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Abstract

Motivated by the pricing of lookback options in exponential Lévy models, we study
the difference between the continuous and discrete supremums of Lévy processes. In
particular, we extend the results of Broadie, Glasserman and Kou (1999) to jump diffusion
models. We also derive bounds for general exponential Lévy models.
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1. Introduction

The payoff of a lookback option typically depends on the maximum or the minimum of the
underlying stock price. The maximum can be evaluated in continuous or discrete time depending
on the contract. In the Black—Scholes setting, Broadie et al. [4], [5] derived a number of results
relating discrete and continuous path-dependent options (see also [10] for results on diffusion
processes). In particular, they obtained continuity correction formulae for lookback, barrier,
and hindsight options. The purpose of this paper is to establish similar results for exponential
Lévy models. We will focus on lookback or hindsight options, leaving the treatment of barrier
options to another paper (see [8] and also [9]).

Our results are based on the analysis of the difference between the discrete and continuous
maximums of a Lévy process. In the case of a Lévy process with finite activity and a nonzero
Brownian part, we extend (see Theorem 5) the theorem of Asmussen et al. [2] which is the key
to the continuity correction formulae for lookback options in Broadie et al. [S]. This allows us
to extend these formulae to jump diffusion models. We also establish estimates for the L-norm
of the difference between the continuous and discrete maximums of a general Lévy process.
These estimates are based on Spitzer’s identity, which relates the expectation of the supremum
of sums of independent and identically distributed (i.i.d.) random variables to a weighted sum
of the expectations of the positive parts of the partial sums. In the case of Lévy processes with
finite activity, we derive an expansion up to order o(1/n), where n is the number of dates in
the discrete supremum; see Theorem 1. In the case of infinite activity, we have precise upper
bounds (see Theorem 2). We also derive an expansion in the case of Lévy processes with finite
variation (see Theorem 3).

The paper is organized as follows. In Section 2 we recall some basic facts about real Lévy
processes. In Section 3 we state Spitzer’s identity for Lévy processes and use it to analyse the
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expectation of the difference between the continuous and discrete maximums of a general Lévy
process. Section 4 is devoted to the extension of the theorem of Asmussen et al. [2]. The last
two sections are devoted to financial applications. In Section 5 we derive continuity corrections
for lookback options in jump diffusion models, and in Section 6 we give upper bounds for the
case of general exponential Lévy models.

2. Preliminaries

A real Lévy process X is characterized by its generating triplet (y, o2, v), where (y, o) €
R x R* and v is a Radon measure on R \ {0} satisfying

/(1 A xH)v(dx) < oo.
R

By the Lévy-Itd6 decomposition, X can be written in the form

X,:yt+aB,+X§+1ifg)~(f, (1)
&
with
[AXg|>1
Xf:/ xJx(dx x ds) = Z AXy,
|x|>1, s€[0,7] 0<s<t
e<|AX|<1
Xt =/ xJx(dx xds)= > AXy —r/ xv(dx).
e<|x|<l, s€[0,t] O<s<t e<|x|<1

Here J is a Poisson measure on R x [0, co) with intensity v(dx) df, 7, x(dx x ds) = Jx(dx x
ds) — v(dx)ds, and B is a standard Brownian motion. We also have the Lévy—Khinchine
formula for the characteristic function of X;. Namely,

EeltXi — gl uel,
where ¢ is given by
o2u?
2
We say that X has finite activity if the Lévy measure v is finite (v(R) < 00). We then have

o) = iyu — + / (" — 1 — iux 1jjy<1y)v(dx).
R

Ny
X, =yt+0B + Y Y, )
i=1
where N is a Poisson process with rate A = v(R), (¥;);> are i.i.d. random variables with
common distribution v(dx)/v(R), and

Yo=Yy _/|| 1xv(d)c). 3

This is a jump diffusion process. If the jump part of X has finite variation (which is equivalent
to f\x|§1 |x|v(dx) < oco) then
X: =yt +oB; —i—[ xJx(dx x ds), 4)
x€eR, s€[0,7]
with yp given by (3). Note that X is a finite variation Lévy process if and only if o = 0 and

le\fl |x|v(dx) < co. Moreover, X is integrable if and only if flx\>1 |x|v(dx) < oo.
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3. Spitzer’s identity and applications

In this section we will first state Spitzer’s identity for Lévy processes (we refer the reader
to [1, Proposition 4.5, p. 177] for the classical form of Spitzer’s identity). Then we will use
this result to derive expansions for the error between the continuous and discrete supremums
of Lévy processes.

Definition 1. We define

MX = sup Xj, MIX’” = max Xi/n-

0<s<t O<k=n
When there is no ambiguity, we can remove the superscript X.

Remark 1. Note that M, is integrable for all + > 0 if and only if fx>1 xv(dx) is finite. We
also have, for all @ > 0, Ee®™" < oo if and only if fx>1 e*“*v(dx) is finite, as can be seen by
classical arguments (see [12, Section 25]).

In the setting of Lévy processes, we have the following version of Spitzer’s identity.

Proposition 1. If X is a Lévy process with generating triplet (y, o2, v) satisfying

/ xv(dx) < o0
x>1
n

EX} 'EXT
Bay =Y EM= [ S
k=1 o

then

For the proof of the above result, we need some estimates for E M, with respect to ¢.

Proposition 2. Let X be a Lévy process with generating triplet (v, o2, v) satisfying

/ xv(dx) < o0.
x>1

EM,; < <y+ +/ xv(dx))t + <0\/g+2 // x%(dx))«/;.
x>1 [x]<1

If. in addition, f‘

Then

|x|v(dx) < oo then

EM,; < (V()+ +./R+ xv(dx))t +a\/g\/;.

Proof. We will first prove the second result of the proposition. We have (see (4))

x|<1

sup X5 = sup (yos + o By +/

0<s<t O0<s<t xeR, t€[0,s]

xJx(dx x dr))

< y0+t + o0 sup Bg +/ xJx(dx x dr).
x€RT, t€[0,1]

0<s<t

So
E sup X, <yt +0E sup Bs+t/ xv(dx).
R+

0<s<t 0<s<t
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By the reflection theorem we know that sup, . ., Bs has the same distribution as | By |. Therefore,

[2
E sup By =E|B/| =,/ =+t.
0<s<t T

2
E( sup Xs) < <y0+ —i—/ xv(dx))t +a,/—x/;.
0<s<t R+ T

Consider now the general case. We define the process (R;);>0 by

Hence,

R, = lim X¢ = lim xJx(dx x ds).
el0 el0 Je<|x|<1, s€[0,7]

We have, using (1),

E( sup XS> <E sup (ys +0B; + Xﬁ,) + E sup (Ry).

0<s<t 0<s<t 0<s<t

The process (ys +oBs + X é) ¢>0 has finite activity and the support of its Lévy measure does
not intersect [—1, 1], so

[2
E sup (ys +oBs + Xi) < (y+ +/ xv(dx))t +o,/ =1
x>1 T

0<s<t

Besides, using the Cauchy—Schwarz and Doob inequalities (note that R is a martingale), we

obtain
E sup (Ry) <2 /t/ x2v(dx).
0<s<t |x]<1
+ 2
E( sup XS) < <y —l—/ xv(dx))t + (0\/j+2 // xzv(dx)>\/;.
0<s<t x>1 s [x|<1

Proof of Proposition 1. By Proposition 2, there exist ¢, ¢ > 0 such that, for all # > 0,

Hence,

E sup X; §c1t+cz«/;.

