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A BICOMBING THAT IMPLIES A SUB-EXPONENTIAL
ISOPERIMETRIC INEQUALITY

by GUNTHER HUCK and STEPHAN ROSEBROCK
(Received 2nd March 1992)

The idea of applying isoperimetric functions to group theory is due to M. Gromov [8]. We introduce the
concept of a “bicombing of narrow shape” which generalizes the usual notion of bicombing as defined for
example in [5], [2], and [10]. Our bicombing is related to but different from the combings defined by M.
Bridson [4]. If they Cayley graph of a group with respect to a given set of generators admits a bicombing of
narrow shape then the group is finitely presented and satisfies a sub-exponential isoperimetric inequality, as
well as a polynomial isodiametric inequality. We give an infinite class of examples which are not bicombable
in the usual sense but admit bicombings of narrow shape.

1991 Mathematics subject classification: 20F05, 05C25.

1. Definitions

Let I'y(G) be the Cayley graph of a group G with respect to a finite set of generators,
X, and let I'y(G) be equipped with the word metric. Let F be the free group on X. For
veF let |v| denote the length in the free group.

A bicombing as defined in [2] and [10] is essentially a selection of a path o(g, h) for
every pair of vertices g,heI'4(G), such that the distance between any two paths which
start and end a distance <1 apart is uniformly bounded. We replace the uniform bound
for this distance by a bound that is dependent on the lengths of the paths. More
precisely, we define a bicombing of narrow shape as follows:

For each (g,h)e G x G let a(g,h): [0,0[>T«(G) be a path from g to h which is at
integer times at vertices (i.e. from t=n to t=n+1 the path either travels the distance
between two adjacent vertices or pauses at a vertex). We define the length:

lo(g, )| =min {t| a(g, h)[t, o[ =constant =h}.

This is the length of the path including the pauses which occur before the end of the
path is reached. We will frequently represent such a path by a sequence of elements in
X uX~'u{1} which, given the start vertex g, completely determines the path. Let
o(h)=0(1,h). We call o a bicombing of narrow shape if

(1) it is “recursive”, i.e. if there exists an increasing polynomial f:N—N, such that

lo(g)| < f(d(1,8)) VgeG (1)

(2) there exists an integer M >1 and a real number k>2, such that for any geG
lo(g,8)| < Mk/2 and for all g, heG and a,be X*' U {1}
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|o(a(g, h)(1), o(ga, hb)(®)| < max ((|o(g, )| + |o(ga, hb)|)/k, M/2) 2

holds for all integers t e [0, oco[.

where d(1,g) denotes the distance in I'y(G) from 1 to g. If possible we will always
choose o(1) to be the identical path. A bicombing is called geodesic if f is the identity
(i.e. the combing lines are geodesics).

Let the group G be finitely generated with generator set X. Following Gersten [7], a
function f:N-N is called an isoperimetric function for G if for any word w in X of
length n with w=1 in G, the minimum number of 2-cells in a van Kampen diagram for
w is at most f(n).

Let P=(X IR) be a finite presentation of the group G. Following Gersten [7], a
function f:N-R is called an isodiametric function for P, if for any word w in the
generators X with w=1 in G there is a van Kampen diagram for w, such that any
vertex in the diagram has distance at most f (|w‘) from the basepoint.

We would like to thank Allan J. Sieradsky, Holger Meinert, Stephen J. Pride, William
A. Bogley and all the members of our “Luttach workshop” for helpful discussions.

2. An isoperimetric inequality and an isodiametric function

Theorem 2.1. A group G with finite generator set X and a bicombing of narrow shape
is finitely presented and has an isoperimetric function of growth n°°e™,

Proof. Define a presentation P={X |R), where R is the set of all cyclically reduced
non-trival words of length at most M +2 which are trivial in G. We prove that P is a
presentation for G by constructing a van Kampen diagram for each word which is
trivial in G, using only 2-cells of R.

Let we F be a reduced nontrivial word of length n> M +2 which is trivial in G. If
w=x,...x,, x;€X*! define w;=x,...x;, Now consider the “fan” of bicombing lines
o(w;) from 1 to w,. The equality |w|=n implies d(1,w;) Sn/2 and by (1) it follows that

low)| < f(w2) for 1<izn. (3)

If |o(w;)|+|o(w;+,)|SM, then the closed path t;=0(w;)x;4,6(w;+,)"" in Tx(G) is of
length <M +2 and therefore represents up to cyclic reduction an element of R.

