent to UT being symmetric at infinity; so Theorem C implies: The action is

transitive ⇐⇒ UT is symmetric at infinity where in fact “ =⇒ ” is valid for all
U ∈M.

In the case k = C, some of our results can also be found in [10] (see also [11] for

the smooth case). That paper describes the set (1) and shows that each member of
M0 can be realized as a quotient of the type described in the remark following The-
orem A. However, [10] does not give embeddings into weighted projective planes
(i.e., Theorem A(2) ) and does not address the question of deciding when two mem-

bers of M0 are isomorphic (i.e., Theorem A(3) or Theorem B). Also, Theorem C is
not contained in [10]. Note that [10] investigates the relation between the condition
ML(U ) = C and finiteness of the fundamental group at infinity of U ; we do not
consider that question here.

This work is, in essence, an elaborate corollary of our results in [5] and [6] on
the classification of affine rulings of weighted projective planes. Theorem A(3) and
Theorem C, in particular, are quite delicate results that appear to require the very

precise methods developed there.

2 Preliminaries on Surfaces

Let k be an algebraically closed field of characteristic zero. All algebraic varieties are
assumed to be k-varieties. All divisors are Weil divisors.

Let D be a divisor of a complete normal surface S. By a component of D we always
mean an irreducible component. We call D an SNC-divisor of S if it satisfies:

(a) D is effective and reduced,
(b) supp(D) ⊂ S \ Sing(S),
(c) each component of D is a smooth curve,

(d) if C,C ′ are distinct components of D then C ·C ′ ≤ 1,
(e) if C,C ′,C ′′ are distinct components of D then C ∩C ′ ∩C ′′

= ∅.

If D is an SNC-divisor of S then we may consider the dual graph of D in S, which
we denote G(D, S). For the definition of G(D, S) and the theory of weighted graphs,
see for instance [13].

By graph we mean a finite undirected graph in which no edge connects a vertex

to itself and at most one edge joins any given pair of vertices. A vertex adjacent to a
vertex v is also called a neighbor of v; we say that v is a branch point if it has more than
two neighbors. A tree without branch points is called a linear chain. An admissible
chain is a (possibly empty) weighted graph which is a linear chain and in which every

weight is strictly less than−1. If D is an SNC-divisor of S then a branching component
of D is an irreducible component which is a branch point in the dual graph G(D, S).

If U is a normal surface then there exists a smooth-normal compactification of U ,

by which we mean an open immersion u : U →֒ S such that S is a complete normal
surface and S \U is the support of an SNC-divisor of S (so in particular Sing(S) =

Sing(U ) ). If u : U →֒ S is a smooth-normal compactification of U then we define
G(u) = G(D, S), where D is the SNC-divisor of S satisfying S \U = supp(D). Note
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that the equivalence class of the weighted graph G(u) depends only on the isomor-
phism class [U ] of U . This equivalence class of weighted graphs is denoted G∞[U ].

A normal surface U is said to be completable by rational curves if there exists a
smooth-normal compactification u : U →֒ S of U such that every curve in S \U is
a rational curve. If this is the case then every smooth-normal compactification of U
has that property.

If U is a normal surface then

{
G(u) | u is a smooth-normal compactification of U

}

is a nonempty subset of G∞[U ]; it is equal to G∞[U ] whenever U is completable by
rational curves.

If f : X → Y is a birational morphism of surfaces, we use the notations

cent( f ) =
{

P ∈ Y | f −1(P) contains more than one point
}

exc( f ) = f −1
(

cent( f )
)

for the center and exceptional locus of f respectively.

2.1 Recall from [6, 1.19] that the resolution graph of a normal surface U is the dual
graph of E in Û , where E is the exceptional locus of the minimal SNC resolution of
singularities Û → U . We will denote that weighted graph by Gres[U ], which reminds

us that the resolution graph depends only on the isomorphism class [U ].

Ga-actions and A1-fibrations

Notations 2.2 In addition to the classes M and M0 defined in the introduction, we
will also consider the larger class N of normal algebraic surfaces.

Given a class S of algebraic surfaces (e.g., M, M0 or N), let

S+
=

{
(U , ρ) | U ∈ S and ρ : U → A

1 is a morphism whose general fiber is A
1
}

.

Note that surjectivity of the map ρ : U → A1 is not required in the definition of S+.
Define an equivalence relation on the set S+ by declaring that (U , ρ) ∼ (U ′, ρ ′) if

there exists a commutative diagram:

U −−−−→ U ′

ρ

y
y ρ ′

A1 −−−−→ A1

where the horizontal arrows are isomorphisms of varieties. Let [U , ρ] denote the

equivalence class of the pair (U , ρ) and [U ] the isomorphism class of U . Then define:

S =
{

[U ] | U ∈ S
}

and S
+

=
{

[U , ρ] | (U , ρ) ∈ S+
}

.

We also consider the set map S
+
−→ S, defined by [U , ρ] 7→ [U ], which we simply

call the projection. By §2.3, the projection is surjective when S = M or M0.
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2.3 Let U = Spec R be a normal affine surface and recall, from the introduction,
that the study of Ga-actions on U reduces to describing the set KLND(R). The fol-

lowing facts are well-known and easy to prove.

(1) ML(U ) = k if and only if KLND(R) contains more than one element.
(2) If ML(U ) = k then R∗

= k
∗ and U is rational and completable by rational

curves (where R∗ denotes the group of units of R).

(3) If ρ : U → A1 is a surjective morphism with general fiber A1, then the image of
the corresponding homomorphism ρ∗ : k[t] →֒ R is an element of KLND(R). If
U is rational and R∗

= k
∗ then all elements of KLND(R) can be obtained in this

way.

(4) Two morphisms U → A1 as in 2.3(3) correspond to the same element of
KLND(R) if and only if they differ by an automorphism of A1.

2.4 This paragraph makes the link between Theorem C and the other results of this

paper. Consider a surface U = Spec(R) belonging to M. Let E ⊂ M
+

be the inverse

image of [U ] ∈M by the projection M
+
→M.

Fix A ∈ KLND(R); by §2.3, there exist surjective morphisms ρ : U → A1 with gen-
eral fiber A1 and satisfying A = im(ρ∗). Moreover, any two such morphisms differ
by an automorphism of A1 and consequently the element [U , ρ] of E is completely

determined by A. This defines a set map

F : KLND(R) −→ E

A 7−→ [U , ρ]

Note that F is surjective (R∗
= k

∗ by §2.3, so every dominant morphism ρ : U → A1

is surjective) and that, given A, A ′ ∈ KLND(R),

F(A) = F(A ′) ⇐⇒ ∃θ∈Autk(R) θ(A) = A ′.

Thus, if we consider the natural action of the group Autk(R) on the set KLND(R), the

number of orbits is equal to the cardinality of E.

Completions and Minimal Completions

Definition 2.5 Let (U , ρ) be an element of N+ (see Notation 2.2). A completion of
(U , ρ) is a commutative diagram

(3)

U
u

−−−−→ S

ρ

y
y ρ̄

A1 −−−−→ P1

where u : U → S is a smooth-normal compactification of U , A1 → P1 is an open
immersion and ρ̄ is a morphism.
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Let D be the SNC-divisor of S such that S \U = supp(D). A component C of D
is called ρ-vertical if ρ̄(C) is a point; if C is not ρ-vertical, we call it ρ-horizontal. The

assumption that the general fiber of ρ is A1 implies that the general fiber of ρ̄ meets
D in one point. It easily follows that

D has exactly one ρ-horizontal component

and that, if the unique ρ-horizontal component is denoted H, then

ρ̄ restricts to an isomorphism H → P
1.

We call D and H the boundary divisor and the horizontal component of the completion
(3), respectively.

It is clear that each element (U , ρ) of N+ has a completion. Observe that given any
completion (3) of (U , ρ), the morphism ρ̄ : S→ P1 is a P1-fibration (i.e., the general
fiber of ρ̄ is a P1). P1-fibrations have been studied extensively, and the structure of

their fibers is understood. Since all ρ-vertical components of the boundary divisor
D are (by definition) contained in fibers of ρ̄, one can obtain information about the
structure of D. In particular, the properties of P1-fibrations imply the existence of
minimal completions:

Definition 2.6 Let (U , ρ) be an element of N+. By a minimal completion of (U , ρ),
we mean a completion (3) of (U , ρ) satisfying the additional condition:

Every ρ-vertical component C of the boundary divisor D satisfies C2 6= −1.

The following is well-known:

Lemma 2.7 Given any (U , ρ) ∈ N+ and x ∈ Z, there exists a minimal completion of
(U , ρ) whose horizontal component H satisfies H2

= x.

We shall now see that each element [U , ρ] of N
+

(see Notation 2.2) determines a

specific element G∞[U , ρ] of G∞[U ].

Definition 2.8 Let (U , ρ) be an element of N+. By Lemma 2.7, we may choose a
minimal completion (3) of (U , ρ) whose horizontal component H satisfies H2

= −1.

Let D be the boundary divisor of such a completion. We claim:

The weighted graph G(D, S) is independent of the choice of the completion. In
fact, it depends only on [U , ρ].

Assuming that this is true, define G∞[U , ρ] = G(D, S) and note that G∞[U , ρ] ∈
G∞[U ].

The meaning of the above claim is that

[U , ρ] 7−→ G∞[U , ρ]

https://doi.org/10.4153/CJM-2004-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-051-9


1152 D. Daigle and P. Russell

is a well-defined map, going from N
+

to the set of all weighted graphs. This claim is

justified by part (2) of Lemma 2.15, below.

Note that G∞[U , ρ] is not independent of ρ.1 For instance, there exists U ∈ M0

and morphisms ρ, ρ ′ : U → A1 (whose general fibers are A1) such that G∞[U , ρ] and

G∞[U , ρ ′] are (79) and (81) respectively. The proof of Theorem C is based on this
type of phenomenon.

To prove that Definition 2.8 is sound, as well as several other results of this paper,
the following combinatorial object is very convenient:

Definition 2.9 A weighted pair is an ordered pair P = (G, v) where G is a nonempty
weighted graph and v is a vertex of G. We call v and G the distinguished vertex and the
underlying weighted graph of P. One defines an equivalence relation ≈ on the set of

weighted pairs by declaring that (G, v) ≈ (G ′, v ′) means that G can be transformed
into G ′ by a finite sequence of blowings-up and blowings-down of weighted graphs,
in such a way that the distinguished vertex is preserved. Refer to [6, 2.5] for the precise
definition of≈. Note in particular that the condition (G, v) ≈ (G ′, v ′) implies that G

and G ′ are equivalent weighted graphs.

Definition 2.10 Let (U , ρ) be an element of N+. Given a completion (3) of (U , ρ),
with boundary divisor D and horizontal component H, define the weighted pair

P(U , ρ, u) =
(
G(D, S), H

)
.

We will see in Lemma 2.15 that, up to equivalence≈ of weighted pairs, P(U , ρ, u)
is independent of the choice of a completion.

Definition 2.11 We say that a weighted pair P = (G, v) is of type (⋆) if it satisfies
the conditions:

(1) Every connected component of G is a tree.

(2) If w is the weight of a vertex of G \ {v} then w = 0 or w ≤ −2.
(3) Some vertex of G \ {v} has weight zero. Moreover, any such vertex has exactly

one neighbor in G and that neighbor is v.

We say that P is of type (⋆⋆) if it satisfies (1–3) and:

(4) G is connected and exactly one vertex of G \ {v} has weight zero.

From the properties of P1-fibrations, we now derive:

Lemma 2.12 If (3) is a minimal completion of (U , ρ) ∈ N+ then P(U , ρ, u) is a
weighted pair of type (⋆). If we also assume that U is affine and has trivial units (i.e.,

OU (U )∗ = k
∗), then P(U , ρ, u) is of type (⋆⋆).

1So result 1.9 of [2] (as far as we understand it) is false.
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Proof Let the boundary divisor and horizontal component of the minimal comple-
tion (3) be denoted by D and H respectively. Let G = G(D, S), then P(U , ρ, u) =

(G, H).

It is known that every fiber of ρ̄ is a tree; since distinct fibers are disjoint, and since

D has only one horizontal component, it follows that Definition 2.11(1) holds.

Let C be a vertex of G \ {H}. Then C is a component of a fiber of ρ̄. From known

properties of the fibers, it follows that C2 ≤ 0. Since C is a ρ-vertical component of
D, and since (3) is a minimal completion, C2 6= −1 and Definition 2.11(2) holds.

We may pick a point P of P1 which is not in the image of the composite U
ρ
−→

A1 →֒ P1. Consider the fiber L = ρ̄−1(P). Then L is entirely contained in supp(D)
and, consequently, no component of L has self-intersection equal to−1. From known

properties of the fibers of ρ̄, it follows that L is an irreducible curve and that L2
= 0.

Hence L is a vertex of G \ {H} and has weight zero.

Let L be any vertex of weight zero in G\ {H}. Then L is an irreducible component
of some fiber ρ̄−1(P), and L2

= 0. From known properties of the fibers of ρ̄, it follows
that L = ρ̄−1(P). Thus L ∩ H 6= ∅ and (since distinct fibers are disjoint) H is the
only neighbor of L. This proves Definition 2.11(3) and hence that P(U , ρ, u) is of

type (⋆).

Note that the above argument shows that the number of vertices of weight zero in

G \ {H} is equal to the cardinality of P1 minus image of U
ρ
−→ A1 →֒ P1.