0<s<t

Thus,
+ E X
E X} < SUP)<; <5 Xt <o+ £
s s s

Since s — 1/./s is integrable on [0, ], so is s — EXj/s. For s € (0, t], define

EX} Z k
fls) = —, fa(s) = Z 1((k—1)t/n,kt/n](s)f<;t>,

N
k=1

so that

n

EX;Z;/,, f— kt !
> — =;];f(;>=fo fu(s)ds.

k=1
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We can prove that f is continuous on (0, 7]. We deduce that lim,_, 1~ f;, = f almost
everywhere (a.e.). We also have, for any s € (0, 7],
- kt
< 1. _ —
[fu($)] < ; ((k=1)t/n,kt /n] (5) f( . )’

= Z L(k—1)t/m, kt/n](5)<C1 + «/W)

k=1

&)
<cl 4+ —.
S

So by dominated convergence we have lim,—, 10 Y z_; E Xk[/n/k = fot (E X /s)ds. On the
other hand,

klréaankt/n=max(0,Xt/,,,X2,/n,.. X,)_max(Xt/n, 2t/n,...,X?').

Note that, for k > 1, we have X4/, = Zl;zl(Xj,/n — X(j—1)1/n) and the random variables
(Xjr/n — X(j—1)1/n) j=1 are i.i.d. So by Spitzer’s identity we have

E max Xk,/,,_; E X

The sequence (max—o,....n Xkr/n)u=0 is dominated by Supg<y<; Xs, SO by using the dominated

convergence theorem we obtain

E sup X; =E lim max Xkl/n

0<s<t n—+00 k=0,...,

= lim E max Xk,/,,
n——+00 =0

.....

= lim EX

n—>+oo

/ Exjr
= ds.
0 S

3.1. Case of finite activity Lévy processes

kt/n

The use of Proposition 1 in the finite activity case leads to the following theorem.

Theorem 1. Let X be a finite activity Lévy process satisfying fx>1 xv(dx) < oo, t > 0, and

neN.
1. If o > 0, we have, forn — +00,

n —i Yot + Y0 ZN Y;
E(M;—M,)—2n< 5 T MEY, afE¢< \/—+—0\/;

! & : Y0 YN

_EE<yot+;Y,)cb< Ji+ f )

_aﬁc<1/2)+0<1)_
2nn n
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Here, ¢ is the Riemann zeta function, and ¢ and ® are the probability density function
and the cumulative distribution function of the standard normal distribution.

2. Ifo = 0thens — E X[ /s is absolutely continuous on [0, t] and we have

1 1
E(M;, — M") = E(yo+t +MEY," —EX;h) +0<;)

when n — +00.

Recall that in the case of Brownian motion, Broadie et al. [5] proved (cf. Lemma 3) a result
similar to the first point of the above theorem. In the case o = 0, if Y] has a continuous density
function or yy = 0, the error o(1/n) is in fact O(l/nz) (see [7]). To prove Theorem 1, we need
the following more or less elementary lemmas.

Lemma 1. Let f € C2[0,t]. Then
" T ke +/12(1/2) £(0)
/oﬁf<ﬁ>dx—;}§4rt/nf( V)R
\/?f(x/?)—tf/(O)Jr (1)

— ol — ).

2n n

Lemma 2. Let f be an absolutely continuous function on [0, t]. Then we have

4 < kt t 1
/0 f(s)ds—;éf(;) = E(f(o)—f(t))+o(;).

The proof of the previous lemma is based on the following result.

Lemma3. Leth € L! ([0, £]1). We define the sequence (I, (h))m>1 by

m kt/m ¢
Im(h)=2/ h(u)(u—(k—l)—) du.

=1 Y k=Dt/m m
Then we have

. t [’
m_l}n}_mmlm(h) = 5/() h(u)du.

Proof. Consider first the case where & € C([0,¢]). By the variable substitutions v =
u — (k — 1)t/m, then w = mv, we obtain

m t/m

h(v 4k — 1)i>udv
m

! t d
- /h(va(k—l)—)E—w
0 m m)m m
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But % is continuous and, for w € [0, ¢], we have w/m + (k — 1)t/m € [(k — 1)t/m, kt /m], so

m t
t t
lim — h(3+(k—1)—) :/ h(s) ds.
m——+00 m =1 m m 0

t t t
11m ml, (h) = / (l/ h(s)ds)wdw: E/ h(s)ds.
m—+ o\ Jo 2 Jo

Consider now the case where / is integrable on [0, ¢]. Then there exists a sequence of functions
(hy)n>0 in C([0, t]) such that

Hence,

t
lim /lh(u)—hn(u)lduzo.
0

n——+00

So we have

kt/m t
u' = 'mlm(hn) —mZ/ h(u)(u—(k— DZ) du

k—1)t/m
m kt/m ,
kt/m ,
m kt/m
=t hy —h d
a Z/(.kl)t/m| @) (Wl du

t
< rf V() — h0)] dut.
0

The convergence (with respect to m) of m1,,(h,) is uniform. Hence, by the limits inversion

theorem,
lim hm mly,(h,) = lim hm mly,(hy,)
m——+00 n—-+ n—-+o0o m—
t
e lim ml,(h) = lim —/ hy, () du
m— 400 n—+oo 2 0

PR
— lim ml,(h) = —f h(u)du.
m—+00 2 0

Proof of Lemma 2. Let h be the a.e. derivative of f. We have

fime QB L)

kt/n kt/n
/ h(u) du ds

(k—=1)t/n
kt/n

/ h(u)dsdu (by Fubini).
(k—=Dt/n Jk=1)t/n
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Thus,

d o kt kt/n t
/Of(s)ds—;k;f(;> Z/ h(u)(u—(k—l);)du

k—1t/n
=—— / h(u)du + 0<l> (by Lemma 3)
2n Jo n
1
- —2i(f<z) — FO) +o<—)
n n
1
= (FO) = 1) +o<—>.
n n

Proof of Lemma 1. We consider first the case + = 1. The case r # 1 will be deduced by a
variable substitution. We have

1 _fO) | fGx) = f(0)
ﬁf(\/)—c)—ﬁ—i- NG .

Set

oty = LD SO
N
The function g can be extended to a continuous function on [0, 1], and limy_.¢ g(x) = f7(0).
Furthermore, g is differentiable on (0, 1] and

f) - f(f)+ff(f)

2x3/2

gx) =

The function g’ is integrable on [0, 1], so g is absolutely continuous. Thus,

R aIC) ! I fOO) 1 [k
el = | o drt | g<x>dx‘z§m‘zk=1g<z>

o[ o 5 )+ ([ o ()

from [11] (see page 538) and using Lemma 2, we obtain

1/2 1 1 0 1 1
en(f) = f(0>(—“—/ﬁ)—5+o<n_2))+%_%+o(;>

_5d/2 ORI f'(0) — £(0) 1
- Jn 7 TO- 2n 2n +0(n>
_ s/ f0)  f1) — f/(0) +0(l)

B Jn 2n n)

Proof of Theorem 1. We know from Proposition 1 that

TEXt t S EX
E( sup Xy — max th/,,)zf s ds——Z ki/n
k=0, .. 0o S n = kt/n

0<s<t
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So we need to study the smoothness of the function s — E X" /s, and conclude with Lemma 1
and Lemma 2.

