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LOCALIZATION, ALGEBRAIC LOOPS AND //-SPACES II 

ALBERT O. SHAR 

In a previous work [6] it was shown t h a t by imposing certain finiteness con­
ditions on a ni lpotent loop certain algebraic results yielded properties abou t 
[X, Y] where X is finite CW and Y is an if-Space. In this sequel we further 
restrict the category of nilpotent loops to a full subcategory called i /- loops 
which still contains all loops of the form [X, Y], We prove t ha t on this category 
there is a unique and universal P-localization if P ^ 0 which corresponds to 
topological localization. We also show tha t if the H-\oop is a group then the 
two concepts of localization agree. 

The first section of this paper is devoted to the definition and basic proper­
ties of HAoops. In the second section we develop the localization construction 
and prove uniqueness. Finally, in the third section we consider the topological 
and group theoretic situations. 

I would like to thank G. Mislin and U. S tammbach for their ideas and 
helpful comments . I would also like to thank A. K. Bousfield for his p rompt 
and helpful communication. 

S e c t i o n 1. A-loops, p r e - 7 7 - l o o p s a n d i 7 - l o o p s . Recall [6] t ha t a (centrally) 
ni lpotent loop G is an h-\oop if for any set of primes Q; TQ(G) — {x Ç G\ xn = e, 
some association, some n £ (Q)\ is a finite normal subloop, called the Ç-torsion 
of G. (By (Q) we mean the multiplicative set generated by Q. If Q is the set of 
all primes we will write T(G) for TQ(G)). 

Definition 1.1. An h-\oop G is a Pre-H-loop if it is residually /^-finite, i.e., there 
exist a collection of epimorphisms { fa: G —•» Ga\ a. £ /} with each Ga a finite 
h-\oop such tha t i) f = YL fa: G —* i l Ga is one to one and ii) if x i s a n element 
of G not in T(G) then for any set of primes, Q, there is an a G / such tha t 
e *fa(x) G TQ(Ga). 

We will call / : G —» YL Ga a defining system for G. 
Note tha t any finite h-\oop is trivially a pre-i7-loop under the ident i ty 

defining system. 

LEMMA 1.2. Let G be a pre-H-loop and let [G$\ /3 Ç I) be the collection of all 

finite h-loop quotients of G. Then g: G —> IT G$ is a defining system for G. 

Proof. L e t / : G —* I~[aç/ Ga be a defining system for G. Then / = (TL pa)g 
where I I pa: IT Gfy—> TL Ga is the product of the projection maps. Since / is 
one to one so is g and proper ty (i) of 1.1 holds. T h a t condition (ii) of 1.1 holds 
is obvious. 
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PROPOSITION 1.3. Let P be a non-empty set of primes and let f: G —>fj Ga 

be a defining system for the pre-H-loop G. Let ga: Ga —> Ga/TP> (Ga) be the quotient 
map. Then Ker (qf ) = TP> (G) where q — I I ga. (P' is the compliment of P.) 

Proof. By ([6], 3.5) TP> (Ga) is a normal subloop of Ga so t ha t Ga/TP> ( Ga) is 
a loop. If P ' , the compliment of P , is empty q is the identi ty and the proposition 
is trivially true. 

If x Ç TV (G) then for each a in I,fa(x) is in TV (Ga) and hence Ker (g/) Z) 
rP-(G). 

Conversely, if x G Ker (g/) then for all a: in I, fa(x) Ç TV(G«). Thus by 
(w) of 1.1 x Ç P(G) since P is not empty. 

Assume x is not in TP>{G). Then by ([6], 2.9) x = x'y with e ^ 3/ £ TP(G) 
for some p £ P and TP(G) is a loop of ^-power order. 

Let (3/) denote the loop generated by 3/. By ([2], 7 2.2) (y) has £-power 
order and the same holds for all the loops fa((y)), a ^ I. But by ([6], 2.3) 
the order of TP>(Ga) is prime to p. Since the order oi fa((y)) must divide 
the order of TP>(Ga) we get tha t f«(j) = e for all a in T so tha t / ( ;y ) = e. But 
this contradicts the fact t h a t / is one to one. 