As is well-known, if U is affine then G is connected; if also U has trivial units then
every dominant morphism U → A1 is surjective, so ρ : U → A1 is surjective. By the
above paragraph, there is only one vertex of weight zero in G \ {H}, so P(U , ρ, u) is
of type (⋆⋆).

Definition 2.13 A weighted pair P = (G, v) is minimal if every vertex in G \ {v} of
weight−1 has more than two neighbors in G.

Note that every weighted pair of type (⋆) is minimal. We leave it to the reader to

verify:

Lemma 2.14 Consider equivalent weighted pairs P ≈ P ′, both of which are minimal.
If one of them is of type (⋆) then P and P ′ are identical, except possibly for the weight of

the distinguished vertex. In particular, both of them are of type (⋆).

Lemma 2.15 Let (U , ρ) and (U ′, ρ ′) be equivalent elements of N+ and let

U
u

−−−−→ S

ρ

y
y ρ̄

A1 −−−−→ P1

and

U ′ u ′

−−−−→ S ′

ρ ′

y
y ρ̄ ′

A1 −−−−→ P1

be completions of (U , ρ) and (U ′, ρ ′) respectively.

(1) P(U , ρ, u) ≈ P(U ′, ρ ′, u ′).
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(2) If both completions are minimal, then the weighted pairs P(U , ρ, u) and
P(U ′, ρ ′, u ′) are identical, except possibly for the weight of the distinguished vertex.

Proof Let D be the SNC-divisor of S such that U = S \ supp(D) and let H be the
unique ρ-horizontal component of D; let D ′ and H ′ be the corresponding objects
in the second diagram. There exists a birational isomorphism β : S 99K S ′ which

restricts to an isomorphism U → U ′ and which gives a commutative diagram:

(4) S

ρ̄

��

β
//___ S ′

ρ̄ ′

��

P1

∼=
//

P1

We may consider a complete normal surface W and birational morphisms S
w
←−

W
w ′

−→ S ′ such that w ′ ◦ w−1
= β. Let H̃ ⊂ W be the proper transform of H ⊂ S

with respect to w. Since every fiber of ρ̄ meets H, it follows that every fiber of ρ̄ ◦ w
meets H̃; so, by commutativity of (4), every fiber of ρ̄ ′ ◦ w ′ meets H̃; thus w ′ cannot

contract H̃ to a point, i.e., w ′
(

H̃
)
⊂ S ′ is one of the components of D ′. Since H ′ is

the only component of D ′ which is ρ ′-horizontal, we must have

w ′(H̃) = H ′.

Hence, by blowing-up and blowing-down, it is possible to transform G(D, S) into
G(D ′, S ′) without ever contracting H. So, by definition [6, 2.5] of≈, we have

P(U , ρ, u) = (G(D, S), H) ≈ (G(D ′, S ′), H ′) = P(U ′, ρ ′, u ′),

which proves assertion (1).
By Lemma 2.14, if P and P ′ are weighted pairs of type (⋆) and satisfying P ≈ P ′,

then P and P ′ are identical, except possibly for the weight of the distinguished vertex.

So assertion (2) follows from assertion (1) together with Lemma 2.12.

Remark By part (2) of Lemma 2.15, the claim contained in Definition 2.8 is true.

Some Graph Theory

Definition 2.16 A weighted graph G is called a chain of type (Z) if it is a linear chain
of the form:

(5) G = . . .r
0

r
x

r
ω1

r
ωq

where q ≥ 0, x is any integer and ω1, . . . , ωq ∈ Z are such that ωi ≤ −2 for all i. We
define the bideterminant of G to be the ordered pair

bidet G =

(
det

(
. . .r

ω1

r
ω2

r
ωq

)
, det

(
. . .r

ω2

r
ωq

))
∈ N

2,
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where det( . . .r
ω1

r
ω2

r
ωq

) and det( . . .r
ω2

r
ωq

) are determinants of

weighted graphs (see [6, 1.10]), and where we adopt the convention that bidet G =

(1, 0) if q = 0, and that bidet G = (−ω1, 1) if q = 1. Since the ordered q-tuple
(ω1, . . . , ωq) ∈ Zq is uniquely determined by G, so is bidet G. So every chain of type
(Z) has a bideterminant.

Lemma 2.17 The set of chains of type (Z) equivalent to the chain (5) is:

{
. . .q0 q

y
q

ω1 q
ωq

∣∣ y ∈ Z
}
∪

{
. . .q0 q

y
q

ωq
q

ω1

∣∣ y ∈ Z
}

.

Proof This is an immediate consequence of the classification given in [3]. Alterna-
tively, but this requires some work, the assertion may be derived from [5, §3], which
gives several results on chains of type (Z).

The next result will be used in the proof of Proposition 2.19. If G, H are weighted
graphs, we write G ← H or H → G to indicate that H is obtained by blowing-up

G (or equivalently that G is obtained by blowing-down H). The arrow should not
be interpreted as a map, and the direction of the arrow reminds us of the geometric

situation. Writing G
π
←− H allows us to speak of “the blowing-up π”. We say that π is

subdivisional if it is the blowing-up of G at an edge.

Lemma 2.18 Let G0 ← G1 ← · · · ← Gn (where n ≥ 1) be a sequence of blowings-
up of weighted graphs and, for i ∈ {1, . . . , n}, let ei be the vertex of Gi created by the
blowing-up Gi−1 ← Gi . Assume:

(i) G0 is the underlying weighted graph of a weighted pair of type (⋆⋆).

(ii) (Gn, en) is equivalent to a weighted pair of type (⋆⋆).

Then G0 is a chain of type (Z).

Proof Given a weighted graph G, the notation x ∈ G means that x is a vertex of G,
w(x, G) denotes the weight of the vertex x in G and the symbol G≪ 0 means that for
every x ∈ G we have w(x, G) < −1.

Suppose that the result is false and consider a counterexample

(6) G0
π1←− G1

π2←− · · ·
πn←− Gn

which minimizes n. Starting at Gn, perform a sequence of blowings-down

(7) Gn = H0
ν1−→ H1

ν2−→ · · ·
νm−−→ Hm

in such a way that en is not contracted (so en is a vertex of Hm) and (Hm, en) is a min-

imal weighted pair. Then (Hm, en) ≈ (Gn, en), so assumption (ii) and Lemma 2.14
imply that

(8) (Hm, en) is of type (⋆⋆).
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By (i), there exists a vertex v of G0 such that

(9) (G0, v) is of type (⋆⋆).

This and the fact that G0 is not a chain of type (Z) imply that G0 is not equivalent to
a linear chain. Thus:

(10) No Gi or H j is equivalent to a linear chain.

Recall that, if 1 ≤ i < j ≤ n, the vertex set of Gi is naturally embedded in that of
G j . In particular, e1, . . . , en may be viewed as vertices of Gn. We begin by showing:

(11)
{

i | w(ei , Gn) = −1
}

= {n}

or equivalently:

(12)
For all i such that 1 < i ≤ n, Gi is a blowing-up of Gi−1 at ei−1 or at an
edge incident to ei−1.

If these conditions do not hold then we may change the order of the blowings-up

in (6) in such a way that the vertex en is created at an earlier stage of the blowing-up
process; more precisely, there exists a sequence

(13) G0 = G ′

0

π ′

1←− G ′

1

π ′

2←− · · ·
π ′

n←− G ′

n

satisfying the following condition: Let e ′i denote the vertex of G ′

i created by G ′

i−1 ← G ′

i ;
then there exists an isomorphism of weighted graphs θ : Gn → G ′

n such that θ(en) = e ′p,
where 1 ≤ p < n. Identifying Gn with G ′

n, we may write:

(G ′

p, e ′p) ≈ (G ′

n, e ′p) = (Gn, en) ≈ some weighted pair of type (⋆⋆).

This means that G ′

0 ← · · · ← G ′

p is a counterexample, contradicting minimality of
(6). This proves that (11) and (12) hold.

Since en is created by a blowing-up, Gn has at most two branches at en; in fact, it

has exactly two. Indeed, (8) implies that some branch B of Gn at en satisfies:

(14) B ∪ {en} can be contracted to r r
0

en

and if there is no other branch then we get a contradiction with (10). Let B∗ be the

other branch of Gn at en. To avoid a contradiction with (10), we must have:

(15) B∗ ∪ {en} is not a linear chain.

We claim:

(16) π1, . . . , πn are subdivisional.
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We already know that πn is subdivisional, because Gn has two branches at en. So, in
view of (12), if (16) is false then some branch B ′ of Gn at en must satisfy:

B ′ ∪ {en} is a linear chain and B ′ ≪ 0.

Then B ′ 6= B by (14) and B ′ 6= B∗ by (15), which is absurd. This proves (16).

Let z be the unique vertex of weight zero in G0 \ {v}; let A and A ′ be the two
branches of Gn at en, where z ∈ A (thus {A, A ′} = {B, B∗}).

If w(z, Gn) = 0 then z and v are neighbors in Gn, so z, v ∈ A. Then (11) gives

{
x ∈ Gn | w(x, Gn) ≥ −1

}
⊆ {z, v, en} ⊆ A ∪ {en},

so A ′ ≪ 0, so A ′ 6= B by (14), so B = A and z, v ∈ B. Then B contains at least two
vertices and one of them has weight 0; this makes (14) impossible.

This proves that w(z, Gn) 6= 0, so π1 is the blowing-up of G0 at the edge {z, v}.
Then (16) implies that A∪ {en} is a linear chain, so A 6= B∗ by (15). So B = A and

z ∈ B.

To summarize, conditions (12) and (16), together with

z ∈ B and π1 is the blowing-up of G0 at the edge {z, v},

imply that B ∪ {en} has the following form:

. . .q
x1

z
q

x2 q
xq

q
−1

en

where q ≥ 1, x1 ≤ −1 and x j ≤ −2 for all j ≥ 2. This makes (14) impossible, so we
are done.

A Characterization of Elements of M

It is known that, for a normal affine surface U , the implication

(17) ML(U ) = k =⇒ G∞[U ] contains a linear chain

is true (smooth case: [2] or [1], which are based on earlier work of Gizatullin: [8, 9];
general case: [10]). However the converse is false, as shown by the example U =

A1
∗
× A1 (where A1

∗
is A1 minus a point).

The next two results are improved versions of (17). Because of the confusion

associated with this type of result ( (17) is sometimes stated and proved as an “if and
only if” statement, which is incorrect) and because all available proofs assume either
that k = C or that U is smooth, we decided to include the proofs of Proposition 2.19
and Theorem 2.20. Note that (17) is a consequence of Proposition 2.19.

Proposition 2.19 Let (U , ρ) ∈ M+. If (3) is any minimal completion of (U , ρ), and
if D denotes its boundary divisor, then G(D, S) is a chain of type (Z).
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Proof Consider the weighted pair P(U , ρ, u) = (G(D, S), H), where D and H are
the boundary divisor and the horizontal component of the minimal completion (3)

being considered. Let B = OU (U ), then §2.3 gives B∗
= k

∗ and Lemma 2.12 implies
that P(U , ρ, u) is of type (⋆⋆).

Let Z be the unique component of D satisfying Z 6= H and Z2
= 0. The assump-

tion ML(U ) = k implies that U is rational, so the complete linear system |Z| on S

is one-dimensional, base point free and has general member isomorphic to P1. The
corresponding morphism S→ P1 is the ρ̄ of (3).

In view of §2.3, the assumption ML(U ) = k implies that there exists a morphism
ρ ′ : U → A1 whose general fiber is an A1 and which is “genuinely different” from

ρ, in the following sense: Extend ρ ′ to a rational map S 99K P1 and consider the
corresponding linear system Λ on S; then Λ 6= |Z|. Consider the minimal resolution
of the base points2 of Λ (where n = 0 if Bs(Λ) = ∅):

(18) Sn
πn−−→ · · ·

π1−−→ S0 = S

where each πi is the blowing-up of Si−1 at a smooth point Pi . Write Ei = π−1
i (Pi) ⊂

Si and let un : U →֒ Sn be the open immersion obtained by factoring u through (18).
Now ρ ′ extends to a morphism ρ̄ ′ : Sn → P1 and

(19)

U
un−−−−→ Sn

ρ ′

y
y ρ̄ ′

A1 −−−−→ P1

is a completion of (U , ρ ′).
Consider the case where Bs(Λ) = ∅; then n = 0, Sn = S and un = u, so (19) is a

completion of (U , ρ ′) with boundary divisor D. If Z is ρ ′-vertical then the fact that

Z2
= 0 implies that Z is equal to a fiber of ρ̄ ′; then Z ∈ Λ, so Λ ⊆ |Z| (because |Z|

is a complete linear system), so Λ = |Z| (because dim |Z| = 1 = dim Λ), which is
absurd. Hence, Z must be ρ ′-horizontal, so every component of D− Z is ρ ′-vertical.
Since Z has only one neighbor in G(D, S) (namely, H), supp(D−Z) is connected and

consequently is included in a fiber of ρ̄ ′; since some fiber of ρ̄ ′ is entirely contained
in D, supp(D − Z) is equal to a fiber. By properties of P1-fibrations, if the fiber
supp(D−Z) is not irreducible then it contains a (−1)-curve other than H; this is not
the case by minimality of (3), so D− Z = H and G(D, S) is a chain of type (Z).