Case 1: 0 > 0 and E Y]+ < oo. Let U be a normal random variable with mean y and
variance o'2. By an easy computation we obtain

EUT = o¢<£> + ycb(g).

So, for any s > 0, we have, by conditioning with respect to the jump part of the process X,
X5 Y0 Yo, Y Yo Y Y0 Yo, Y
E—= = E =
. f ( Vs + f ) + ()/0 + == R ﬁ
Let f and g be the functions defined by

N2 N2 N

f(s) :E¢<&S+M>’ g(s) = (VO +M)®<ms+ X:i;lYi)7
(o os os o os
so that
X+
LS+ Zg(Vs).

g Vs

If f and g can be extended as C? functions on [0, ¢] then, using Lemma 1, we obtain the first
part of the theorem. By [6, Proposition 9.5] we have

gs

N1 :
f(s) = Eslee_Msz_l)¢><ms + —Zi:l i )
o

So, the function f has the same regularity as f defined by

N
Din Yi>

oS

fs) = Es”lqb(us +

where u = yp/o. For x € R, we define the function

s+ h(s, x) =¢(us+ )s_c>

We then have N
- Yy
f(s) = EszN'h(s, —Z':l l).
o
Note that .
0<h(s,x) < —,
V21
and
h(s. x) 1 1 +x 2 1 u?s? x?
LX) = e —— — = e — S — .
S, X N Xp > s e N Xp > xp[ —px 757
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Using the inequality —ux < u’s? 4 x?/4s%, we obtain

(s, x) < (eV5*2e=32 /457 £ 7). (5)

Moreover, we have
d x2 2
—h(s,x) = — — us |h(s, x)
s s3

and

92 3x2 X x2 2 X
mh(s,x) = (—S—4 - M2)¢><us + ;) + (S—3 - uzs) ¢<,U«\/§+ f)

Using (5), we obtain

2 2 2
- u-s n X 2?2 g—x2 s _ s n Ci l{x#o}euzsz/z’

2r 32w T V2n s

where C| = supy>0(yze’y2/4/\/27t). Using (5) again and the fact that (x2/s3 — u2s)?
2(x*/s% 4+ u*s?), we obtain

8h
'a (S7-x)

IA

82
mh(s, .X)

IA

2 4.2 3x° xt
(™ +2u"s%)h(s, x) + S—4+2s—6 h(s, x)

,LL2 + 2;1,4s2 Cr 120 1222
< + 2 € ’
V2 s
where Cr = supy>0((3y2 + 2y4)e’y2/4/«/2n). Hence,

N N N
(o5, ZEY) oo, B g 2 T
(o2 o

as as o

Thus,

N : 2N1—1 22N —1
3<S2N1h<s, Zi=1 Y,))‘ < 2N1s“™M n ues=1 O 1) S2N1—leM252/2.
as o N2 N2

We deduce that f is continuously differentiable, and

N1 Ny
r Y LY 9 Ny
7(s) =E<2N152N1—1h(s, 2i=1 z) +S2Nla_h<s’ _Zl=ll))
o Ky

(e

Similarly,

0? My Ny,
(s2N'h(s, Zl;l» =2N;(2N; — 1)52N1_2h(s, Lzt )

9s2 o o

Ni y. 2 Ny
—|—4N1S2Nl_lih(5‘, Zi=l Yl) +S2N1 aa_h(s’ Zi:l Yi )
o o

s 52
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But
pl 2N =2
i=1 Vi 2N (2N — 1)s2M1
’2N1(2N1 — 1)s2N'_2h<S, Dt z)’ - {2N| = 1)s |
o V21
N
‘42N182N1_li(s 2idi Yi)‘ < 4N (2N; — D)sM
’ o B V21

FANI2N = D720 1y, n0p €52,

N
2N 92 (s, i1 Vi - W+ 2pts?
ds2 o - V27

2
sZN] +C 1{N1 >O}S2N1 eu s /2

We deduce that f is twice differentiable on [0, 7] and
Ny N
~ Y 0 Y
f(s) = E(2N1 2Ny — Ds* M=% <s, ZimXi ’) + 4N1s2N1_18—h(s, Zim Xt ’))
o s

o
92 YNy,
gl 2 2” i=1 '
G = )

Hence, fisin C 2[0, t], and we verify that f(0) = 1/4/27 and f'(0) = 0. On the other hand,
the function g can be written in the following form (see [6, Proposition 9.5]):

N N
g(s) = ESZNle_)‘(‘Yz_l)<ms + _Zi=11 Yi>q><ms + P Yi)

o gs o gs

With the same reasoning we can prove that g is in CZ[O, t], and satisfies g(0) = 0 and
g'(0)=1E Y1+ /o + vo/20. This proves the first part of the theorem.
Case2: o =0and E Y1+ < 00. We have

EXx’ R
=y,e P 4+e ™
s Z

n=1

i)

Observe that, for any positive integer n, the function s — E(yps + Y /_, ¥;)™ is absolutely
continuous. So is s > As™] E(yos + Z?:l Y:))T/n!. If we call h, its a.e. derivative then,
for any n > 2,

nn—1

hn(s) = yo

1 +
P[V0S+ZY >0] —— A" 2E<Vos+z )

i=1 i=1

so that, for s € [0, ¢],

nsn—I1 n

—1
+ Tx”t"*z(|y0|t +nEY).

lhn($)] < 10l

Hence, the normal convergence of Y _ ki, on [0, ¢], and, thus, the absolute continuity of E Xj /s
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on [0, ¢]. So, by Proposition 1 and Lemma 2,

EX+ t SLEX;
(sup X, s max th/n)—/o 5 ds ——Z ki/n

0<s<t  Kk=0,.., s n 1 kt/n

t(im B X+t EXf vof !
m — o\ —
2n s=0t 8 t n

1
= —((yo+ +ArEYHt —EX;) + 0(;)

1
= —(yo Ft+aEBYF —EXH ~|—0<;>.

3.2. Case of infinite activity Lévy processes

In the case of Lévy processes with infinite activity, we cannot use (2). So the method used
in Theorem 1 does not work anymore and we must use another approach.

Theorem 2. Let X be an integrable Lévy process with generating triplet (y, o2, v). Then

1. ifo >0,
|
E(M, — M!") = O(ﬁ)’

2. ifo =0,

1
et =) =of 77 ).
3. ifo = Oa”dfmsl lx|v(dx) < oo,

E(M, — M) = 0(@).

To prove result 2 of Theorem 2, we will use the lemma below.

Lemma 4. Let X be an integrable Lévy process with generating triplet (y, 0, v). Then we have
EX =01
whent — 0.

The proof of this lemma is quite standard, and is left to the reader. For more details, see [7].