If |o(wy)| +|o(w;+,)|>M we break up the closed path t; again, using the bicombing
paths o; ,=a(a(w;)(1),0(w;,()(t)) that connect o(w)(t) to o(w,,,)(t) for all positive
integers t <max (|a(wy)], |[o(wi+,)))- By (2),

|o:..| Smax (2 (n/2)/k, M/2). 4)
Let o(w)=a,...a,, o(w;+,)=b,...b, a;, e X*' U{1}. We examine the length of the

closed paths 1, , that are generated by the connecting paths o;,: 7, ,=0; b, 4,0, % a3},
(see fig. 1). If |o;,|+|6s,+1|SM, then |r; |<M+2 and t;, represents up to cyclic
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FIGURE 1. A diagram for w.

reduction an element in R. Otherwise, we break 7;, up agian using bicombing paths
Git,s=0(0;,(5), 0; ;4 1(5)) for s§max(|a,-',|, |°'i,r+1|)-

There is one exception, namely if we are close to the boundary. This is because the
path of length one between w; and w,,, is not (necessarily) a combing line. But the
condition |o(g, g)| < Mk/2 implies

lo(o (Wi, w)(0), 6w 1, Wi 1)(0)] S max ("’(W“ W"”+|‘,’(‘W‘+“Wﬁ+1",%>§M,

and the closed path on the boundary consisting of the combing line o(w;, w;,,) and the
edge from w;,, to w; has length <M +1 and therefore represents an element of R.

By (4), |o... | <max(4f(n/2)/k*,M/2). If |6, |+]|0:.s+1|SM then the closed path
Tirs USING 0;, . 67 .+, and the segments of length <1 along o;, and 0,4, is of
length <M +2 and therefore represents an element in R. Otherwise, we break up
further in the same manner using connecting bicombing paths of length =<
max (8f(n/2)/k®, M/2), etc. until 2?f(n/2)/k*<M/2. In this way we find a van Kampen
diagram for w. This proves that G is finitely presented. The exponent d can be estimated
as the smallest integer greater than or equal to log,,,(2f(n/2)/M).

The isoperimetric inequality has the form:

#(2—cells)Sn-(f(n/2)+1)-2(f (n/2) +2)/k---2°~ 1 f(n/2) + 2)/k*~*

MW+ og0g
= ki@-172
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where d is given as above. d

Remark 1. Condition (1) is not necessary in order to prove that the presentation is
finite.

2. The growth of the isoperimetric function is faster than polynomial but slower
than exponential; therefore we call it sub-exponential.

Theorem 2.2. Each group that has a bicombing in the sense of [10] has a bicombing of
narrow shape.

Proof. By using the notation of the proof above, the bicombing in the sense of Short
is a narrow bicombing with |o',-_,|§M/2 and f(n)=mn for a given constant meN and
d=1 in this case. N

Theorem 2.3. Let P=<(X | R> be a finite presentation for the group G with a bicombing
of narrow shape o and let f be the polynomial from (I) bounding |o(g)|.

(1) There is a polynomial isodiametric function for P of the same degree as f.
(2) If o is geodesic, then the isodiametric function is linear.

Proof. Let we F be a reduced nontrivial word of length n, which is trivial in G, and
let D be the van Kampen diagram for w constructed in the proof of Theorem 2.1. One
can reach every vertex in the diagram D from the basepoint 1 by travelling part of a
bicombing line o(w;) of the first generation then travelling part of a bicombing line o, ,
of the second generation then part of a bicombing line g, , ; of the third generation etc.
The length of a bicombing line of the Ith generation is <2!f(n/2)/k’, and the sum of the
lengths of successive generations of bicombing lines therefore is £
f(n/2)(1 +2/k +(2/k)2 + -+ )= f(n/2)k/(k—2). Hence (k/(k—2))f(n/2) is an isodiametric
function for the presentation P. If ¢ is geodesic, then f is the identity and the above
function is linear. O

The next theorem follows an idea of M. Bridson [4]. It shows that the definition of a
bicombing of narrow shape cannot be sharpened.