From now on, suppose that Bs(Λ) 6= ∅ and consider the weighted pair
P(U , ρ ′, un) associated to the completion (19). Since n ≥ 1 and (18) is minimal, En

is the horizontal component of (19); so En is the distinguished vertex of P(U , ρ ′, un).
We have P(U , ρ ′, un) ≈ P ′ by Lemma 2.15, where P ′ is the weighted pair associated

to a minimal completion of (U , ρ ′). Since P ′ is of type (⋆⋆) by the first paragraph of
the proof, the desired conclusion follows from Lemma 2.18.

Theorem 2.20 Let U be a normal affine surface. Then ML(U ) = k if and only if the

following conditions are satisfied:

2Actually, Λ has at most one base point on S, but we don’t need to know this for the proof.
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(a) U is rational and completable by rational curves.
(b) G∞[U ] contains a chain of type (Z).

Proof It is well-known that ML(U ) = k implies condition (a), and Proposition 2.19
implies (b).

Conversely, let U be a normal affine surface satisfying conditions (a) and (b) and

let B = OU (U ). We shall show that KLND(B) is an infinite set, which will prove the
“if” part of Theorem 2.20.

We may choose a smooth-normal compactification u : U →֒ S of U such that G(u)
is a chain of type (Z). Let D be the SNC-divisor of S such that S \U = supp(D) and

consider the components Z and Σ of D such that G(u) = G(D, S) is the following:

(20)
. . .r

0

Z

r
−1

Σ

r
ω1

r
ωq

where q ≥ 0 and ω1, . . . , ωq ≤ −2 (by Lemma 2.17, it is indeed possible to arrange
Σ

2
= −1; we choose a smooth-normal compactification u which has this property).
Let P ∈ Z \ Σ. We now proceed to construct a surjective morphism ρ : U → A1

with general fiber A1 and which satisfies:

(21)
If we extend ρ to a rational map S 99K P1 and consider the corresponding
linear system Λ on S, then Bs(Λ) = {P}.

In view of §2.3, this will imply that KLND(B) is an infinite set.
By Lemma 2.17, the chains (20) and

(22) . . .r
0

r
−2

r
ωq

r
ω1

are equivalent weighted graphs. In fact, Theorem 3.32 of [5] is more precise. It de-
scribes a sequence of blowings-up and blowings-down which transforms (20) into

(22). From that description, and since we assumed that U is completable by ratio-
nal curves (and hence all components of D are rational), it follows that there exists
birational morphisms

S
π
←− S∗

π ′

−−→ S ′

of projective normal surfaces satisfying the following conditions:

(i) cent(π) = {P} and cent(π ′) is a smooth point of S ′.
(ii) π−1(supp(D)) is the support of an SNC-divisor D∗ of S∗ and supp(D∗) =

exc(π) ∪ exc(π ′).

(iii) π ′(supp(D∗)) is the support of an SNC-divisor D ′ of S ′ such that G(D ′, S ′) is
the chain (22).

Let U ′ be the complement of supp(D ′) in S ′, let Z ′ be the unique component of
D ′ of self-intersection 0 and let Σ

′ be the unique component of D ′ satisfying Σ
′ 6= Z ′

and Σ
′ ∩ Z ′ 6= ∅ (refer to (22) ). Since U (and hence S ′) is rational by assumption,

it is well-known that the complete linear system |Z ′| on S ′ is one-dimensional, base
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point free, and has general member isomorphic to P1; hence |Z ′| gives rise to a P1-
fibration f̄ : S ′ → P1. Consider the point P∞ ∈ P1 defined by f̄ (Z ′) = {P∞}.
Since the fiber f̄ −1(P∞) = Z ′ is disjoint from U ′, we have f̄ (U ′) ⊆ P1 \ {P∞}, so
f̄ restricts to a morphism f : U ′ → A1 whose general fiber is an A1. By properties
of P1-fibrations, the fact that ω1, . . . , ωq ≤ −2 implies that Z ′ is the only fiber of
f̄ which is entirely contained in supp(D ′). Thus f : U ′ → A1 is surjective. Observe

that π ′◦π−1 restricts to an isomorphism θ : U → U ′ and define ρ = f ◦θ : U → A1.
Then ρ is surjective and has general fiber A1.

Define Λ as in (21) and note that Λ corresponds to |Z ′| via π ′ ◦ π−1. Note that
Σ

′ is a section of |Z ′| and let Σ̃
′ ⊂ S∗ denote the strict transform of Σ

′. Since

supp(D∗) = exc(π) ∪ exc(π ′), and since Σ̃
′ is obviously not shrunk by π ′, we have

Σ̃
′ ⊆ exc(π). So π

(
Σ̃

′
)

= {P}, which proves (21) and the “if” part of Theorem 2.20.

3 Tableaux and Affine Rulings

Definition 3.1 A tableau is a matrix T =
(

p1 ··· pk
c1 ··· ck

)
whose entries are integers

satisfying ci ≥ pi ≥ 1 and gcd(pi, ci) = 1 for all i = 1, . . . , k. We allow k = 0, in

which case we say that T is the empty tableau and write T = 1. The set of all tableaux
is denoted T. We define subsets T1, T2 and T∗ of T as follows:

T1 = {1} ∪
{(

p
c

)
| p, c ∈ Z, 1 ≤ p < c and gcd(p, c) = 1

}

T2 =
{ (

p 1
c a

)
| a, p, c ∈ Z, a ≥ 1, 1 ≤ p < c and gcd(p, c) = 1

}

T∗ = T1 ∪ T2.

We will often identify the empty tableau with the column
(

0
1

)
. This allows us to

write T1 =
{(

p
c

)
| p, c ∈ Z, 0 ≤ p < c and gcd(p, c) = 1

}
, which turns out to be

very convenient. This practice is in agreement with convention 2.29 of [6].

Remark Although the notations T1, T2 and T∗ are not used in [5] and [6], the
elements of those sets play an important role in the cited papers. In particular, T∗ is
the set of tableaux satisfying one of the conditions (1–3) of [6, 2.16] (or equivalently

one of the conditions (1–3) of [5, 5.6]).

Definition 3.2 Given a tableau T =
(

p1 ··· pk
c1 ··· ck

)
∈ T, define

µ(T) =

k∏

i=1

ci

where in particular µ(1) = 1. The positive integer µ(T) is called the multiplicity of T.

Definition 3.3 Given T ∈ T∗, define Ť ∈ T∗ by:

(1) If T =
(

p
c

)
∈ T1, then Ť =

(
p ′

c

)
∈ T1, where p ′ is defined by 0 ≤ p ′ < c and

pp ′ ≡ 1 (mod c);
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(2) If T =
(

p 1
c a

)
∈ T2, then Ť =

(
c−p 1

c a

)
∈ T2.

Note that 1̌ = 1 and
(
Ť

)ˇ
= T.

3.4 (See [6, 2.2] and [6, 2.3].) Let n be a positive integer. A weighted n-tuple is an

ordered n-tuple S = (G, v1, . . . , vn−1) where G is a weighted graph and v1, . . . , vn−1

are distinct vertices of G. If n = 1, then S is simply a weighted graph; if n = 2, then
it is a weighted pair (Definition 2.9). Given x ∈ Z, let G(x) be the weighted triple
(G, v1, v2) where G is the weighted graph:

r r r
0

v1

x 0

v2

.

3.5 Let S be a weighted n-tuple with n ≥ 2 and let T ∈ T be a tableau. By definitions
2.8–2.10 of [6], T may be regarded as a compact “recipe” for performing a finite

sequence of blowings-up on S; the graph obtained at the end of this blowing-up
process is denoted ST and is a weighted n-tuple (with the same n as S). If we delete
from ST the vertex of weight −1 created by the last blowing-up of the sequence, we
obtain a subgraph S⊖T of ST, and S⊖T is a weighted (n−1)-tuple. One also defines

subgraphs S f
6T and S f?T of S⊖T, refer to [6, 2.10] for details. Note in particular:

• S⊖ T is the disjoint union of S f
6T and S f?T;

• S f
6T is a weighted (n−1)-tuple, with the same sequence of distinguished vertices

as S⊖ T.
• S f?T is a weighted graph; in fact, it is a (possibly empty) admissible chain.

In particular, G(x) ⊖ T and G(x)
f
6T are weighted pairs with the same distinguished

vertex, G(x)
f?T is a weighted graph (in fact an admissible chain) and G(x) ⊖ T is the

disjoint union of G(x)
f
6T and G(x)

f?T. The following statement is an immediate

consequence of [6, 2.12]:

Lemma 3.5.1 If x ∈ Z and T ∈ T∗, the weighted pair G(x) ⊖ T is as follows.

If T =
(

p
c

)
∈ T1, then:

(23) q q q q q q q q q q. . . . . .0

∗

x

︸ ︷︷ ︸
p︸ ︷︷ ︸

c

G(x)
f
6T

︷ ︸︸ ︷
G(x)

f?T
︷ ︸︸ ︷

︸ ︷︷ ︸
c

︸ ︷︷ ︸
c−p

If T =
(

p 1
c a

)
∈ T2, then:

(24) q q q q q q q q q q. . . . . .0

∗

x

︸ ︷︷ ︸
acp+1︸ ︷︷ ︸

ac2

−2 −2 −2 −2

G(x)
f
6T

︷ ︸︸ ︷
G(x)

f?T
︷ ︸︸ ︷

︸ ︷︷ ︸
a

https://doi.org/10.4153/CJM-2004-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-051-9


1162 D. Daigle and P. Russell

In the above pictures, the distinguished vertex is marked with a “∗” and the integers
under the braces are the determinants of the indicated linear chains (see [6, 1.10]).

Also, whenever the weight of a vertex is not indicated, that weight is strictly less than−1.

3.6 Various subsets of Z+× T× T are considered in [5] and [6] (where Z+ denotes

the set of positive integers). In particular (see [5, 5.24] or [6, 2.24]):

T0(‡) =
{

(m, T1, T2) ∈ Z
+ × T∗ × T∗ | each connected component of the

weighted graph (G(−m) ⊖ T1)⊖ T2 is equivalent to an admissible chain
}

.

An explicit description of the elements of T0(‡) is given in [5, 5.41]. The set T0(‡) is

used for classifying affine rulings, as we will see in §3.8 and Theorem 3.9, below.

Affine Rulings

We begin by defining the class of surfaces “satisfying the condition (‡).” By [6, 1.20,
1.21], this class contains all weighted projective planes.

3.7 Consider the following condition on an algebraic surface X:

(†)
X is a complete normal rational surface, X is affine-ruled and
rank(Pic Xs) = 1,

where Xs denotes the smooth locus of X. Also consider the stronger condition:

(‡)
X satisfies (†) and every singular point of X is a cyclic quotient sin-
gularity.

If X is a complete normal rational surface, [6, 2.21] defines an affine ruling of X to

be a linear system on X satisfying certain conditions. Suppose that X satisfies (‡).

• The notion of a basic affine ruling of X is defined in [6, 2.22.1].
• If Λ is an affine ruling of X then a nonempty subset Λ∗ of Λ is defined in [6, 2.22.3].

While writing the present paper we realised that §3.7.1 is true and can be used as

a definition of Λ∗.

3.7.1 Let Λ be an affine ruling of a surface X satisfying (‡). Then, for any element F of

Λ, the following conditions are equivalent:

• F ∈ Λ∗

• Some element of the set G∞[ X \ supp(F) ] is a chain of type (Z).
• Some element of the set G∞[ X \ supp(F) ] is a linear chain.

In the same circle of ideas, we note:

3.7.2 Let Λ be an affine ruling of a surface X satisfying (‡), let F1, . . . , Fr be distinct
elements of Λ and let U = X \ supp(F1 + · · · + Fr). Then the following are equivalent:
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(1) Some element of the set G∞[U ] is a chain of type (Z).
(2) r = 1 and F1 ∈ Λ∗.

Facts §3.7.1 and §3.7.2 are implicitly contained in [5, §1], so we omit their proofs.

3.8 Consider triples (X, Λ, F) where X is a surface satisfying (‡), Λ is a basic affine
ruling of X and F ∈ Λ∗.

• Given a triple (X, Λ, F), [6, 2.23] defines an element disc(X, Λ, F) of T0(‡), called

the discrete part of (X, Λ, F). (See §3.6 for T0(‡).)
• Two triples are equivalent, (X, Λ, F) ∼ (X ′, Λ ′, F ′), when there exists an isomor-

phism X → X ′ which transforms Λ into Λ
′ and F into F ′. The equivalence class

of (X, Λ, F) is denoted [X, Λ, F] and S0(‡) is the set of equivalence classes.
• If (X, Λ, F) ∼ (X ′, Λ ′, F ′), then (X, Λ, F) and (X ′, Λ ′, F ′) have the same discrete

part; so we may speak of the discrete part of the equivalence class [X, Λ, F] of
(X, Λ, F), and we have a set map

disc : S0(‡)→ T0(‡) [X, Λ, F] 7→ discrete part of [X, Λ, F].

The following may be regarded as a classification of triples (X, Λ, F):

Theorem 3.9 The map disc : S0(‡)→ T0(‡) is bijective.

Proof This is part of [5, 5.25].

3.10 If X is a surface satisfying (‡) then [5, 5.2] defines a subset T0(X) of T0(‡) by

T0(X) =
{

disc(X, Λ, F) | Λ is a basic affine ruling of X and F ∈ Λ∗

}
.

4 A Result about Tableaux

If a0, a1, a2 are pairwise relatively prime positive integers, [6, 2.26] defines four sub-
sets

TI(a0, a1, a2), TII.1(a0, a1, a2), TII.2(a0, a1, a2) and TIII(a0, a1, a2)

of T0(‡). Lemma 4.2 and Proposition 4.3, below, are concerned with TI(a0, a1, a2),

TII.1(a0, a1, a2) and TII.2(a0, a1, a2).