Proof of Theorem 2. With the notation § = t/n, we have, using Proposition 1,

EXF " E X},
E(M _Mn) :/ M d _ k5
! ! 0 S I; k
E X+ E X
—z/ Sd—z/ s
k—1)s S (k=1)8

EX} EXS EXS EX}
FAGEE SIS INE s S
0 S (k—1)8 S kS
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We respectively denote by u(§) and v(§) the first and second terms on the right-hand side of
the last equality. We easily deduce from Proposition 2 that, if ¢ > 0, u(8) = O(~/8) and, if
o =0and f‘x|<1 [x|v(dx) < oo, u(§) = O(5). We also have

u(d) / EX; EXJ L Exjggd EX;
_— = _— _— - S — s
NG 0 sv/38 NG} 0 /S A/s8 NG

and we easily deduce from Lemma 4 that, if o = 0, u(§) = o(«/g).

We now study v(8). Fors > 0, let X, = X, — as, wherea = E X;. Then, X isa martingale
and, forafixeds > 0, (X; + oes);lo is a submartingale, because x — xT is a convex function.
So, for s € [(k — 1)8, 8], B

EXF =EX,; +as)T < E(Xys +as)™.

Hence,

EX+t EX;
(S S _ k8 d
vo) = Z/k 1)5( s ks ) *

" /kb‘ <E(Xk5 +as)t B + ak8)+) is
k=1)8 s ks

—Zf

1 1
E(Xk(s +akd)T| - — — ) ds
k—1)8 s

ké

" /“ E(Xks + as)T — E(Xis + akd)
+ ds
(k—1)8 s

Using the inequality |x™ — y¥| < |x — y|, we obtain
n n kS
k 1 | (kS — )
v(8) <Y EX (log(—) - —) + / — s
]{X:; ks k—1 k X_: (k—1)8 N
- 1
=ZEX+ <log<1~|——>——> Zf I(x|< 1>ds
kS
= k k—1)8
o 1 k
SZEX](B m—% +Z|Ol|8 klOg m -1
_ZEstk(k +|a|8z<—— )
— ZEXkék(k |a|82

Now, if 0 = 0 and le\<l [x]v(dx) < oo, we know from Proposition 2 that EX,::S < Cké for
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some C > 0, so that
ol S|
§) <Cé P — ) —
V) < C8Y ——lals Y
k=2 k=2
(Cé + la])(1 +log(n — 1))
lo
0( g(n) )
n

completing the proof of statement 3 of the theorem.
For the other cases, let f(s) = E(X]")/4/s, so that

IA

ZEX’“Sk(k fzf( )f(k_n

We know from Proposition 2 that f is bounded on [0, ¢], so the first statement of Theorem 2
now follows from the convergence of the series ) 1/ k32,
In order to prove the second statement (i.e. the case ¢ = 0), we observe that

Zf( )\/_(k—l — 0 asn — oo,

as follows easily from lim;—.o f(s) = O (cf. Lemma 4).

Remark 2. The second result of Theorem 2 is optimal in the following sense: for any ¢ > 0,
there exists a Lévy process X satisfying o = 0, such that

lim n'?**EWM, — M]") = +oo.

n—-+00

More precisely, if X is a stable process of order ¢, with @ € (1, 2), we have
1
: 1/a _ ny _ _ 1/« _ +
nlgrgon EM;, — M) =—t §<1 a)EXl .

The proof can be found in [7].

We extend the results obtained in the previous section for the case of compound Poisson
processes to the case of Lévy processes with infinite activity and finite variation.

Theorem 3. Let X be an integrable Lévy process with generating triplet (y, 0, v). Suppose
that |, _, |x||log(|x])|v(dx) < oo and v(R) = +o00. Then

lx|=<
E(M; — M]') = (()/J—i—f x+v(dx))t —EXf)i +0<l>.
R 2n n

Lemma 5. If X is a finite variation Lévy process with infinite activity and yy # 0, then

t 1
1
/ ds/ du—|P[X, > 0] — P[X,, > 0]] < oo.
0 0 s
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Proof. We first consider the case yg < 0. Recall that, since X has finite variation, we have,
with probability 1, lim;_,¢ X;/t = yp; therefore, P(Ry > 0) = 1, where

Ry =inf{t >0 | X; > 0}

and fot sTTP(X; > 0)ds < oo (see [12, Section 47], especially Theorem 47.2). Set

t 1
1
I :/ dS/ du—|P[Xs > 0] — P[ Xy, > 0]
0 0 s

Note that, since X has infinite activity, we have P[X; = 0] = O for all s > 0 (see [12,
Theorem 27.4]), so that

" t 1 1
15/ —P[stO]der/ ds/ du—P[Xy, > 0]
0 s 0 0 s

tl t 1 1
=/ - P[X, >O]ds+/ ds/ du—-P[X;, > 0].
0o s 0 0 s

So, we need to prove that fot ds fol dus ' P[X,, > 0] < co. We have

t 1 1 t K 1
/ ds/ du—P[X,, >0]:/ ds/ du—zP[Xu > 0]
0 0 s 0 0 s
t 1 N
:/ —2</ P[X, >O]du>ds
0o s 0
1/ (¢ ! i
= [——</ P[X, > O]du)] +/ —P[X > 0]ds.
S 0 0 oS

l(/SP[XuzO]du>
N 0

So, again using fot s7IP[X, > 0]ds < oo, we conclude that

t 1
1
f ds/ du—P[ X, > 0] < o0.
0 0 §

Consider now yy > 0. Let X be the dual process of X (e.g. X = —X). Then yOX = —, and
SO )/OX < 0. Thus,

But, for any s > 0,

<.

t 1
1
1 :/ ds/ du—|P[X,; < 0] — P[X,, < 0]]
0 0 s

t 1
1 - -

Z/ dS/ du—|P[X; > 0] — P[X;, > O]

0 0 $
< 00.

Proof of Theorem 3. By Proposition 1 we have
; "EX} "L E X[

E(M, — M") = N ds—Z P

k=1
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Define
+

E X
h(s) = —=,  se[0,1].
N

In order to prove the theorem, we need to show that % is absolutely continuous (cf. Lemma 2).
We will first show that the derivative (in the sense of distributions) of s — E X' is given by
the function

%mxm =y P[X; > 0]+ / E(X; + 0t = XoHvdy),  s€(0,0).
R

We first consider a continuously differentiable function f with bounded derivative. Since X is
a finite variation process, Itd’s formula reduces to

f(Xs) = f(0) + Vofo f(Xp)dt + Z (f (X¢) = f(X:-)),
0<t<s

so that s
E f(Xy) = f(0) + VOE/O f'(X:)dr +E Z (f(X7) = f(X-)).

0<t<s

It follows from the compensation formula (see the preliminaries of [3]) that if

E(/o dr/RU‘(Xr by - f(Xr)Iv(dy)) <o ©)

then

EY (X0 — f(X, ) = E( | ar o+ - f(Xr))v(dy))

0<t<s

Since f is a Lipschitz function and X is integrable, condition (6) is satisfied and we have
N s
B 7060 =70+ mE [ rooar +B( [ ar [0t = rocomian)
0 0 R

- f(0)+E(Vo /0 Fi(Xodr + /O dr A; (F(Xe + ) —f(xa)v(dy)).