Theorem 2.4. Let X be a finite generating set of the group G. Choose for every pair
g, he G a geodesic a(g,h)eI'y(G). Then

Vx,ye X*', Vg, heG,|a(a(g, h)(1),a(gx, hy)()| = (|o(g, B)| +|o(gx,hy))/2+ 1
holds for all integers te[0, o[.

Proof. Let C=(|a(g, h)|+|o(gx, hy)))/2. If t<C/2, then following o(g,h) backwards
from o(g, h)(t) to g then one edge to gx and then going to o(gx, hy)(t) along a(gx, hy)
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gives a path of length at most C+ 1. For t>C/2 follow o(g, h) from o(g, h)(t) to the
vertex h, then go one edge to hy and then to o(gx, hy)(t) backwards along o(gx, hy). This
gives a path of length at most C. a

3. A class of examples

Let P,={x, y,z|[x, y1=z,[x,zZ]=[y,z]=1) be a presentation of the group G, where
g=1 and [a,b] denotes the commutator of a and b. G, is the 3-dimensional integral
Heisenberg group. Let F be the free group on {x,y,z}. Let w,ve F. If both words are
equal in F, we write w=v. If they are the same in G,, we write w=v.

It is easy to see, that

Zil=xfyqlx-.iy—ql (5)

holds in G,.

Lemma 3.1 (normal form for G,). Let weF. Then, for ¢> 1, there is a word
(w)syx"y ! x" . .y ix"myP"e F 6)
with r;, 5;#0 and

for q even: 5,5, {—q/2+1,...,q/2},

for q odd: s,s,€{~(q—1)/2,...,(q—1)/2},
and, for q=1, there is a word
(w)=x"y’z"e F )

such that t(w)=w in G, and for all ve F with w=v in G, ©(w)=1(v).

Proof. The case g=1 is trivial. For g¢>1 it is easy to see that each word we F can
be transformed into 7(w) using the relations of P,. In order to prove uniqueness, let w
and v be two words in F representing the same element in G,. Let H,=G /< z>», where
«z> denotes the normal closure of z in G,. T,={x,y|xy*x™!=y%) is a presentation for
H,, which is an HNN-extension. Therefore w and v have the same normal form (see [9])
t(w)=7'(v) in H, which is equal to the normal form in G, except that n=0. Since z is
central, 7(w) and t(v) can only differ by a power of z. But z has infinite order in G,
which implies 7(v) = t(w). |

The normal forms (6) and (7) define a path o(w) from I to w in the Cayley graph
I'(G,) of G, for every we F. Define paths o(g, h) by taking equivariant lines; define

o(g, W)(1): =g o(1,g" W) =g o(g”'W() Vg, heG, ®)
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Theorem 3.2. The paths o(g) are recursive (i.e. |a(g)|< f(d(1,g))) with a function
f(x)=2x*>+3x for g>1 and f(x)=x*+x for q=1.

Proof. The relations in P, say that z commutes with x and y, in particular any
power of z can be shifted to any place in a given word, and that x commutes with y? at
the expense of introducing z or z7 1,

For g>1, let w=a(g)=yx"'y*'x"...y" 'x™yPz"e F be the normal form for g. We
observe first that

m m-1
dLe)z Y |rl+ Y [s|+]sl ©)
i=1 i=1

This is due to the fact that the exponents of the y-powers which occur in w can only be
changed by adding multiples of g (The relations (5) allow one to permute powers of x
with powers of y9). However, the range for s; and s in the normal form w is such that |s;|
and ]s| can not decrease under these changes. The same argument also shows that
d(1,@ 2 Ir]+ Xt si| +|s| + max {|p| - (X |s; , which implies:

d(1,8) = |p| (10)

Therefore Y7, |rd+Y>rt [si| +|s| +|p|<2d(1,8). In order to prove |w|=Ym,|r|+
F’" l|s|+|s|+|p|+|n|<f(d(1 g)=3d(l,g)+2d*(1,g), we only need to show that
|=d(1,8)+2d(1,g):

We claim that

m m-—1
AL,z Y |+ Y |si]+1s|
i=1 i=1

+min {maxli|n|—-<.zm: |r,.|+|r|> [(z |s,-|+|s|+|p|> /q+|l|],0]+2]r|+2q|l|} (1)

where the minimum ranges over |r| and |l If |n| S, |rDQry! s +]s| + |p)/g the
minimum term on the right hand will be 0 and the mequallty holds by (9). If
n| > D, |si) +|s| + |p|)/g we observe first that |n| may decrease by at most
k| |1 if a power y* 1s pushed across a power x* in w.