Lemma 4.1 Let a, b, c be positive integers such that c > 1 and gcd(b, c) = 1. Then
there exists an integer y satisfying

by ≡ 1 (mod c), gcd(y, a) = 1 and 0 < y < ac.

Proof Write a = αα ′, where α and α ′ are the positive integers satisfying

gcd(α, c) = 1

For every prime number p, p | α ′
=⇒ p | c.
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Since gcd(b, c) = 1, there exists an integer y0 satisfying by0 ≡ 1 (mod c). Since
gcd(α, c) = 1, the Chinese Remainder Theorem implies that exactly one integer y

satisfies 0 ≤ y < αc and

y ≡ y0 (mod c),

y ≡ 1 (mod α).

Then it is easy to see that y satisfies the desired conditions.

Lemma 4.2 Given any T2 ∈ T2, there exist relatively prime positive integers a0, a1, a2

and a tableau T1 ∈ T1 such that

(1, T1, T2) ∈ TII.1(a0, a1, a2).

Proof We have T2 =
(

p2 1
c2 a2

)
, where p2, c2 and a2 are integers such that

c2 > p2 ≥ 1, gcd(p2, c2) = 1 and a2 ≥ 1.

By Lemma 4.1, we may choose an integer a1 satisfying

(c2 − p2)a1 ≡ 1 (mod c2),(25)

gcd(a1, a2) = 1,(26)

0 < a1 < a2c2.(27)

Then we may define an integer a0 by

(28) a0 = a2c2 − a1.

Note that a0 > 0 by (27). We claim:

(29) a0, a1, a2 are pairwise relatively prime positive integers.

In fact, we already know that gcd(a1, a2) = 1. From (25), we obtain gcd(a1, c2) = 1,
so gcd(a1, a2c2) = 1. Thus gcd(a0, a1) = gcd(a2c2 − a1, a1) = gcd(a2c2, a1) = 1, and
gcd(a0, a2) = gcd(a2c2 − a1, a2) = gcd(a1, a2) = 1. Hence, statement (29) is true.

Let k be the unique integer such that

(30)
c2

a1

≤ k <
c2

a1

+ 1

and define integers x0, x1 and x2 by

x1 = ka1 − c2,(31)

x2 =

{
0, if a2 = 1,

1, if a2 > 1,
(32)

x0 = k + x2 − 1.(33)
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Then, in the terminology of [6, 7.2], we claim that

(34) (x0, x1, x2) is the unique solution to Eq(a0, a1, a2).

Explicitly, (34) means that (x0, x1, x2) satisfies the three conditions:

a0 = a1a2x0 − a2x1 − a1x2,(35)

0 ≤ x1 < a1,(36)

0 ≤ x2 < a2.(37)

Indeed, (37) is obvious from (32), (36) follows from (31) and (30), and the calcula-

tion:

a1a2x0 − a2x1 − a1x2 = a1a2(k + x2 − 1)− a2(ka1 − c2)− a1x2 by (33) and (31)

= a1a2(x2 − 1) + a2c2 − a1x2

= a1a2(x2 − 1) + (a0 + a1)− a1x2 by (28)

= a0 + a1(a2 − 1)(x2 − 1) = a0

shows that (35) holds. So (34) is true. We define two more integers by:

x ′

1 =
a1(c2 − p2)− 1

c2

;(38)

x ′ ′

1 = kx ′

1 − c2 + p2.(39)

Note that (25) implies that x ′

1 is an integer, so x ′ ′

1 is an integer as well. We claim:

(40) x ′

1 and x ′ ′

1 are the integers determined by the solution (x0, x1, x2) to
Eq(a0, a1, a2), as described in [6, 7.2].

Explicitly, (40) means that the following conditions hold:

x1x ′

1 ≡ 1 (mod a1) and 0 ≤ x ′

1 < a1(41)
∣∣∣∣
x1 x ′ ′

1

a1 x ′

1

∣∣∣∣ = 1.(42)

We check that these hold. Clearly, 0 ≤ x ′

1 < a1 follows immediately from (38). By
(31) and (38),

x1x ′

1 = (ka1 − c2)x ′

1 ≡ (−c2)x ′

1 = (−c2)
a1(c2 − p2)− 1

c2

= 1− a1(c2 − p2) ≡ 1 (mod a1),
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so (41) holds. By (31) and (39),

∣∣∣∣
x1 x ′ ′

1

a1 x ′

1

∣∣∣∣ =

∣∣∣∣
ka1 − c2 kx ′

1 − c2 + p2

a1 x ′

1

∣∣∣∣ =

∣∣∣∣
−c2 −c2 + p2

a1 x ′

1

∣∣∣∣ =

∣∣∣∣
a1 x ′

1

c2 c2 − p2

∣∣∣∣ ,

and the last determinant is equal to 1 by (38), so (42) holds as well. So statement (40)
is true. Next, we verify that

(43)

(
p2

c2

)
=

(
a1 − x1 − x ′

1 + x ′ ′

1

a1 − x1

)
+ (x0 − x2)

(
a1 − x ′

1

a1

)
.

To see this, note that the right hand side of (43) is equal to:

(
(x0 − x2 + 1)(a1 − x ′

1)− x1 + x ′ ′

1

(x0 − x2 + 1)a1 − x1

)
=

(
k(a1 − x ′

1)− x1 + x ′ ′

1

ka1 − x1

)
by (33)

=

(
(ka1 − x1) + (x ′ ′

1 − kx ′

1)
ka1 − x1

)

=

(
c2 + (p2 − c2)

c2

)
by (31) and (39)

so (43) is true.

Finally, we note that (28) gives
a0 + a1 + a2

a2
=

a2c2 + a2

a2
= c2 + 1, hence:

(44)
a0 + a1 + a2

a2

is a natural number strictly greater than 2.

We may now apply [6, Proposition 7.4]. By (44) and the cited result, the set

TII.1(a0, a1, a2) has exactly one element. The same result, together with (34), (40)
and (43), implies that the unique element of TII.1(a0, a1, a2) is the triple:

(45)

(
1,

(
x ′

1

a1

)
,

(
p2 1

c2 a2

))
.

This completes the proof of Lemma 4.2.

Remark In the above argument, a1 may be equal to 1 (this is the case iff c2−p2 = 1).

If a1 = 1, then x ′

1 = 0 and the column
(

x ′

1

a1

)
=

(
0
1

)
which appears in (45) should be

interpreted as the empty tableau. See Definition 3.1.

Proposition 4.3 Given any T1 ∈ T∗, there exist relatively prime positive integers
a0, a1, a2 and a tableau T2 ∈ T1 such that

(
1, T1, T2

)
∈ TI(a0, a1, a2) ∪ TII.2(a0, a1, a2).
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Proof If T1 ∈ T1 then T1 =
(

x1

a1

)
where x1, a1 ∈ Z, 0 ≤ x1 < a1 and gcd(x1, a1) = 1.

Define a0 = a1 − x1 and a2 = 1, then it is immediate that

a0, a1, a2 are pairwise relatively prime positive integers

and that
(1, x1, 0) is the unique solution to Eq(a0, a1, a2)

(see (34–37) for meaning). Then [6, Proposition 7.3] implies that

(1, T1, 1) ∈ TI(a0, a1, a2),

so the assertion is true in this case.
If T1 ∈ T2 then, by Lemma 4.2, we have (1, T2, T1) ∈ TII.1(a0, a2, a1) for some

tableau T2 ∈ T1 and some pairwise relatively prime positive integers a0, a2, a1; then

(1, T1, T2) ∈ TII.2(a0, a1, a2)

and we are done.

We now give the geometric interpretation of Proposition 4.3. Recall from §3.10

that each surface X satisfying (‡) determines a subset T0(X) of T0(‡). In the case
where X is a weighted projective plane, an explicit description of T0(X) is given in
[6]. In particular, [6, 7.1] implies that

TI(a0, a1, a2) ∪ TII.2(a0, a1, a2) ⊆ T0

(
P(a0, a1, a2)

)

for any pairwise relatively prime positive integers a0, a1, a2. Thus Proposition 4.3 has
the following

Corollary 4.4 Given any T1 ∈ T∗, there exist a weighted projective plane P and a

tableau T2 ∈ T1 such that
(1, T1, T2) ∈ T0(P).

5 The Map F

5.1 Given a triple (X, Λ, F) as in §3.8, consider the open subset U = X \ supp(F) of
X and use the affine ruling Λ to define a morphism ρ : U → A1 whose general fiber
is an affine line (the fibers of ρ are the elements of the linear system Λ|U ). Although

ρ is not unique, it is clear that the equivalence class [U , ρ] ∈ N
+

(see Notation 2.2)

is uniquely determined by (X, Λ, F) and that, furthermore, [X, Λ, F] 7→ [U , ρ] is a
well-defined map. We call this map the “restriction”, and write

S0(‡)
res
−→ N

+

[X, Λ, F] 7−→ [U , ρ].

We will see in Corollary 6.4 that the image of res is exactly M
+

0 .
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5.2 Recall from Theorem 3.9 that disc : S0(‡) → T0(‡) is bijective. We now con-
sider the composition

T0(‡)
disc−1

−−−→ S0(‡)
res
−→ N

+
,

which we denote

F : T0(‡) −→ N
+
.

So the fact that F is well-defined depends on Theorem 3.9, which is a nontrivial fact.

Proposition 5.3 Given two elements τ = (m, T1, T2) and τ ′
= (m ′, T ′

1, T ′

2) of T0(‡),

F(τ ) = F(τ ′) ⇐⇒ T1 = T ′

1.

Proof Let τ = (m, T1, T2) ∈ T0(‡) (we will not consider a τ ′) and let [U , ρ] =

F(τ ). We will show that [U , ρ] is independent of T2 and m (see (49) and (50) ), and
this proves “⇐=”. We will show that T1 can be recovered from [U , ρ] (see (57) and

(58) ), which proves “ =⇒ ”.

Let us explain how F constructs [U , ρ] from τ . We consider each of the two steps:

τ
disc−1

7−−→ [X, Λ, F]
res
7−→ [U , ρ].

(i) The first step is to construct [X, Λ, F] from τ . This explanation is adapted from
the more general [5, 5.29] (more general because T0(‡) ⊂ T(†)). Consider the ruled
surface Fm, its ruling Λm and directrix Σm ⊂ Fm. Choose a blowing-up

(46)
(

X̃
π
−→ Fm, P1, P2

)

of Fm according to (T1, T2) (see [5, 5.26] for definition) and let Z1 and Z2 be the
distinct elements of Λm satisfying Pi ∈ Zi . In particular, recall that X̃ is a smooth
projective surface, π is a birational morphism, cent(π) ⊆ {P1, P2} and for each i ∈
{1, 2} we have:

• π−1(Pi) has at most one (−1)-component,
• HN(π, Zi) = Ti (see [5, 4.1] for HN).

For each i ∈ {1, 2}, define

Ei =

{
π−1(Zi), if Pi 6∈ cent(π),

the (−1)-curve in π−1(Pi), if Pi ∈ cent(π).

Then E1, E2 ⊂ X̃ are irreducible curves. Let ∆ be the SNC-divisor of X̃ defined by

(47) π−1(Z1 ∪ Σm ∪ Z2) = supp(E1 + ∆ + E2) and E1, E2 6⊆ supp(∆).

(∆ is called D in [5, 5.29], but D has a different meaning in the present argument).
Then, as claimed in [5, 5.29], we have G(∆, X̃) = (G(−m)⊖T1)⊖T2 and consequently
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∆ has a negative definite intersection matrix. So there exists a complete normal sur-
face X and a birational morphism γ : X̃ → X with exc(γ) = supp(∆). By [5, 5.29] we

also obtain that X satisfies condition (†) of §3.7; that Λm determines an affine ruling

Λ of X via the birational morphisms Fm
π
←− X̃

γ
−→ X; and that γ(E2) is the support of

an element F of Λ∗ (in [5, 5.29], F is called F2).

In our special case (τ ∈ T0(‡), so T2 ∈ T∗), result [5, 5.11] implies that X satisfies
(‡) and that Λ is a basic affine ruling of X; so we have constructed a triple (X, Λ, F)
as in §3.8, i.e., [X, Λ, F] ∈ S0(‡). Moreover, [5, 5.29] asserts that disc(X, Λ, F) = τ .
(Remark: It is not trivial that [X, Λ, F] is independent of the choice of (46), but this

is essentially the fact (Theorem 3.9) that disc is injective.)

(ii) The second step is to define (U , ρ) from (X, Λ, F), by applying the restriction
map §5.1. In particular, U is defined as

U = X \C2,

where for each i ∈ {1, 2} we define the irreducible curve Ci = γ(Ei) ⊂ X.