Now, for ¢ > 0, define

x  Ae+x?
fex) ==+ ——, x eR.
2 2
Note that f; is continuously differentiable and
P P €R
X) ==+ —, x ,
¢ 2 2Je+4x2

so that || f/|lcc < 1. We can write
\/E N N
E fe(X5) = - +E<V0/ fi(X7)de +/ dr / (fe(Xe +y) — fs(Xr))V(dy))-
0 0 R
Note that the function f, converges uniformly to x — x* when & goes to 0. Also, for any

x #0,

lim f/(x) = 1{x=0)-
e—0
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Moreover, for any T > 0, P[X; # 0] = 1 (because X has infinite activity), and, for any x € R,

X+§fg(x)<f+M \/TE

< 5t
=5 5 <x"+

By dominated convergence, we obtain
N N
E(Xy)" = E(Vo/ 1ix, >0y dt +/ dr /R((Xr +0)7F - (Xr))+V(dy))
0 0

— 10 f P[X. = 0]dr + / dr/ E((X: + )" — (X0)Hu(dy).
0 0 R

Hence, q
e E(X)" =y P[X, > 0]+ /RE((XS + 9T = X)Hvy).

Now, we have

h(s) —/ yTudy)
R

E(X,)*t
= BX)” —f yFv(dy)
s R

1 rS
—/ (Vo P[X, = 0] +/ E((Xu +0)7 — X;)V(d)’)> du — / yv(dy)
s Jo R R

N

— [ px, > 01du + 1// E((X, 4+ )" = X — yDHv(dy) du.
s Jo s Jo JR
But
Xu+ 07" =X =37 = Xu 4+ 9) Lix,+y>0) = Xu 1x, >0 =Y 1y=0)

= X, (Lix,+y>0) — Lix,>0p) + yAix,+y>0) — L{y>0})
= —1Xul Lyx, <0, |yi= 1%y =1V Liyx, <0, yl<IX,)
= —|Xu| A yI{yx, <0}-

So

v [° 1
h(s) —/ y u(dy) = —/ P[X, = 0]du — —/ / E((IXul AlyD Liyx, <o) v(dy) du.
R s Jo s Jo JR
It is now clear that 4 is continuous on (0, 4-00), and that its derivative is given by
h/(s) = uy + vy + wy,

where

U

s
Bprx, > 0] - V—;’/ PIX, > 0]du,
N N 0

Us

1
—;/RE(IXSI A Yy x <o) v(dy),

1 N
ws = — / / E(I Xy Ayl 1iyx, <0p)v(dy) du.
s 0 JR
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We will now show that .
/ |h' (s)|ds < oo.

0
We have ug; = 0 if y9 = 0, and, for 3y # 0, we can write

s
] = @P[xszm—y—g/ P[X, > 0] du
N S 0

1
< @/ IP[Xs = 0] — P[X, = O]] du.
s Jo

13
/ lus|ds < oo.
0

Besides, using the concavity of the function x € Rt — x A |y| and Proposition 2, we obtain

Hence, by Lemma 5,

1
lvsl = = /RE(IXsI A 1yD Liyx, <oy v(dy)

IA

1
_/E(|XX|/\|y|)v(dy)
s Jr

IA

1
—/(EIXsI)/\IyIv(dy)
s Jr

IA

1
—f<cs>A yIvdy),
s Jr

where the positive constant ¢ comes from Proposition 2. Now, let vy = (1/s) fR (cs) A lylv(dy).
Using Fubini’s theorem, we have

r t ds
/ |vs|ds=/v(dy>/ ey Alyl
0 R [
‘y|/C t 1
<ec / f dsv(dy) + / / 1y er) dsv(@y)
R JO R J|y|/c §
ct
=/ IyIV(dy)+/ 10g<—>|)’|1{|y|§ct}v(d)’)
R R [yl

=/ |y|v(dy>+/ log(c—t)|y|v<dy>
R |y|<ct |YI

< Q.

Note that the last integral is finite, owing to the assumption on the Lévy measure. For the term
wy, we have

1 N
lwg| < —2//(Cu) Alylv(dy) du
= Jo JR

< %/AY/(CS)AIyIV(dy)d“
N 0JR
1

_ —/(csm yIvdy)
S JR

= 0.
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t
/ |lws|ds < oo.
0

Therefore, we have proved that & is absolutely continuous. Using Lemma 2 and Proposition 1,
we complete the proof.

We deduce that

4. Extension of the Asmussen—-Glynn-Pitman theorem

The continuity correction results of Broadie et al. [5] for lookback options within the Black—
Scholes model are based on a result due to Asmussen et al. [2] about the weak convergence of
the normalized difference between the continuous and discrete maximums of Brownian motion
(see [2, Theorem 1]). In this section we extend this result to Lévy processes with finite activity
and a nontrivial Brownian component, i.e. a Lévy process with generating triplet (y, o2, v),
where 62 > 0 and v is a finite measure.

The following statement is a reformulation of the Asmussen—Glynn—Pitman theorem. It can
be deduced from a careful reading of the proof of Theorem 1 of [2] (see, in particular, pages
879-883 and Remark 2).

Theorem 4. Consider four real numbers a, b, x, and y, withQ < a < b. Let B = (Br)a<t<b be
a Brownian bridge from x to y over the time interval [a, b] (so that B, = x and By = y), and
let t be a fixed positive number. Denote by M the supremum of 8 and, for any positive integer
n, by M" the discrete supremum associated with a mesh of size t /n, so that

M= sup B; and M" = sup Bii/n,
kel,

a<t<b

where
kt
I, = keN —e[a,b] .
n

Then, as n goes to 0o, the pair (/n(M — M"), B) converges in distribution to the pair
(VtW, B), where W is independent of B and can be written as

W = min R(U + ). (7)
JEZL

Here (Ié(t)),eR is a two-sided three-dimensional Bessel process (i.e. Ié(t) = Ri(t) fort = 0
and R(t) = Ry(—1) fort < 0, where Ry and R> are independent copies of the usual three-
dimensional Bessel process, starting from 0), and U is uniformly distributed on [0, 1] and
independent of R.

We can now state and prove the main result of this section.

Theorem 5. Let X = (X;);>0 be a finite activity Lévy process with generating triplet (y, o2, v)
satisfying o2 > 0. For a fixed positive real number t, consider the continuous supremum of
X over [0, t] and, for any positive integer n, the discrete supremum associated with a mesh of
size t/n, that is,
M; = sup Xy and M = sup Xii/n.
0<s<t k=0,1,...,n

Then, as n goes to 0o, the pair (/n(M; — M"), X0 = (Xs)o<s<t) converges in distribution
10 the pair (o /tW, XD), where W is independent of X and given by (7).
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Note that, in the above statement, X *) is viewed as a random variable with values in the space
of cadlag functions defined on the interval [0, ¢], which can be endowed with the Skorokhod
topology.

Remark 3. Theorem 5 might be true in the infinite activity case, as long as the Lévy process has
a Brownian part (i.e. o> 0). However, our method, based on conditioning with respect to the
jump times, cannot be easily extended to this setting. Such an extension would probably require
an analogue for Lévy processes of the representation of Brownian motion and its maximum in
terms of Bessel processes.

Proof of Theorem 5. We will prove that, for any bounded and continuous function f and
any bounded random variable Z which is measurable with respect to the o-algebra generated
by the random variables X, 0 < s < ¢, we have

Jim E(f(Wn(M; — M[")Z) = B(f (0 /1W))E(Z). ®)

Since X is a finite activity process, it admits the representation

Ny
Xs=yos+oBs+ ) ¥;,  s=0,
j=1

where B is a standard Brownian motion, N is a Poisson process with intensity A = v(R), and
the random variables Y; are i.i.d. with distribution v/v(R). Note that B, N, and the Y;s are
independent.