If we do not introduce new powers of x or y? by inserting x’x~" or y?y~% into the
word, the amount by which |n| may be decreased by means of permuting powers of x
with powers of y? is clearly bounded by )T 1|r I(Z |s|+|s|+|p|)/q This coarse
estimate stems from the following fact: Among all words in x and y whose sum of
absolute values of x-exponents and sum of absolute values of y-exponents is the same as
for w, yZlsil*lsi+lplxXinl can absorb the largest powers z* or z™" by permuting powers of
x with powers of y%.
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If we prolong the word by inserting x’x ™" and y*'y~% at suitable places, the amount
by which |n can be decreased by means of (5) is bounded by
Gy rd + DI s +1s| + |pP/a+|i|3; and, at the same time, the length of the
x-y-part of the word increases by 2|r|+2q|l[. This explains inequality (11).

Now, let |ro| and |lo| be the values for |r] and || for which the minimum occurs in (11).
Then d(1,8)2 (Y7o Jrf + 2Jro) (X7 [si + 15|+ 2Jo)), and, by (10), d%(1,) 2(T. |ri +2lroDlp]
which implies 2d%(1,8) 23, ri| +|roDIC T si| + |s| + |p)/g + |lo[]. Therefore, by (11)
again, |n| <d(1,g)+2d*(1,g) which proves the theorem for g> 1.

For g=1 the proof is similar, but easier. Let a(g)=x"y*z". It is clear that d(1, g)g|r|+
|s|- If |n| <|r| +|s|, then d(1,8) +d(1,8)* 2|o(g)|; if |n|>|r| +|s|, then, by the same ideas as in
the proof for g>1, d(1,g)2|r|+]|s|+min {max [|n|—(|r|+|r](|s| +|s), 01 +2]r| +2|s']}
where the minimum ranges over the values of || and |s'|. Let Iro| and |sp| be the values
for which the minimum occurs, then |r|+|s|+ |n]2d(1,8) +(jr| +|ro)(|s| +|so]) = d(1,8) +
d*(1,g). a

Theorem 3.3. (g, h) defines a bicombing of narrow shape with constants M =24q+ 18
and k=11/5.

Proof. Recall that a recursive ¢ is of narrow shape, if there exists an integer M > 1
and a real k>2, such that for all g,he G and a,be X*' U {1}

|o(a(g, h)(2), o(ga, hb)(t))| < max ((|o(g, h)| +|a(ga, hb))/k, M/2)

holds for all integers te[0, oo[. Since the bicombing is equivariant, it suffices to show
this inequality for g=1.

For g>1 let veF be in normal form v=y*x"y*'x"... y" - x""yPz", such that v=h in
G, (6(1,h)=v). Let w be the group element a~'vh brought into normal form
(o(a, vb)=w) (see fig. 2).

Now calculate the length of the bicombing lines (the combing distance) between these
two paths w, v in I'y(G,). Call the maximal combing distance between two such paths
(o, w,v).

Ifa=1and be{l,z*'}, then §(o, w,v)<1. If a=1 and be{y*'} then &(s,w,v)=2.

If a=1 and be {x*} (¢= £ 1), then é(o,w, v)§|l|+q+ 1, where ! is such that —g/2+1<
p—lg<q/2 for q even and —(q—1)/2<p—Ilq=<(qg—1)/2 otherwise. To see this, observe
that v ends with y°z" but w ends with x®y#'z"~*. Since |w|+ |v| 2 24|l| we get for g2 and
8(a, w,v) > M/2: (|w| +|v))/k> 5(c, w, v).

There are a few more cases which are relatively easy. The most critical case which
requires the sharpest estimates occurs if a=y*, b=x* with a,¢€ { £ 1}; in particular if y*
is at the boundary of its range to which it is restricted by the normal form, and the
premultiplication by a~'=y~® moves it out of this range, as, for example, in the case
e=—1, s=q/2 and g even (the other cases can be treated similarly).