We have explained how F constructs [U , ρ] from τ . Now some remarks.
First, we describe the divisor ∆ of X̃. As noted before, G(∆, X̃) may be identified

with (G(−m) ⊖ T1)⊖ T2. Now the weighted graph (G(−m) ⊖ T1)⊖ T2 has connected
components (G(−m)

f
6T1) f

6T2, G(−m)
f?T1 and (G(−m)

f
6T1) f?T2, where the last

two may be empty (see [6, 2.10] for ⊖, f
6and f?). These correspond respectively to

the three connected components C, A1 and A2 of supp(∆), where C is the one which
contains the proper transform of Σm with respect to π, and where A1 and A2 are
(possibly empty) admissible chains satisfying Ai ⊂ π−1(Pi). Also, Ei meets C and if

Ai 6= ∅ then Ei meets Ai .
In the above, we obtained U from X̃ by first shrinking A1, C and A2 and then

removing C2 = γ(E2) = γ(C ∪ E2 ∪ A2). Alternatively, we obtain the same [U , ρ]
if we shrink only A1 and then remove (the image of) C ∪ E2 ∪ A2. More precisely:

starting from X̃, let S be the normal surface obtained by shrinking A1 to a point and
let σ : X̃ → S be the corresponding birational morphism. Then σ(C∪ E2 ∪A2) is the
support of an SNC-divisor D of S, and S \ supp(D) = U ; let u : U →֒ S denote the
inclusion map, then u is a smooth-normal compactification of U . Note that

(48) π−1(P2) ⊂ π−1(Σm ∪ Z2) ⊂ C ∪ E2 ∪A2,

where the right-hand-side of (48) corresponds to the complement of U via σ. It
follows that

(49) [U , ρ] does not depend on T2.

Indeed, by definition of a blowing-up of Fm according to (T1, T2), T2 only affects the

part of π which could be described as the “blowing-up at points infinitely near P2”.
By (48), all that blowing-up occurs in the complement of U and so has no effect on
[U , ρ]. So (49) is true. Similarly,

(50) [U , ρ] does not depend on m.
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This is because we can change the value of m by performing elementary operations:
blow-up Fm at a point of Z2 and then shrink the proper transform of Z2. By (48),

these operations affect only the complement of U , so (50) is true.
Note that (49) and (50) prove the implication “⇐=” of Proposition 5.3. We now

proceed to show that T1 is completely determined by [U , ρ]. By (49) and (50), [U , ρ]
does not change if we replace (m, T1, T2) by (1, T1, 1). So, from now-on, let us assume

that
τ = (1, T1, 1)

(where T1 is the same as before). First, we go over the definition of ρ, in a slightly
different way. We begin the construction of the commutative diagram

(51)

A1 -
P1 � id

P1

F1

X̃U - S � σu

? ?

?

?

ρ ρ̄

π

ρ1

by choosing a morphism ρ1 : F1 → P1 compatible with the linear system Λ1 ([i.e.,
the fibers of ρ1 are the elements of Λ1). Since π shrinks exc(σ) = A1 to a point, there
exists a morphism ρ̄ : S→ P1 which makes the right hand side of (51) a commutative
rectangle. Then simply define ρ to be the restriction of ρ̄. So we see that

(52)

U
u

−−−−→ S

ρ

y
y ρ̄

A1 −−−−→ P1

is a completion of (U , ρ).

The boundary divisor of this completion is the D which we have already defined (see
the paragraph before (48)). Moreover, if Σ̃1 ⊂ X̃ denotes the proper transform of Σ1

with respect to π, then σ(Σ̃1) is the ρ-horizontal component of D. Let us now argue
that we have the following isomorphisms of weighted graphs:

(53) G(D, S) ∼= G(C ∪ E2 ∪A2, X̃)

= G(C + Z̃2, X̃) ∼= underlying weighted graph of G(−1)
f
6T1,

and

(54) Gres[U ] ∼= G(A1, X̃) ∼= G(−1)
f?T1.

First, G(D, S) is isomorphic to G(C∪E2∪A2, X̃) because σ restricts to an isomorphism
from an open neighborhood of C ∪ E2 ∪ A2 to an open neighborhood of D. Then
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we have a genuine equality, G(C ∪ E2 ∪ A2, X̃) = G(C + Z̃2, X̃), because T2 = 1

implies that A2 = ∅ and that E2 = Z̃2, where Z̃2 is the proper transform of Z2

with respect to π. We have already observed that G(∆, X̃) may be identified with
(G(−m) ⊖ T1) ⊖ T2 = (G(−m) ⊖ T1) ⊖ 1; since the effect of “⊖1” is to remove the
distinguished vertex of G(−m) ⊖ T1, it follows that G(∆ + Z̃2, X̃) may be identified
with the underlying weighted graph of G(−1) ⊖ T1; or equivalently, that G(C + Z̃2, X̃)

and G(A1, X̃) may be respectively identified with the two graphs:

underlying weighted graph of G(−1)
f
6T1 and G(−1)

f?T1.

Finally, we may regard σ−1(U )
σ
−→ U as the minimal resolution of singularities of U ;

since exc(σ) = A1, Gres[U ] may be identified with G(A1, X̃). This explains (53) and
(54).

So the description of G(−1)
f
6T1 and G(−1)

f?T1 given in Lemma 3.5.1 may be
regarded as a description of G(D, S) and Gres[U ]. This gives:

If T1 =
(

p
c

)
∈ T1, then:

(55) q q q q q q q q q q. . . . . .
σ(Z̃1)

0

σ(Z̃2)

−1

σ(Σ̃1) ︸ ︷︷ ︸
p︸ ︷︷ ︸

c

G(D, S)
︷ ︸︸ ︷

Gres[U ]
︷ ︸︸ ︷

︸ ︷︷ ︸
c

︸ ︷︷ ︸
c−p

If T1 =
(

p 1
c a

)
∈ T2, then:

(56) q q q q q q q q q q. . . . . .
σ(Z̃1)

0

σ(Z̃2)

−1

σ(Σ̃1) ︸ ︷︷ ︸
acp+1︸ ︷︷ ︸

ac2

−2 −2 −2 −2

G(D, S)
︷ ︸︸ ︷

Gres[U ]
︷ ︸︸ ︷

︸ ︷︷ ︸
a

In the above pictures, the integers under the braces are the determinants of the indi-
cated linear chains and all weights which are not indicated are strictly less than −1.

From (55) and (56), we see that σ
(
Σ̃1

)
is the only (−1)-component of D; since this

is the horizontal component, (52) is in fact a minimal completion of (U , ρ), so:

G∞[U , ρ] = G(D, S)

(see Definition 2.8 for G∞[U , ρ]). From (55) and (56), it is obvious that G∞[U , ρ] is
a chain of type (Z) with bideterminant (see Definition 2.16):

(57) bidet G∞[U , ρ] =

{
(c, p), if T1 =

(
p
c

)
∈ T1;

(ac2, acp + 1), if T1 =
(

p 1
c a

)
∈ T2.
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It also follows that Gres[U ] is an admissible chain with determinant:

(58) det Gres[U ] =

{
c, if T1 =

(
p
c

)
∈ T1;

a, if T1 =
(

p 1
c a

)
∈ T2.

Observe that the first component of bidet G∞[U , ρ] is equal to det Gres[U ] if and
only if T1 ∈ T1. Thus, in view of (57) and (58), it is clear that T1 can be recovered
from G∞[U , ρ] and Gres[U ]. So T1 is completely determined by [U , ρ], which proves

the implication “ =⇒ ” of Proposition 5.3.

The disjoint union of the weighted graphs G∞[U , ρ] and Gres[U ] occurred natu-
rally in the above proof.

Definition 5.3.1 Given (U , ρ) ∈ N+, define the weighted graph

G[U , ρ] = G∞[U , ρ] ⊎ Gres[U ]

where ⊎ means “disjoint union of weighted graphs”, and where the weighted graphs

Gres[U ] and G∞[U , ρ] are defined in §2.1 and Definition 2.8 respectively. Note that
G[U , ρ] is uniquely determined by [U , ρ].

For future use, we record the geometric interpretation of the weighted pair
G(−1) ⊖ T.

Lemma 5.3.2 Let T ∈ T∗ and let [U , ρ] = F(1, T, 1). Then G[U , ρ] has a unique

vertex L of weight zero and

G(−1) ⊖ T =
(
G[U , ρ], L

)
.

More precisely, L belongs to the subgraph G∞[U , ρ] of G[U , ρ] and we have:

G(−1)
f
6T =

(
G∞[U , ρ], L

)
and G(−1)

f?T = Gres[U ].

Proof Let T1 = T and note that τ = (1, T1, 1) belongs to T0(‡). Starting with this

τ , go through the proof of Proposition 5.3. As noted in that proof, the underlying
weighted graph of G(−1)

f
6T1 is isomorphic to G(D, S) = G∞[U , ρ]; comparing (23)

with (55) and (24) with (56), we see that this isomorphism maps the distinguished
vertex of G(−1)

f
6T1 to σ(Z̃2), so

G(−1)
f
6T1 =

(
G(D, S), σ(Z̃2)

)
=

(
G∞[U , ρ], σ(Z̃2)

)
.

It was also noted that G(−1)
f?T1 = Gres[U ], so

G(−1) ⊖ T1 =
(
G∞[U , ρ] ⊎ Gres[U ], σ(Z̃2)

)
=

(
G[U , ρ], σ(Z̃2)

)
.

Looking at (55) and (56), we see that σ(Z̃2) is the unique vertex of weight zero in
G[U , ρ] = G(D, S)⊎Gres[U ]; so σ(Z̃2) is the L of the statement and we are done.
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Proposition 5.4 Let [U , ρ] be an element of the image of the map F. Then U ∈ M0

and U is an open subset of a weighted projective plane.

Proof We have [U , ρ] = F(τ ′) for some τ ′
= (m, T1, T ′

2) ∈ T0(‡). Then T1 ∈ T∗

and, by Corollary 4.4, there exist a weighted projective plane P and a tableau T2 ∈ T1

such that

(59)
(

1, T1, T2

)
∈ T0(P).

Write τ = (1, T1, T2), then F(τ ) = [U , ρ] by Proposition 5.3. By (59) and the
definition (§3.10) of T0(X), there exists a basic affine ruling Λ of P and an element F
of Λ∗ such that disc(P, Λ, F) = τ . Recalling that F is the composite

T0(‡)
disc−1

−−−→ S0(‡)
res
−→ N

+
,

we get [U , ρ] = F(τ ) = res[P, Λ, F] and in particular U ∼= P \ supp(F). Then U is
the complement of a curve in P, so U is affine. More precisely, U = P \C2 (notation
as in the proof of Proposition 5.3); since C2 is irreducible and, by [6, 1.7], Pic(Ps) = Z

(where Ps is the smooth locus of P), we have Pic(Us) = Z/dZ where d = deg(C2), so

Pic(Us) is a finite group. (Remark: We have d = µ(T1) by the remark following [5,
5.37]. See Definition 3.2 for the definition of µ.)

The fact that G∞[U , ρ] is a chain of type (Z) was mentioned in the proof of Propo-
sition 5.3, see in particular (57). Thus U satisfies conditions (a) and (b) of Theo-

rem 2.20 and consequently ML(U ) = k. Hence, U ∈M0.

6 The Map f

Definition 6.1 If T ∈ T∗ then it is clear that (1, T, 1) ∈ T0(‡) and Proposition 5.4

shows (in particular) that F(1, T, 1) ∈M
+

0 . So the following is a well-defined map:

f : T∗ −→M
+

0

T 7−→ F(1, T, 1).

By Proposition 5.3, f is injective and has the same image as F. We will show that f

is bijective.

Note that if U is any member of M then there exists a morphism ρ : U → A1

whose general fiber is an A1, so the following paragraph applies to U .

6.2 Consider a pair (U , ρ) where U is a normal affine surface and ρ : U → A1 is a
morphism whose general fiber is an A1.

By Lemma 2.7, we may choose a minimal completion (3) of (U , ρ) whose horizon-
tal component H satisfies H2

= −1; let D be the boundary divisor of that minimal
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completion. Let σ : X̃ → S be the minimal resolution of singularities of S and con-
sider the commutative diagram (ignoring π for now):

(60)

U
u

−−−−→ S
σ

←−−−− X̃
π

−−−−→ F1

ρ

y
y ρ̄

A1 −−−−→ P1

Let D̃ be the SNC-divisor of X̃ which satisfies supp
(

D̃
)

= σ−1
(

supp(D)
)

. Note

that, since Sing(S) = Sing(U ), σ restricts to an isomorphism going from an open
neighborhood of D̃ to an open neighborhood of D. Let H̃ = σ−1(H), then H̃2

=

H2
= −1.

Let ρ̃ : X̃ → P1 denote the composition X̃
σ
−→ S

ρ̄
−→ P1. Since ρ̃ is a morphism

whose general fiber is a P1, and since X̃ is smooth, rational and complete, we know
that each reducible fiber of ρ̃ is a tree of projective lines which can be contracted to
an irreducible curve, and that there exists such a contraction process which yields

the surface F1. More precisely, let us regard fibers of ρ̃ as divisors, i.e., we consider
scheme-theoretic fibers. Then each fiber F of ρ̃ satisfies F·H̃ = 1. Consequently, F has
a unique component F◦ which meets H̃, and F◦ has multiplicity one in the divisor F.
So we can write F = F◦+F ′, where the support of F ′ is disjoint from H̃. Let F1, . . . , Fr

be the reducible fibers of ρ̃ and write Fi = F◦

i + F ′

i for every i. Then there exists a
birational morphism π : X̃ → F1 whose exceptional locus is supp(F ′

1 + · · ·+ F ′

r ). This
completes the definition of diagram (60).

For each i ∈ {1, . . . , r}, write Fi = Di + Ai + Γi , where Di (resp., Ai) contains

all components of Fi which are part of D̃ (resp., which are part of exc(σ)), and where
Γi contains all other components. Note that if C is a component of exc(σ) then ρ̃
shrinks C to a point; since C must be disjoint from D̃ (because Sing S = Sing U ), we
have C ∩ H̃ = ∅, so C ⊆ supp(F ′

i ) for some i and consequently:

exc(σ) = supp(A1 + · · · + Ar) ⊆ exc(π).