By conditioning with respect to N; we have

E(f(Vn(M; — M))Z) = Z E(f(V/n(M; — M!'))Z | Ny = m)P[N; = m].
m=0

Note that, conditionally on {N; = 0, X; = y}, the process X @ /o is a Brownian bridge from
0 to y/o so that, using Theorem 4,

nEIfOOE(f(«/ﬁ(Mz — M!"))Z | Ny =0) =E(f(ovtW)E(Z | N; = 0).

For the conditional expectation given {N; = m}, m > 1, we condition further with respect to
the jump times, to the values of X, and to the values of the left-hand limits at the jump times.
Denote by T, T3, ..., T}, ... the jump times of the Poisson process N. For any numbers
O<ti<tr < - <ty <E,XIyeeuyXmy Vs Yms> Ym+1, lEt

Amz{N[:msTi:thXTlf:xisXTl'zyivizlv-"sms thym+1}'
We observe that, conditionally on A,,, the random processes °, ..., ™ defined by
1 .
— X ifs €[tj, tjr1),
pu VALY

1
—X, -

o i+l ifs =t
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with 1o = 0 and #,,41 = ¢, are independent Brownian bridges over the intervals [¢;,7;11].
Introduce the random variables

Mi= sup B, M"=swpp,.

<<t
fj=8=tj kel

where I,{ ={keN|t; <kt/n <tj;1}. Conditionally on A, the random variables M J are
independent and each of them admits a density. Therefore, with probability 1, one of them has
to be strictly larger than the others. For j =0, ..., m, set

={M/ > M fori # j}.
Conditionally on A,,, we have
m )
FWnM; = MP)Z =1, f(n@M! = MI)GBO ..., B")
j=0

for some bounded Borel functions G ; defined on the space ]_[m_o C([zj, tj+1]). Now, on the set
AJ we have, for large enough n, M, i = o M/". This follows from the fact that the maximum
of B/ is attained at an interior point of the interval (¢, t;+1) and the fact that, for large enough
n, some elements of I, are arbitrarily close to this point. Therefore, for large enough 7, we

have
m .
WMy =MNZ =3 1, floenNGi(B°, ..., B™),
Jj=0
with 8,{ =/nM/ —M ,] ™). We deduce from Theorem 4 and the independence of the Brownian
bridges that

Jim B(f (Vn(M; — M) Z | Ap) = anggo B(ly; f@enGi(B ... B") | Am)

= ZE(f(ofW))E(IA, Gi(8% ..., 8™ | Aw)

= E(f(af tW)E(Z | Ap).
Hence, forall m > 1,
lim E(f (Vn(M, — M{)Z | Ny = m) = E(f(ovtW)E(Z | N, = m),

so that (8) follows easily.

In order to use the convergence in distribution above, we sometimes need to switch between
the limit and expected values. For that purpose, the following result of uniform integrability
will be useful.

Lemma 6. Let X be a finite activity Lévy process with generating triplet (y, 0%, v), satisfying
o > 0. Fixt > 0, and set e, = M; — M]'. Then the sequence (\/ﬁsne_M’)nzl is uniformly
integrable. If, in addition, EeM: < oo for some q > 2 then the sequence (\/ne,eM), =1 is
uniformly integrable.
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Proof. We will prove that (y/ne,e™"),= is uniformly integrable. The other case can be
easily deduced. We will use the same notation as in the proof of Theorem 5. Note that, on the
set {N; = 0}, we have X; = y9s + 0B for 0 < s < t, so the uniform integrability of the
sequence (/n&, eM: 1{n,=0})n>1 follows from Lemma 6 of [2]. On the event {N; > 1}, we will

need to rule out the case when there is no jump between two mesh points. So, we introduce the

event
1t t
A, = {Nt > 1 and there exists a j € {1, ..., N;} such that Ti—Tj-1 < —}U{t—TNt < —}.
n n
Note that
t i EN,(N, + 1)
P[A4] < P[r — Ty, < r—l} FEY g1y sen) S
j=1

where we have used the inequalities P[t — Ty, < t/n | Ny =] <Il/nand P[T; — T, <
t/n| Ny =1] <1/n(cf.[7, Proposition 5.5]). Therefore, we have, using ¢, < M; and Holder’s
inequality,

E(Vne,e™ 15,) < V/n(@ M7 ePM)VP(P(A,))' 1P

for every p > 1. Since Ee?™ < oo for some ¢ > 2, we can choose p > 2. Hence,
lim E(J/nee™ 1,,) =0.
n—o00

Now, we want to prove that the sequence (ﬁsner Lin,>1n AS )n>1 1s uniformly integrable.
Fixm > land1,...,t, satisfying0 < #; < --- < f, < t. Conditionally on {N, = m,
Ty =t,..., Ty =t} N A5, we have, with probability 1,

m

En = Z(Mj — Mtn) l{Mj>maX,'7/;_,' Mi}s
Jj=0

where M/ = SUPy; <5 <1y X, to = 0, and t,,41 = t. Moreover, owing to the definition of A,
each subinterval [7;, ;1 1) contains at least one mesh point. Define
. kt
kj =minyk € {0, 1,...,n} Py >t

kt
lj=max{ke{0,1,...,n} ‘ —§tj+1},
n

and let s* be a point at which the supremum of X over [#j, tj+1)is attained. If s* e (tj, kjt/n),
we can write '
M/ — M[n = sup (Xs — ijt/n)-
s€(tj,kjt/n)

If s* € (Ijt/n, tj11), we have

M) — M;n =< sup (X5 — let/n).

‘YE(Z_/t/n,l‘j_'_])

Hence,
j n
M — My <6pj+énj+nnjs
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where
(Sn,j = sup (X5 — ijt/n)a Nn,j = sup (X5 — let/n)»
SE([j,kj[/n) SE(ljt/l’l,[j+1)
and
En,j = sup Xy — max Xp/n.
kjt/n<s<ljt/n kj<k<l;
Observe that
kjl‘
sn,j = sup Yos + 0By — | Yo— +aBkjt/n
s€(tj,kjt/n) n
t
<lwl=+0o sup |Bs— Byl 9
n se(tj.k;t/n)
Similarly,
t
Nn,j < |V0|; +o0  sup  [Bs— Byl (10)

SE(ljt/n,tj+1)

Note that [t; — k;t/n| < t/nand tj1 — [;t/n < t/n. Therefore, we easily deduce from (9)
and (10) that the conditional expectations of any power of \/n8,, j and \/nn,,j, respectively,
are bounded by a constant which is independent of the conditioning. We also have
J J
En,j = sup Bs — max B,
" 0zs=mkpifn - Oskslj—k; K

where ﬂf = s + U(BSJF/C_,.,/,, — Bka/n)- Using Lemma 6 of [2], we see that the conditional
expectation of any power of \/n¢, j is bounded by a constant which is independent of the
conditioning. We conclude from this discussion that, for any p > 1,

E((Vnen 1acnv,=1)? | Ny < C,N/,

where C, is a deterministic constant which depends only on p, yo, o, and ¢. The uniform
integrability of \/ne,eM: follows easily.