In this case v=y¥2x"y*1x"2 ... y*"~ 'x"myPz" and

WEy—qIZ + lxnyslxrz . ys...- 1xrmyp—quay(l+ l)qzn—Zn—a(H- 1)’
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vb

v wsa-~1vb

1 a

FIGURE 2. Close bicombing lines.

where [ is as above. Using the rule |a|+[a—~b| 2 [b| we obtain the estimate: [w|+ [v|= 2q(l|
+2Y |ri| + [ ri+a(l+ 1)]. A careful study of the lengths of the combing distances shows
that

Ej:"i

i=1

o(a, w,v) S max {max +1,

jsm

m
2T
i=1

+|I|+3q+2}§(2 Ir|+| X~
i=1 i=1

)/2+|l|+3q+2.

Since ¢=2 and k=11/5, (|w|+|v|)/k=20[l/11 +10Y |r,|/11 + 5|3 r;+a(l+ 1)[/11. We will
show that the right hand side is (X7, |r|+|Xr r)/2+]l|+3g+2 whenever
(o, w,v) > M/2 (which, by the above estimate for (o, w,v), proves the theorem for this
case). This is equivalent to:

W+ 103 |ri|+ 5 ri+ e+ D211 Y |ri]/2+ 11| r|/2 +33q +22.

The left hand side can be simplified by the following estimates: S|+ 5> r;+a+al|2
S ri+a|25[) r—5, and 10Y|r|+ 5|2 r 219Y |ril2 + 113 r|224Y | + 11T ri/2.
Therefore the above inequality follows from 4(|l|+). |r:[)233g+27, which follows from
8(o, w,v)>M/2 using the value M =24q+18 and the estimate 5(a, w,0) S} |ri| +{3 ]}/
2+(l[+3q+2Y [ +3g+2

The proof for g=1 is much simpler and left to the reader. O

In the following we use Cockcroft 2-complexes to get lower bounds for isoperimetric
functions. This idea is due to S. Gersten [6].

Theorem 34. G, has no quadratic isoperimetric inequality and therefore no combing in
the sense of Short [10].
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Proof. There is a van Kampen diagram for w,=[x",y"]-[y™%,x~"] in G, which
has n® more 2-cells [x,z] of positive then of negative type. W. A. Bogley proves in [3],
that the corresponding 2-complex is Cockcroft. So each =m,-element has the same
number of positive as of negative 2-cells [x,z], which proves that every van Kampen
diagram for w, will contain at least n* 2-cells [x,z] and so proves the theorem. O

REFERENCES

1. J. M. Aronso, Combings of groups, in: Algorithms and Classification in Combinatorial Group
Theory, G. Baumslag and C. F. Miller III, eds. (Springer Verlag, MSRI Publ., 1991).

2. J. M. Awonso and M. R. Bribpson, Semihyperbolic groups (preprint, Cornell University,
1990).

3. W. Bogley, Unions of Cockcroft two-complexes, preprint, 1991.

4. M. Bripson, On the geometry of normal forms in discrete groups (preprint, Princeton
University, 1992).

5. Davip B. H. ErstEIN, J. W. Cannon, D. F. Horr, S. V. F. Levy, M. S. Paterson and W. P.
ThnurstoN, Word processing in groups (Jones and Bartlett, 1992).

6. S. Gersten, Dehn functions and / -norms of finite presentations, in: Proceedings of the
Workshop on Algorithmic Problems, C. F. Miller III and G. Baumslag, eds. (Springer Verlag,
1991).

7. S. Gersten, Isoperimetric and isodiametric functions of finite presentations (preprint,
University of Utah, 1991).

8. M. Gromov, Hyperbolic groups, in: Essays in group theory (Springer Verlag, 1987), 75-263.
9. R. Lynpon and P. Scuupp, Combinatorial Group Theory (Springer Verlag, Berlin, 1977).
10. H. SHort, Groups and combings, Laboratoire de Math., Ecole Normale Sup. de Lyon

(1990).

InsTiTUT F. DIDAKTIK DER MATHEMATIK DEPARTMENT OF MATHEMATICS
J.-W .-GoOETHE UNIVERSITAT NORTHERN ARIZONA UNIVERSITY
SENCKENBERGANLAGE 9 Fragstarr AZ 86011

6000 FrRANKFURT/M. USA

WEesT GERMANY

https://doi.org/10.1017/50013091500018587 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500018587