From exc(σ) ⊆ exc(π), we infer that if some component C of exc(σ) satisfies C2 ≥
−1, then C2

= −1 and C is not a branching component of exc(σ); this is impossible,
because we chose σ to be a minimal resolution of singularities. So:

(61) Each component C of exc(σ) satisfies C2 < −1.

We claim:

(62) For each i ∈ {1, . . . , r}, supp(Γi) contains all (−1)-components of Fi .

Indeed, suppose that C is a component of Fi satisfying C2
= −1. Then C cannot

be part of Di , because the square in (60) is a minimal completion of (U , ρ); and it
cannot be part of Ai , because of (61). So C must be in Γi , which proves (62). We
claim:

(63) For each i ∈ {1, . . . , r}, we have Γi 6= 0 and Di · H̃ = 1. Moreover, each
component C of Γi satisfies C ∩ H̃ = ∅ and C ∩ supp(Di) 6= ∅.
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Indeed, it is known that some component C∗ of F ′

i satisfies C2
∗

= −1; by (62), C∗ is
a component of Γi , so Γi 6= 0. If C is any component of Γi then σ(C) is a complete

curve, and hence is not contained in the affine surface U ; thus C meets H̃∪supp(Di).
Applying this to C = C∗ gives C∗ ∩ supp(Di) 6= ∅, because C∗ ∩ H̃ = ∅. In
particular, Di 6= 0. Since U is affine, D̃ is connected, so H̃ ∪ supp(Di) is connected
and Di · H̃ > 0. Together with Fi · H̃ = 1, this implies that Di · H̃ = 1 and that no

component of Γi meets H̃, which proves (63).
Consider the fibers G1, . . . , Gs of ρ̃ which are entirely contained in D̃. Note that

each Gi is an irreducible curve such that G2
i = 0 (otherwise Gi would have a

(−1)-component, which is impossible because the square in (60) is a minimal com-

pletion of (U , ρ)). Also, we have s ≥ 1 because the composite U
ρ
−→ A1 →֒ P1 is of

course not surjective.
Next we show:

(64) Every branching component of supp
(

H̃ +
∑r

i=1 Fi +
∑s

i=1 Gi

)
is in fact a

component of D̃.

To simplify language and notation, let us identify H̃ +
∑r

i=1 Fi +
∑s

i=1 Gi with the
corresponding dual graph. By contradiction, suppose that C is a branch point of this
graph and is not a vertex of D̃. For some i, C is a component of Fi ; then C is a branch

point of G1 + H̃ + Fi . Since G1 + H̃ + Fi shrinks to a linear chain, some branch B of
G1 + H̃ + Fi at C shrinks to the empty graph; since B cannot contain the vertex G1

of weight zero, B is included in Fi . We may consider a vertex C∗ of B of weight −1;
by (62) and (63), some vertex of Di is adjacent to C∗, so B contains a vertex of Di ;

since G1 + H̃ + Di is a connected graph which does not contain C , it follows that B

contains the vertex G1, a contradiction. This proves (64). Next, we have:

(65) Let i ∈ {1, . . . , r} and let C be a connected component of Γi + Ai . Then C is a
linear chain and exactly one component C of C is a component of Γi . Moreover,

C is a “terminal vertex” of the linear chain C.

The fact that C is a linear chain follows immediately from (64). Since Fi is connected
but Ai is disjoint from Di , it follows that at least one vertex C of C is a vertex of Γi .
If C is not unique then, by (63), the connected set C meets the connected set D̃ in at
least two points, which is impossible because D̃ + C is contained in a tree and hence

has no loops. By (64), C is not a branch point of the graph Di + C + Ai ; however,
some vertex of Di is adjacent to C by (63); so at most one vertex of Ai is adjacent to
C , which proves (65). From this and (61), it follows:

(66) Each connected component of exc(σ) is an admissible chain. Thus every singu-

lar point of U is a cyclic quotient singularity.

Write Γi =
∑γi

j=1 cijCij , where Ci1, . . . ,Ci γi
are the distinct components of Γi and

where the cij are positive integers. Let Hi denote the free abelian group generated by
the symbols Ci1, . . . ,Ci γi

modulo the equation
∑γi

j=1 cijCij = 0. By a well-known

argument,

(67) Pic(Us) =

r⊕

i=1

Hi .

https://doi.org/10.4153/CJM-2004-051-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-051-9


1176 D. Daigle and P. Russell

In fact, let G denote a fiber of ρ̃. Since Pic(F1) is the free abelian group generated
by a fiber and the directrix, Pic(X̃) is the free abelian group generated by G, H̃ and

all components of exc(π). Now Pic(Us) is Pic(X̃) modulo the subgroup generated
by the components of D̃ and those of exc(σ) = supp(A1 + · · · + Ar); this subgroup
contains the linear equivalence class of G, because D̃ contains the fiber G1. Also note
that, by (63), we have supp(Γi) ⊆ exc(π) for every i ∈ {1, . . . , r}. These remarks

and a straightforward calculation give (67).

6.2.1 If U ∈M then D̃ is a linear chain, s = 1 and r ≤ 1.

Proof The fact that D̃ is a linear chain follows from Proposition 2.19, which also
implies that s ≤ 1, hence s = 1. The number of vertices of (the dual graph of) D̃
which are adjacent to H̃ is at most two, and is precisely r + s (because Di · H̃ = 1 for
all i, by (63)), so r ≤ 1.

6.2.2 If Pic(Us) is a finite group then:

(1) For each i ∈ {1, . . . , r}, supp(Γi) is an irreducible curve (i.e., γi = 1).

(2) Each connected component of exc(π) has exactly one (−1)-component.
(3) exc(π) has r connected components, namely: F ′

1, . . . , F ′

r .
(4) For each i ∈ {1, . . . , r}, Ai is connected (and hence is an admissible chain).

(5) No two singular points of U belong to the same fiber of ρ.

Proof Assertion (1) follows immediately from (67). Consider a connected compo-

nent C of exc(π). Since exc(π) = supp(F ′

1 + · · ·+ F ′

r ), and since distinct fibers of ρ̃ are
disjoint, there exists i such that C ⊆ F ′

i . Now at least one component C of C satisfies
C2

= −1; by (62) we have C ⊆ supp(Γi), so in fact C = supp(Γi) by assertion (1).
So C has only one (−1)-component, which proves assertion (2); and if C and C ′ are

connected components of exc(π) such that C ∪ C ′ ⊆ F ′

i , then supp(Γi) ⊆ C ∩ C ′,
so C = C ′ and assertion (3) is true. Assertion (4) follows from (65) and the fact that
supp(Γi) is irreducible. Assertion (5) follows from (4).

6.2.3 If U ∈M0 (and ρ is as before), there exists T ∈ T∗ such that f(T) = [U , ρ].

Proof Consider the ruling Λ1 of F1 and its directrix Σ1 (and note that Σ1 = π(H̃)).
Define distinct elements Z1, Z2 of Λ1 and points Pi ∈ Zi \ Σ1 (i = 1, 2) as follows:

• Set Z2 = π(G1) and pick any point P2 of Z2\Σ1 (the curves G1, . . . , Gs are defined

before (64) and we have s = 1 by §6.2.1).
• If π is not an isomorphism then r = 1 by §6.2.1, so we may define Z1 and P1 by

Z1 = π(F1) and cent(π) = {P1}; if π is an isomorphism, let Z1 be any element of
Λ1 other than Z2 and let P1 be any point of Z1 \ Σ1.

Then:

cent(π) ⊆ {P1} and, for each i ∈ {1, 2}, π−1(Pi) has at most one (−1)-component.
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So by [5, 4.1], the tableau Ti = HN(π, Zi) ∈ T is defined for each i ∈ {1, 2}. Note
that T2 = 1 (the empty tableau), since cent(π) ∩ Z2 = ∅. By definition [5, 5.26], it

is obvious that

(68)
(

X̃
π
−→ F1, P1, P2

)
is a blowing-up of F1 with respect to (T1, T2).

We now argue that T1 ∈ T∗. It is a general fact that whenever (68) is true then so

is

(69) G(∆, X̃) = (G(−1) ⊖ T1)⊖ T2,

where ∆ is the SNC-divisor of X̃ defined exactly as in (47), in the proof of Proposi-

tion 5.3. In fact the definition of ∆ implies:

supp(∆) =

{
supp(H̃ + D1) ∪ supp(A1), if π is not an isomorphism,

H̃, if π is an isomorphism

and recall that A1 is an admissible chain by §6.2.2. So in all cases we have supp(∆) =

C ∪ A, where C and A are disjoint, C ⊆ supp(D̃) and A is a (possibly empty) ad-
missible chain. Since D̃ is a linear chain by §6.2.1, C is a linear chain and ∆ satisfies:

Every connected component of ∆ is a linear chain and every (irreducible) component C
of ∆ other than H̃ satisfies C2 < −1. By (69), this translates into

(G(−1)⊖T1)⊖T2 has no branch point and every weight in it, except that of the
middle vertex of G(−1), is strictly less than−1.

Then part (2) of result [5, 5.7] implies that

T1 ∈ T∗.

Let τ = (1, T1, T2) = (1, T1, 1) and note that τ ∈ T0(‡). Then we claim that

F(τ ) = [U , ρ]. Indeed, this is clear from consideration of the beginning of the proof
of Proposition 5.3, up to (48) (the notation is compatible). Thus f(T1) = [U , ρ].

Theorem 6.3 The map f : T∗ →M
+

0 is bijective.

Proof f is injective by Proposition 5.3 and surjective by §6.2.3

Corollary 6.4 The three maps

res : S0(‡) −→ N
+
, F : T0(‡) −→ N

+
and f : T∗ −→M

+

0

have the same image, namely, M
+

0 .

Proof Immediate.
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Theorem 6.5 Let U and U ′ be surfaces belonging to the class M0. If G∞[U ] =

G∞[U ′] and Gres[U ] = Gres[U
′] then U ∼= U ′.

Proof By Theorem 2.20 and Lemma 2.17, we may pick an element of G∞[U ] of the
form

(70) . . .r
0

r
−1

r
ω1

r
ωq

where q ≥ 0 and ∀i ωi ≤ −2. Consequently, we can find a smooth-normal compact-
ification u : U →֒ S of U such that the weighted graph G(u) is identical to (70). Let
L be the unique 0-component of S \U . Then the complete linear system |L| on S is
one-dimensional, free of base points and has the following property:

The general member G ∈ |L| satisfies G ∼= P1 and G ∩U = A1.

We may consider a morphism ρ̄ : S → P1 whose fibers are the elements of |L|. Re-
stricting ρ̄ to U gives a morphism ρ : U → A1 whose general fiber is an A1, i.e.,

(U , ρ) ∈M+
0 . Then the commutative diagram

U
u

−−−−→ S

ρ

y
y ρ̄

A1 −−−−→ P1

is a minimal completion of (U , ρ) and consequently the weighted graph G∞[U , ρ]
(Definition 2.8) is (70).

Since G∞[U ] = G∞[U ′], the weighted graph (70) is also an element of G∞[U ′];
so the above argument shows that there exists a morphism ρ ′ : U ′ → A1 such that
(U ′, ρ ′) ∈M+

0 and such that G∞[U ′, ρ ′] is (70).

Since f is bijective, we may consider T, T ′ ∈ T∗ such that f(T) = [U , ρ] and
f(T ′) = [U ′, ρ ′]; then by Lemma 5.3.2

G(−1) ⊖ T =
(
G[U , ρ], L

)
and G(−1) ⊖ T ′

=
(
G[U ′, ρ ′], L ′

)

where L (resp., L ′) is the unique vertex of weight zero in G[U , ρ] (resp., in G[U ′, ρ ′]).
Since both G∞[U , ρ] and G∞[U ′, ρ ′] are identical to (70), and since Gres[U ] =

Gres[U
′] by assumption, it follows that G[U , ρ] is identical to G[U ′, ρ ′]. So

G(−1) ⊖ T = G(−1) ⊖ T ′.

By [5, 5.14], it follows that T = T ′. Thus [U , ρ] = f(T) = f(T ′) = [U ′, ρ ′] and in
particular U ∼= U ′.
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The Map f̄

Definition 6.6 Let f̄ : T∗ →M0 be the composition

T∗

f
−→M

+

0

proj
−−→M0

where the projection map M
+

0

proj
−−→ M0 was defined in Notation 2.2. Note that f̄ is

surjective.

Theorem 6.7 The inverse image by f̄ of any element of M0 is
{

T, Ť
}

for some T ∈ T∗.

Proof We first show that each T ∈ T∗ satisfies f̄(T) = f̄(Ť). Let [U , ρ] = f(T)

and [U ′, ρ ′] = f(Ť). By Lemma 5.3.2, G(−1) ⊖ T = (G[U , ρ], L) and G(−1) ⊖ Ť =

(G[U ′, ρ ′], L ′), where L (resp., L ′) is the unique vertex of weight zero in G[U , ρ]
(resp., in G[U ′, ρ ′]). Using the notation of [5, 3.36] and result [5, 5.14],

(G[U ′, ρ ′], L ′) = G(−1) ⊖ Ť = (G(−1) ⊖ T)t
= (G[U , ρ], L)t .