5. Continuity correction

In this section we extend the results of Broadie et al. [5] on lookback and hindsight options
to the jump diffusion model. Let (S;);c[0,7] be the price of a security modeled as a stochastic
process on a filtered probability space (2, ¥, (F1)¢(0,7], P). The o-algebra F; represents the
historical information on the price until time 7. Under the exponential Lévy model, the process
S behaves as the exponential of a Lévy process

S, = SpeXt,

where X is a Lévy process with generating triplet (y, 0%, v). The considered probability
is a risk-neutral probability, under which the process (e_(’_‘”’S,),E[(),ﬂ is a martingale. The
parameter r is the risk-free interest rate, and § is the dividend rate. The options we will consider
in the sequel will have as underlying the asset with price S. We will denote by K the strike
price of the option (in the case of hindsight options). Table 1 gives the payoffs of lookback and
hindsight options. The corresponding prices are the expected values of the discounted payoffs.
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TaBLE 1: The payoffs of lookback and hindsight options.

Option Continuous Discrete
Lookback call St — Spe'T St — Soeml}
Lookback put SoeMr — S SoeM¥ - Sr

Hindsight call ~ (SoeM” — K)*  (SpeMT — K)*
Hindsight put (K — Soe”7)t (K — Spe™1)*t

The random variables m 7 and m’} in Table 1 satisfy

mr = inf X; mh = min X
T 0<s<T S T O<k<n kAt

where At = T/n. The results we are going to show depend on the assumptions made on the
process X. That is why we need to introduce the following assumptions.

(H1) X is an integrable Lévy process with finite activity, satisfying o > 0, and there exists
g > 2 such that Ee?MT < co. Recall that the condition Ee?MT < oo is equivalent to
Jio1 e v(dx) < oo.

(H2) X is an integrable Lévy process with finite activity, satisfying o > 0.

Let W be the random variable defined in Theorem 4. We set 8y = EW = —¢(1/2)/+/27,
where ¢ is the Riemann zeta function.
Ata given time ¢ € [0, T), the value of the continuous lookback put is given by

V(sy) = e—r(T—t) Emax(S+, max Su) — Ste—a(T—T)’

t<u<T
where S = maxo<,<; Sy is the predetermined maximum. The continuous value of the
lookback call will depend similarly on S_ = ming<,<; S, (the predetermined minimum) and

on min;<, <7 Sy,. The price of the discrete lookback put at the kth fixing date is given by

Vu(Sy) = e ARl Emax<S+, max SjAt> — Spae A

k<j<n

where S, = maxo<j<k Sja;. The discrete call value will depend similarly on S_ =
ming<;<k Sja; and on ming<j<u Sjas-

Proposition 3. The price of a discrete lookback option at the kth fixing date and the price of
the continuous lookback option at k At satisfy

V,(Sy) = eTB1oVT/n V(Sie:tﬁ‘oVT/") + (e:FﬁlavT/ﬂ _ 1)6—5(T—Z)St + 0(%)’
n

and

V(Si) — eiﬂ]UQ/T/n Vn(Sie;ﬁIUQ/T/n) Zl': (eiﬂldz\/T/n _ l)e—S(T—I)St + 0<\/_L>’
n

where the upper and lower signs in ‘+£’and F’respectively apply to puts and calls. The relations
for the put are true under (H1), and those for the call are true under (H2).
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These formulae are the same as those found by Broadie ef al. [5] for the Black—Scholes
model.

Remark 4. If the process X is an integrable Lévy process with generating triplet (y, 0, v),
satisfying v(R) < oo, then the price of a discrete lookback option and its continuous version
at time kAt satisfy,

1. for the call,
o 1
Va(S2) =V(S-)+ -+ 0(—>,
n n
where the constant o can be derived explicitly,

2. for the put, if there exists 8 > 1 such that EefM7 < oo then

1
Va(S4) = V(S4) + 0(11(/3_—1)//3)

The proof of these results can be found in [7].

Proof of Proposition 3. Since we have Theorem 5 and Lemma 6, the proof of the above
proposition is similar to the proof of Theorem 3 of [5]. For example, to relate discrete lookback
puts with respect to continuous lookback puts, we need to prove that, for x € R,

BeM —x)t = e PoVTTE@EMr — efioVTTigt 4 0(%>
n

In fact, we have to show first that
EE —x)t =B —eM) 1y +EEMT —x)*

+EEM —x)1

n .
{eMT <x<eMr}

So
EE —x)* =E@EM —x)" —EEM — M) 1y,
Mn
—E("T —x) 1{eM¥§x<eMT}'
But

M Mll
<EE"T —e"1)1
{eM% <x<eMry — ( ) {eM;§x<eMT}

<EM7 — M%)eMT 1\

{e"'T <x<eMr}’

EleMr — x|1

Moreover, the sequence

My = MPEM iy Iz

e T<x<e

is uniformly integrable (by Lemma 6). So

lim E/n(Mr — M}3)eMT 1 =0.
n—+00

{e"'T <x<eMT}

On the other hand, using Theorem 5, (ﬁ(eMT — eM;) f(M7))>0 converges weakly to
o TWeMT f(M7) for any measurable function f. So, using Lemma 6 again, we have

n T 1
M M M
EE”T —e T)l{eMT>x}=O'ﬂ1,/;Ee TI{CMT>X}+0(_ﬁ>'
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Thus,
n T
E@"r —x)T = E(M —x)T - o1y o Eelr Lewr .y +0<

_ e—dﬁlmE(eMT — xeoﬁlm) l{eMT >x} +0<

)

)

S

— e—aﬁ“/T/n E(eMT _ xeoﬂl./T/n) 1

{x<eMT <xe?P1v T/"}

+ e~ oBIVT/n E(eMT _ xeﬁﬁl\/T/”)‘f' + O(L .
Jn

But, we can show that

1
Mr _ eoB1vVT/ =o —
B = xeYII Ly, oty < oo 170y = O(ﬁ >

E@eM — x)t = e oPVT/mE@EMr — xeoPVT/my+ | 0<L :
NG

Hence,

The other cases can be derived in the same way. Detailed proofs are given in [7].
For hindsight options, we have similar results as for the lookback case. The price of a
continuous hindsight call option at time 7 with a predetermined maximum S and strike K is
—r(T—t) +
V(S K)=e E(max(S+, max Su) _ K) .
t<u<T
Similarly, for the put, we have

+
V(S_,K) = e’r(T”)E(K —min(s_, min Su)) .

t<u<T

The discrete versions at the kth fixing date are
+
Va(Sy, K) = g~ At(n—k) E(max<S+, max SjAt> — K)
k<j<n

and N
V,(S_. K) = e_’A’("_k)E<K — min(s,, min S,-A,)) .

k<j<n
Proposition 4. The prices of a discrete hindsight option at the kth fixing date and its continuous
version at k At satisfy

Vn(S:t’ K) — e$ﬂ1cn/T/nV(S:te:tﬁla«/T/n’ KeiﬂIU«/T/") —‘1-0(%)
n

and

)

V(Se. K) = ePIoVTTy, (5, FROVTTH goFhoVTTm) 4 0(%)
n

where the upper and lower signs in ‘£’ and Frespectively apply to calls and puts. The relations
for the call are true under (HI), and those for the put are true under (H2).