Whenever P and P ′ are weighted pairs satisfying P ′
= Pt , the underlying weighted

graphs of P and P ′ are equivalent. Thus G[U , ρ] and G[U ′, ρ ′] are equivalent
weighted graphs; it easily follows that G∞[U , ρ] ∼ G∞[U ′, ρ ′] and Gres[U ] ∼
Gres[U

′]. Since G∞[U , ρ] ∈ G∞[U ] and G∞[U ′, ρ ′] ∈ G∞[U ′], we get G∞[U ] =

G∞[U ′]; since Gres[U ] and Gres[U
′] are equivalent admissible chains, they are iden-

tical. Then Theorem 6.5 gives U ∼= U ′, hence f̄(T) = [U ] = [U ′] = f̄(Ť).
Conversely, consider T, T ′ ∈ T∗ such that f̄(T) = f̄(T ′); we show that T ′ ∈

{T, Ť}. Let [U , ρ] = f(T) and [U , ρ ′] = f(T ′) (with the same U ). By Lemma 5.3.2,

G(−1) ⊖ T =
(
G[U , ρ], L

)
and G(−1) ⊖ T ′

=
(
G[U , ρ ′], L ′

)
, where L (resp., L ′) is

the unique vertex of weight zero in G[U , ρ] (resp., in G[U , ρ ′]). By Proposition 2.19,
the connected component G∞[U , ρ] of G[U , ρ] has the form

(71) . . .r
0

r
−1

r
ω1

r
ωq

where q ≥ 0 and (for all i) ωi ≤ −2. Since G∞[U , ρ] and G∞[U , ρ ′] belong to
G∞[U ], they are equivalent and Lemma 2.17 implies that G∞[U , ρ ′] is either (71) or

(72) . . .r
0

r
−1

r
ωq

r
ω1

Consequently, (G[U , ρ ′], L ′) is either (G[U , ρ], L) or (G[U , ρ], L)t . In the first case,
we have

G(−1) ⊖ T ′
= (G[U , ρ ′], L ′) = (G[U , ρ], L) = G(−1) ⊖ T,

and [5, 5.14] gives T ′
= T; in the second case,

G(−1) ⊖ T ′
= (G[U , ρ ′], L ′) = (G[U , ρ], L)t

= (G(−1) ⊖ T)t
= G(−1) ⊖ Ť,

and [5, 5.14] gives T ′
= Ť. So T ′ ∈ {T, Ť}.
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Corollary 6.8 Let T ∈ T∗, let [U ] = f̄(T) and write U = Spec R. Consider the
action of the group Autk(R) on the set KLND(R) (see the introduction). Then:

(1) The number of orbits is either one or two.

(2) The action is transitive if and only if T = Ť.

Proof Consider the inverse image E ⊂ M
+

0 of [U ] ∈ M0 by the projection M
+

0 →
M0. Then by Definition 6.6 of f̄ we have f−1(E) = f̄−1

(
[U ]

)
, which is equal to

{T, Ť} by Theorem 6.7. So, by Theorem 6.3, f restricts to a bijection {T, Ť} → E.
The result follows from §2.4, which gives a bijection between E and the set of orbits.

The following gathers some useful facts concerning the surjection f̄ : T∗ →M0.

Corollary 6.9 Let T ∈ T∗ and let [U ] = f̄(T).

(1) The Picard group of Us = U \ Sing(U ) is Z/µ(T)Z.
(2) Gres[U ] = G(−1)

f?T
(3) The underlying weighted graph of the weighted pair G(−1)

f
6T is an element of

G∞[U ].
(4) The surface U is smooth if and only if T = 1 or T =

(
p 1
c 1

)
where c > p ≥ 1 and

gcd(p, c) = 1.
(5) U is symmetric at infinity if and only if Ť = T (symmetry at infinity is defined in

the introduction).
(6) If T = 1, then U = A2; if T =

(
1 1
2 1

)
, then U is P2 minus a conic. These are the

only members of M0 which are smooth and symmetric at infinity.

Proof The point of this result is to have a statement which does not involve a
morphism ρ : U → A1. However, the proof consists in applying earlier results to

[U , ρ] = f(T).

Assertion (1) was noted in the proof of Proposition 5.4.

Assertions (2) and (3) reiterate Lemma 5.

By assertion (2), U is smooth iff G(−1)
f?T is the empty graph, which is the case

iff the entry of T in the lower right position is a 1. This proves assertion (4).

To prove assertion (5), note that U is symmetric at infinity iff (G[U , ρ], L)t
=

(G[U , ρ], L). By Lemma 5.3.2, this is equivalent to (G(−1) ⊖ T)t
= G(−1) ⊖ T; and by

[5, 5.14], this is equivalent to Ť = T.

We leave the verification of (6) to the reader.

To complement assertions (2) and (3) of Corollary 6.9, note that the graphs
G(−1)

f
6T and G(−1)

f?T are explicitly described in Lemma 3.5.1.

Corollary 6.10 If U ∈ M0 is singular, then U has only one singular point and it is a
cyclic quotient singularity.
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Proof This follows from part (2) of Corollary 6.9, because G(−1)
f?T is an admissi-

ble chain.

If c ≥ 2 is an integer, let ϕ(c) denote the number of integers x satisfying
gcd(x, c) = 1 and 0 < x < c. Then:

Corollary 6.11 Let c > 2 be an integer. Then, up to isomorphism, there exist exactly
ϕ(c)/2 smooth surfaces in M0 having a Picard group of order c.

Proof Follows immediately from Corollary 6.9 and Theorem 6.7.

7 Embeddings of Surfaces

Theorem 7.1 Given T ∈ T∗, define (a0, a1, a2) ∈ Z3 and f ∈ k[X0, X1, X2] as
follows.

(1) If T =
(

p
c

)
∈ T1, let (a0, a1, a2) = (c − p, c, 1) and f = X1.

(2) If T =
(

p 1
c a

)
∈ T2, there exists a2 ∈ Z satisfying:

(c − p)a2 ≡ 1 (mod c), gcd(a2, a) = 1 and 0 < a2 < ac.

Choose any such a2 and define a0 = ac − a2, a1 = a and f = X0X2 + Xc
1.

Then a0, a1, a2 are pairwise relatively prime positive integers and f is homogeneous with
respect to the grading of k[X0, X1, X2] given by deg Xi = ai (i = 0, 1, 2). Moreover, the
surface f̄(T) is the complement of the curve f = 0 in P(a0, a1, a2).

Proof It is immediate that a0, a1, a2 are pairwise relatively prime positive integers
and that f is homogeneous with respect to the given grading. Write R = k[X0, X1, X2]
and always regard R as a graded algebra (so an “automorphism of R” is an automor-
phism of graded algebra). Let P = P(a0, a1, a2) and, given a homogeneous element

g ∈ R, let V (g) ⊂ P denote the zero-set of g.
The proofs of Proposition 4.3 and Lemma 4.2 tell us that, if we define (a0, a1, a2)

as in the above statement, then there exists a tableau T2 ∈ T1 such that

(
1, T, T2

)
∈

{
TI(a0, a1, a2) if T ∈ T1

TII.2(a0, a1, a2) if T ∈ T2.

Write τ =
(

1, T, T2

)
.

Consider the case where T =
(

p
c

)
∈ T1; by [6, 7.3] and [6, 3.1], the set TI(a0, a1, a2)

is a singleton and its unique element is disc[P, Λ0, F], where Λ0 is a basic affine rul-
ing of P defined in [6, 3.1] and F is an element of (Λ0)∗ satisfying supp(F) = V (X1).

So, by definition of F, we have F(τ ) = res[P, Λ0, F] = [P \ V (X1), ρ] for some
ρ : P \V (X1)→ A1. Since f(T) = F(τ ), we obtain f̄(T) = [P \V (X1)].

Consider the other case: T =
(

p 1
c a

)
∈ T2. By [6, 7.1] we have TII.2(a0, a1, a2) ⊂

T0(P) so τ = disc(P, Λ, F) for some basic affine ruling Λ of P and some element F
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of Λ∗. As in the first case, it follows that f̄(T) = [P \ supp F]. Since every element
of Λ has irreducible support by [5, 1.8], supp(F) is an irreducible curve C ⊂ P; then

degC = µ(T) = ac = a1c by Corollary 6.9. Let f be a homogeneous prime element
of R such that V ( f ) = C . To finish the proof it suffices to show that

(73) θ( f ) = X0X2 + Xc
1, for some automorphism θ of the graded algebra R.

By [5, 1.15], Λ has at most two multiple members; so we may pick F ′ ∈ Λ such
that F ′ 6= F and {F, F ′} contains all multiple members of Λ. Let f ′ be a homogeneous

prime element of R such that supp(F ′) = V ( f ′). We claim:

(74) θ ′( f ′) = X2, for some automorphism θ ′ of the graded algebra R.

To see this, note that the fact that Λ is a basic affine ruling of P immediately implies
that F ′ ∈ Λ∗ and disc(P, Λ, F ′) = (1, T2, T) (see part (2) of [6, 2.26], for instance).

Since (1, T, T2) ∈ TII.2(a0, a1, a2), it is obvious that (1, T2, T) ∈ TII.1(a0, a2, a1); then
[6, 5.1] asserts that (1, T2, T) is not minimal in T(‡) and that its immediate prede-
cessor (call it τ−) is some element of TI(a0, a2, a1); thus

disc(P, Λ, F ′) > τ− ∈ TI(a0, a2, a1).

By [5, 5.13], there exists an affine ruling Λ
− of P and an element F− of Λ

−

∗
such that

disc(P, Λ−, F−) = τ− and supp(F−) = supp(F ′). On the other hand, we obtain
(by [6, 7.3] and [6, 3.1]) that the set TI(a0, a2, a1) is a singleton and that its unique
element τ− is disc(P, Λ0, F ′′), where supp(F ′ ′) = V (X2). Thus disc(P, Λ0, F ′ ′) =

disc(P, Λ−, F−) and by Theorem 3.9 we obtain [P, Λ0, F ′ ′] = [P, Λ−, F−]. In par-

ticular, there exists an automorphism of P which carries supp(F ′ ′) = V (X2) onto
supp(F−) = supp(F ′). This proves (74).

So we may assume that f ′
= X2. Using [5, 1.15] again, we obtain that P \

(supp(F) ∪ supp(F ′)) is isomorphic to P2 minus two lines. Since

gcd(deg( f ), deg( f ′)) = gcd(a1c, a2) = 1,

[4, Theorem 3.5] implies that

k[X2, f ] = ker D,

for some homogeneous locally nilpotent derivation D : R→ R. Here, we may choose
D in such a way that D(R) 6⊆ X2R; then D̄ 6= 0, where D̄ : R̄ → R̄ is the locally

nilpotent derivation “D mod X2”, R̄ = R/X2R ∼= k[X0, X1]. By Rentschler’s Theorem
[12], there exist u, v such that ker(D̄) = k[v] and k[u, v] = k[X0, X1]; moreover, v is
homogeneous.

Note that deg( f ) = a1c = a0 + a2 > a2, so deg( f ) > deg(X2). Since f is

irreducible, it follows that X2 ∤ f . So f (X0, X1, 0) is a nonconstant element of ker D̄
and consequently

(75) There exists a homogeneous variable v of k[X0, X1] such that f (X0, X1, 0) is a
power of v.
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We may write f = g(X0, X1) + X2H(X0, X1, X2) where g ∈ k[X0, X1] and H ∈
k[X0, X1, X2] are homogeneous. We have g = vn by (75), so f = vn+X2H(X0, X1, X2).

Given p, q ∈ R, let p ∼ q mean that p, q are associates. Note that v ∼ X0 +λXm
1 or

v ∼ X1 + λXm
0 (where λ ∈ k and m > 0). We have k[v, X1, X2] = R in the first case

and k[X0, v, X2] = R in the second case. So we may assume that one of the following
holds:

(i) f = Xn
0 + X2H(X0, X1, X2), or

(ii) f = Xc
1 + X2H(X0, X1, X2).

Note that H 6= 0 by irreducibility of f , so deg(H) = a0.

In case (i), we have a0 | deg( f ) = a1c = a0 + a2, so a0 | a2 and a0 = 1. So
deg(H) = 1 and in particular H is a linear form in X0, X1, X2. If H ∈ k[X0, X2], then

f is a homogeneous prime element of k[X0, X2] and consequently f ∼ X0 or f ∼ X2

or f ∼ Xa2

0 + λXa0

2 = Xa2

0 + λX2 (some λ ∈ k
∗); this is absurd because deg( f ) =

a0 + a2 > max(a0, a2), so we conclude that H 6∈ k[X0, X2]. Thus k[X0, H, X2] = R,
so f = Xn

0 + X2X1 up to an automorphism. It follows that a1 = a0 = 1 and that

n = c, so the interchange of X0 and X1 is an automorphism and gives (73).

Consider (ii). If H ∈ k[X1, X2], then f is a homogeneous prime element of
k[X1, X2], so f ∼ X1 or f ∼ X2 or f ∼ Xa2

1 + λXa1

2 (some λ ∈ k
∗); since deg( f ) =

a1c = a0 + a2 and c > 1, we have deg( f ) > max(a1, a2), so we may rule out the first
two cases and conclude that f ∼ Xa2

1 + λXa1

2 (some λ ∈ k
∗); then a2 = c, which is

impossible because c > 1 and gcd(c, a2) = 1. So H 6∈ k[X1, X2]; since deg(H) = a0,
we deduce that H ∼ X0 + g(X1, X2) for some g ∈ k[X1, X2]; then k[H, X1, X2] = R
and, up to an automorphism, f = Xc

1 + X2X0, i.e., (73) holds and Theorem 7.1 is
proved.

We now address the questions:

• Which open subsets of P(a0, a1, a2) are members of M0?
• Given U ∈M0 and (a0, a1, a2), decide whether U can be embedded in

P(a0, a1, a2).

Recall that all weighted projective planes belong to the class of surfaces satisfying the
condition (‡) (see [6, 1.20, 1.21]).

Definition 7.2 Let X be a surface satisfying (‡). A special curve of X is an irreducible

curve C ⊂ X satisfying:

There exists an affine ruling Λ of X and a positive integer n such that nC ∈ Λ∗.

Remark Let Λ be an affine ruling of a surface X satisfying (‡). Then, by [5, 1.8],
every element of Λ has irreducible support. So, given any F ∈ Λ∗, supp(F) is a special
curve of X.

Lemma 7.2.1 Let C be a special curve of a surface X satisfying (‡). Then there exists a
basic affine ruling Λ of X and a positive integer n such that nC ∈ Λ∗.
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Proof Let Λ be an affine ruling of X such that nC ∈ Λ∗ for some n > 0. Set
(X1, Λ1, F1) = (X2, Λ2, F2) = (X, Λ, nC) and apply [5, 5.34]. Part (1) of that result

gives a basic affine ruling Λ
′

1 of X and an element F ′

1 of (Λ ′

1)∗ satisfying supp(F ′

1) =

supp(nC).

Proposition 7.3 For an open subset U of a surface X satisfying (‡), the following

conditions are equivalent:

(1) U ∈M,
(2) U ∈M0,
(3) X \U is a special curve of X.

Proof We first show that (3) implies (2). Suppose that C = X \U is a special curve
of X. By Lemma 7.2.1, there exists a basic affine ruling Λ of X and an element F of Λ∗

such that supp(F) = C . Then [X, Λ, F] ∈ S0(‡) and consequently we may evaluate

the map res : S0(‡)→ N
+

at [X, Λ, F] (see §5.1). It is immediate that

res[X, Λ, F] = [U , ρ]

for some ρ : U → A1. By Corollary 6.4 we conclude that U ∈M0, so (2) holds.
It is obvious that (2) implies (1). We prove that (1) implies (3). Assume that

U ∈ M. Then there exists a morphism ρ : U → A1 whose general fiber is an affine

line. By known properties of such morphisms, there holds:

(76) There exists a nonempty open subset V of A1 such that ρ−1(V ) ∼= V × A1 and

such that the composition V × A1 → ρ−1(V )
ρ
−→ V is the projection.

Now ρ extends to a rational map X 99K P1 which, in turn, determines a linear system

Λ on X whose base locus is a finite subset of X \U . By (76), Λ is an affine ruling of X
and there exists a finite subset {M1, . . . , Mr} of Λ satisfying

(77) X \ supp(M1 + · · · + Mr) ⊆ U

(the existence of the set {M1, . . . , Mr} is asserted, e.g., by [5, 1.11]). Note that, by

[5, 1.8], every element of Λ has irreducible support; also, X \U is a nonempty union
of curves, because U is affine and X is normal and complete. Consequently, if we
choose the set {M1, . . . , Mr} to be minimal with respect to property (77), then:

(78) Equality holds in (77).

By Theorem 2.20, the assumption that U ∈ M implies that some element of the
set G∞[U ] is a chain of type (Z). Then (78) and §3.7.2 give r = 1 and M1 ∈ Λ∗, so
(3) holds.

Definition 7.4 Given a surface X satisfying (‡), we define a subset T�(X) of T∗ by:

T�(X) =
{

T ∈ T∗ | ∃(m,T ′)∈Z+×T∗
such that (m, T, T ′) ∈ T0(X)

}
.
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See §3.10 for the definition of T0(X). Remark: The following is easy to see:

(m, T, T ′) ∈ T0(X) ⇐⇒ (m, T ′, T) ∈ T0(X).

Theorem 7.5 Let U ∈ M0 and let T ∈ T∗ be such that f̄(T) = [U ]. Given a surface
X satisfying (‡), the following are equivalent:

(1) U is isomorphic to some open subset of X,
(2) {T, Ť} ∩ T�(X) 6= ∅.

Proof Suppose that (1) holds. Then, by Proposition 7.3, U = X \ C where C is

a special curve of X. By Lemma 7.2.1, there exists a basic affine ruling Λ of X and
an element F of Λ∗ such that supp(F) = C . It is clear that [X, Λ, F] ∈ S0(‡) and
that res[X, Λ, F] = [U , ρ] for some ρ : U → A1. So, if we define (m, T1, T2) =

disc[X, Λ, F], we have T1 ∈ T�(X) by definition of T�(X) and F(m, T1, T2) = [U , ρ]

by definition of F. The latter gives f(T1) = [U , ρ], so f̄(T1) = [U ] = f̄(T) and
consequently T1 ∈ {T, Ť}, so (2) holds.

Conversely, suppose that (2) holds and pick an element T1 of {T, Ť} ∩ T�(X).
Then, by definition of T�(X), we have (m, T1, T2) ∈ T0(X) for some (m, T2) ∈
Z+ × T∗; and from the definition of T0(X) it follows that (m, T1, T2) = disc(X, Λ, F)
for some basic affine ruling Λ of X and some element F of Λ∗. Then Proposition 5.3
and the definitions of f and F give

f(T1) = F(m, T1, T2) = res[X, Λ, F] = [X \ supp(F), ρ]

for some ρ : X \ supp(F) → A1; consequently f̄(T1) = [X \ supp(F)]. Since T1 ∈
{T, Ť}, Theorem 6.7 gives f̄(T1) = f̄(T) = [U ], so U ∼= X \ supp(F).

Let a0, a1, a2 be pairwise relatively prime positive integers and consider P =

P(a0, a1, a2). In view of Theorem 7.5, the problem of deciding which members of
M0 can be embedded in P reduces to describing the set T�(P). Now [6, §7] gives

an explicit description of T0(P), and it is easy to derive a description of T�(P). See
Example 8.4.

8 Examples

8.1 Given a surface U ∈M0, find a tableau T ∈ T∗ such that f̄(T) = [U ].

Example 8.1.1 Let U = P2 \C , where C ⊂ P2 is “Yoshihara’s quintic” [14, Prop. 3,
cusp case]. We show that U ∈M0 and we find T ∈ T∗ such that f̄(T) = [U ].

From the equation of the curve, one finds that C has a unique singular point P0 (a
cusp) and that if P1, P2, . . . are the points of C i.n. P0 then the multiplicity sequence{

µ(Pi ,C)
}∞

i=0
is (2, 2, 2, 2, 2, 2, 1, 1, . . . ). It follows from the genus formula that C

is rational, so U is (rational and) completable by rational curves. A sequence of 8
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blowings-up (at P0, . . . , P7) gives U as the complement of an SNC-divisor D of a
smooth projective surface S, where G(D, S) is:

r r r r r r r r
−2 −1 −3 −2 −2 −2 −2 −2

r−1

It is easily verified that the above weighted graph is equivalent to the following chain
of type (Z):

(79) r r r r r r r r
0 −1 −5 −2 −2 −2 −2 −2

so we get ML(U ) = k by Theorem 2.20; in fact we have U ∈ M0, because Pic(U ) =

Z/5Z is a finite group. We seek T ∈ T∗ such that f̄(T) = [U ]. We have the two
graphs:

(80)
q q q q q q q q0 −1 −5 −2 −2 −2 −2 −2

∈ G∞[U ] and Gres[U ] = ø︸ ︷︷ ︸
6︸ ︷︷ ︸

25

where ø is the empty graph and the numbers under the braces are the determinants
of the indicated subtrees. Compare (80) with (55) and (56), in the proof of Proposi-
tion 5.3. Since the determinant of the empty graph is 1, which is not equal to 25, we
have T ∈ T2 by the last paragraph of the proof of Proposition 5.3. Writing T =

(
p 1
c a

)

and comparing with (56), we find a = 1, ac2
= 25 and pc + 1 = 6; thus T =

(
1 1
5 1

)
.

Note that (79) is equivalent to

(81) r r r r r r r r
0 −1 −2 −2 −2 −2 −2 −5

by Lemma 2.17, so (81) is another chain of type (Z) belonging to G∞[U ]. Making the
above argument using (81) in place of (79) gives a different tableau, namely,

(
4 1
5 1

)
.

There is no contradiction because this is Ť and f̄
(

Ť
)

= f̄(T) by Theorem 6.7.

Note that the number of orbits is two, in Theorem C, because T 6= Ť.

Finally, Theorem 7.1 implies that U is isomorphic to the complement of the curve
X0X2 + X5

1 = 0 in P(1, 1, 4).

8.2 Given a tableau T ∈ T∗, describe the surface U ∈ M0 determined (up to iso-
morphism) by f̄(T) = [U ].

Example 8.2.1 Let T =
(

1 1
3 2

)
∈ T∗; let us describe the surface [U ] = f̄(T).

By Theorem 7.1, U is isomorphic to the complement of the curve X0X2 + X3
1 = 0

in P(1, 2, 5).
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By Corollary 6.9, we may determine Gres[U ] and an element of G∞[U ] by com-
puting G(−1)

f?T and G(−1)
f
6T. The quick way to do this is to use (56) (because

T ∈ T2):

(82) q q q q q q q q q q. . . . . .0 −1

︸ ︷︷ ︸
acp+1=7︸ ︷︷ ︸

ac2=18

−2 −2 −2 −2

G = underlying weighted graph of G(−1)
f
6T

︷ ︸︸ ︷
G(−1)

f?T
︷ ︸︸ ︷

︸ ︷︷ ︸
a=2

where we used T =
(

p 1
c a

)
=

(
1 1
3 2

)
. Since the determinant of the right-hand side

is 2, there is only one vertex in Gres[U ] = G(−1)
f?T. Let G denote the underlying

weighted graph of the weighted pair G(−1)
f
6T; then we know that G ∈ G∞[U ]. The

subgraph of G obtained by deleting the two leftmost vertices is an admissible chain

which is completely determined by the determinants 18 and 7, as explained in [6,
1.14]. We find:

(83)
r r r r r r r

0 −1 −3 −3 −2 −2 −2

G ∈ G∞[U ]
︷ ︸︸ ︷

Gres[U ]
︷︸︸︷

We may continue the description of U by noting that Pic(Us) = Z/6Z (because
µ(T) = 6). By looking at the graph G in (83), we see that U is not symmetric at
infinity (this also follows from T 6= Ť); so the number of orbits is 2, in Theorem C.

Example 8.3 Let us find all surfaces U ∈M0 such that Pic(Us) has order 6. We use
part (1) of Corollary 6.9. First, it is obvious that the elements of

{
T ∈ T∗ | µ(T) =

6
}

are:

T1 =

(
1

6

)
, T2 =

(
5

6

)
, T3 =

(
1 1
6 1

)
, T4 =

(
5 1
6 1

)
, T5 =

(
1 1
3 2

)
,

T6 =

(
2 1

3 2

)
, T7 =

(
1 1

2 3

)
.

Since T4 = Ť3 and T6 = Ť5, we get five (non-isomorphic) surfaces, say U1,U2,U3,
U5,U7, where [Ui] = f̄(Ti). Of these, U3 is the only smooth one (Corollary 6.9). As
was shown in Example 8.2.1, each surface Ui can be described explicitly.

The last example describes T�(P) for P = P(1, 1, 1) = P2. This is derived from

the description of T0(P2) in [6, Example 7.8].

Example 8.4 Define sequences {ξn}
∞

n=0 and {un}
∞

n=0 by:

ξn = 3ξn−1 − ξn−2, ξ0 = −4, ξ1 = −1;

un = 3un−1 − un−2, u0 = 1, u1 = 1.
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Let {Tn}
∞

n=1 be the sequence in T∗ defined by T1 = 1 (the empty tableau) and:

Tn =

(
ξn 1
un 1

)
for n ≥ 2.

Explicitly:

{Tn}
∞

n=1 =

{
1,

(
1 1

2 1

)
,

(
4 1

5 1

)
,

(
11 1

13 1

)
,

(
29 1

34 1

)
,

(
76 1

89 1

)
, . . .

}
.

Now it follows from [6, 7.8] that T�(P2) =
⋃

∞

n=1{Tn, Ťn}. Consequently,

(84) f̄(T1), f̄(T2), f̄(T3), . . . are the members of M0 which can be embedded in P
2.

Comparing the list (84) with assertion (4) of Corollary 6.9, we see that many smooth
surfaces belonging to M0 cannot be embedded in P2. Since µ(Tn) = un holds for all

n ≥ 1, the complement of f̄(Tn) in P2 is a curve of degree un, so:

(85) There exists a special curve of P2 of degree d if and only if d is a term of{
un

}∞

n=0
= {1, 2, 5, 13, 34, 89, . . .}.

Moreover, the following fact can be derived from [6], but we do not give the proof
here:

(86) If two special curves of P2 have the same degree then some automorphism of P2

maps one onto the other.

Remark The special curve of P2 of degree 5 is Yoshihara’s quintic Example 8.1.1, so
the equation of a special curve can be much more complicated than X0X1 + Xn

2 = 0.

However, one can show that if “ f = 0” is the equation of a special curve then the hy-
persurface “ f = 1” in A3 is isomorphic to a hypersurface with equation “xy = ϕ(z)”.
Note that there may not exist an automorphism of A3 which maps one hypersurface
onto the other. In other words, “ f = 1” is a Danielewski surface which may be em-

bedded in A3 in a non-standard way—the embedding is non-standard in the case of
the quintic, and in fact in most cases.
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