To explain the above proposition, we can say that, in order to price a continuous or discrete
hindsight option respectively using a discrete or continuous hindsight option, we must shift
the predetermined extremum and the strike. Proposition 4 can be deduced from Proposition 3,
thanks to the relations between lookback and hindsight options.
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6. Upper bounds

In the infinite activity case and if there is no Brownian part, the prices of the discrete
and continuous calls are close to each other. The following proposition is a consequence of
Theorem 2 and Theorem 3.

Proposition 5. Suppose that X is an integrable infinite activity Lévy process with generating
triplet (y, 0, v). Then the prices of a discrete call option at the kth fixing date and its continuous
version at kAt satisfy the following assertions.

1. We have

1
Va(S-) =V (S-) + o(ﬁ)

2. 0f fi< xIv(dx) < o0,

V,(S_) = V(S_)+ 0(10‘5;(”)).

3. Iff\xlsl |x| log(Jx|)v(dx) < oo,

1
Va(S2) =V (S-)+ O (Z) .
In the put case, the error between continuous and discrete prices depends on the integrability
of the exponential of the supremum of the Lévy process driving the underlying asset.

Theorem 6. Suppose that X is an infinite activity Lévy process with generating triplet (y, 0, v)
and that there exists p > 1 such that EePMT < co. Then the price of a discrete put option at
the kth fixing date and its continuous version at k At satisfy the following assertions.

1. For any ¢ > 0, we have

1
Va(S4) = V(S4) + O(W)
2. ]ff\x|51 |x|v(dx) < oo, for any ¢ > 0, we have

IOg(I’Z) (B—1)/B—¢
" .

Va(S4) = V(S4) + 0<<

3. Iff\x|51 |x]log(|]x)v(dx) < oo, for any ¢ > 0, we have

n(ﬁl)/ﬂe)’

The main technical difficulty with the proof of Theorem 6 consists of deducing an estimate
of E(eMr — eM¥) from an estimate of E(M7 — M7.). In fact, the theorem can be deduced from
the following lemma.

Va(S4) = V(S4) + 0(

Lemma 7. Assume that X is an infinite activity Lévy process with generating triplet (y, 0, v)
and that there exists B > 1 such that EePMT < oco. Then, for any ¢ > 0, there exists a constant
C, such that

B — &) < Co(B(Myr — Mp))P0/P,
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Proof. By the convexity of the exponential function we have
eMr —eMr < (My — M)eMT.
So, by Holder’s inequality,
E(eMr — eM;) < (EePMHYYBEM — M?)ﬁ/(ﬁ—l))(ﬂ—l)/ﬂ_
Note that Ee#M7 < oo implies that E M7. < oo for any ¢ > 0. Let p € (0, 1). Then we have
E(My — M?)ﬂ/(ﬂfl) =EMr — M?)p(MT _ M%ﬂ/(ﬂ*l)*p

= E(M7y — M) (M7 — M;{)(ﬁ(l—ﬂ))-i-p)/(ﬁ—l)
< (E(Mp — M?))p(E(MT _ M?)(ﬂ(l—p)ﬁ-p)/(ﬂ—1)(1—0))1—0.

Hence, from the fact that

lim E(Mr — M?)(ﬂ(l—l))-i-ﬁ))/(ﬂ—l)(l—ﬂ) =0,
n—-+00

there exists a constant C > 0 such that

E(eMr —eMr) < C(EWM7r — M;»ﬂ(ﬁ*l)/ﬂ
=CEWMr — M%))(ﬁ—l)/ﬁ—(l—p)(ﬁ—l)/ﬁ_

Then, for any ¢ > 0, there exists a constant C; > 0 such that
E(eMr —eMr) < C.(B(Mr — M) P=D/B~*,

When the Lévy process driving the underlying asset has no positive jumps, we obtain tighter
estimates.

Proposition 6. Let X be a Lévy process with generating triplet (v, o2, v). We assume that
X has no positive jump (v(0, +00) = 0), that f—l<x<0 |x|v(dx) < oo, and that there exists

B > 1 such that EePMT < oo. Then, the price of a discrete put lookback at the kth fixing date
and its continuous version at time kAt satisfy the following assertions.

1. Ifo =0,
Va(Sy) =V (S4) + 0(%)

2. Ifo >0,

wwg:v69+0C%W>

Jn
Proposition 6 is based on the estimation of the moments of M7 — M?, which can be
performed when there are no positive jumps.

Lemma 8. Let X be a Lévy process with generating triplet (y, o2, v), satisfying

/ |x|v(dx) < oo.
[x[=1
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We suppose that X has no positive jumps. Then, for any 8 > 1,
1. ifo =0,
1
— MM = —
EM7r — Mp)F = 0<nﬂ>,

.\ log(n) \
son - ~of (52}

Mr — Mjp = sup Xy — max Xir/n

2. ifo >0,

Proof. We have

0<s<T O<k=n

= max sup X5 — max Xir/n
I<k=n (k—1)T /n<s<kT/n O<k=n

< max sup Xy — max X(k—l)T/n
I<k<n (k—1)T /n<s<kT/n I<k=n

< max su X — Xu— ),

= 1<k<n< P s (k—=1)T/n

(k=1)T/n<s<kT/n

where the random variables (Sup_iyr/n<s<k7/n Xs — Xk—1)T/n)1<k<n are iid., with the
same distribution as supy ;<7 /n X,. But, since X has no positive jumps, we have (see (4))

T
sup X < sup (ys+o0Bs) < 70l +o0 sup Bs.
0<s<T/n 0<s<T/n n 0<s<T/n

We can easily deduce the first result of the lemma (o = 0). In the case o > 0, we have

L (1nlT
sup X < < +o+/n sup By
0<s<T/n ’ «/_ NG 0<s<T/n

(nIT +ova sup B)

0<s<T/n

ST

[volT +0 sup By

\/_ ( 0<s<T )

Let (Vk)1<k<n be i.i.d. random variables with the same distribution as |yp|T + o Supg<s<7 Bs-
Then we have

1\
—_ MmMB _
EMr — Mp)P < («/ﬁ ) E 1211?21 V
Let g be the function defined as
gx) = (og(x))’,  x>1.
The function g is concave and nondecreasing on the set [ef~1, +00). So we have

E sup VkﬂzE sup g(e"%)

1<k<n 1<k<n

=E g( sup ek ) (because g is nondecreasing)

1<k=<n
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<E g( sup eM* (VP *1)> (because g is nondecreasing)
1<k<n

§g(E sup ema"(v"’ﬂ_l)) (by Jensen)

1<k<n
n
<g (E Z emax (Vi B ”) (because g is nondecreasing)
k=1

< g(n Eemax(Vl,ﬂ—l)).

max(Vy, 8

Note that we have E e —D < 0. Hence, the second result of the lemma.

Proof of Proposition 6. To prove Proposition 6, we need to show that

1
0(—) ifo =0,
n

log(n)\ .
0(7> ifo > 0.

But, by the convexity of the exponential function, we have

E@EMr — eMr) =

eMr _ My < Mr(pp, — 7).
So, using Holder’s inequality, we obtain
E(eMT _ eM¥) < (EeﬁMT)l/ﬁ(E(MT _ M%{)ﬂ/(ﬂ—l))(ﬁ—l)/ﬁ'
We conclude by Lemma 8.

Results for hindsight options are similar to those for lookback options. This is simply due
to the relations between lookback and hindsight options.
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