Definition 1.4. Let G be a loop, N a subloop and Q a set of primes. Define 
the Q-isolator of Nin G, SQ(N} G) to be the set {x G G\ xm G N for some associ­
ation, some m £ Q}. 

While if G is a nilpotent group the Q-isolator is a subgroup ([7], 3.25) the 
same is not true for nilpotent loops. 

Definition 1.5. Let G be a pre-TJ-loop. Then G is an TT-loop if there exists 
a defining system / : G —•> 11 Ga such tha t (i) if g$: G —» G/3 is epic with G/3 a 
finite M o o p then there exists g: Yl Ga—+G$ such tha t g$ = gf and (ii) for any 
set of primes Q, SQ(qf (G), I l Ga/TQ(Ga)) is a loop. 

Note tha t any finite /r-loop is an TT-loop and tha t while for any pre-TT-loop 
there is always a defining system such tha t (i) holds, it is not clear if (ii) holds. 
We will call a defining system satisfying (i) and (ii) of 1.5 an H-defining 
system. 

Let P be a set of primes. Recall t ha t a loop G is P-local if the mapping defined 
by x —» xn is a bisection for any association, any n G (Pf ) and a homomorphism 
/ : M—* N is a P-equivalence if k e r / Ç TP>(M) (f is P-monic) and for any 
x £ N there is an r G ( P ; ) and an association such tha t xr Ç im / ( / is P-epic). 

LEMMA 1.6. Let G be a pre-H-loop with defining system f: G —» Yl Ga. Let P 
be a set of primes and let S be the subloop of Yl Ga/ TP> (Ga) generated by SP> (qf (G), 
H Ga/Tp' (Ga)). Then S is the P-local subloop of Yl Ga/TP' (Ga) generated by qf (G). 

Proof. By 3.4 of [6] I I Ga/TP> (Ga) is P-local and hence the mapping x —•> xn 

for n (z {P') is one to one on S. Fur the r \î x ^ S and yn = x, n G ( P r ) then by 
definition y G 5 so tha t x —» xn is onto on S. Thus 5 is P-local. 
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On the other hand any P-local subloop of YlGa/Tp>(Ga) which contains 
gf(G) must also contain SP> (qf(G), YL Ga/TP> (Ga)). The result follows. 

PROPOSITION 1.7. Let G be an H-loop. Then the defining system g: G —* 
ri/3€ J Gp of all finite h-loop quotients is an H-defining system. 

Proof. Trivially 1.5 (i) holds so that we need only demonstrate 1.5 (ii). 
Let / : G —> YY<*ei Ga be an //-defining system and note that I Q J. For any 
P £ J — I le t / : LI Ga —» Gp satisfy (i) of 1.5and define i: Y[<*ti Ga —^TYPZJGCX 
by the product of the projections Pp if fi £ / and by fp if fi Ç J — I. Then the 
following diagram commutes: 

G-
f + YLGa 

« € / 

Y 

•> I I Ga/TAGa) 

•> II Ge/TP.(G0) 
0£J 

where j is induced by i. 
It is easily seen that i and j are both monic. 
Thus by 1.6j(SP, {qff (G), IT Ga/TP , (Ga)) is aP-local subloop of IT G^/Pp, (G^) 

which contains qg(G). But it is clear that 

n«eiPa(SP-(qg(G), UGI>/TP'(G„))) çSP.(q'f(G), Y\GJTP,{Ga)) 

and that ( YY<*ei P<*)J ls t n e identity on I I Gp/TP> (Gp). Thus 

j(SP.(q'f(G)), UGa/TP.(Ga)) QSPr(qg(G), U G,/Tp,(G,)). 

Once again applying 1.6 yields the required result. 

THEOREM 1.8. Let G be an H-loop and letf: G —>YL Gabe any defining system. 
Then for any set of primes QPSQ(qf (G), I l Ga/TQ(Ga)) is a loop. 

Proof. By 1.7 the defining system of all finite h-\oop quotients, g: G —> I l Gp 
is an ^-defining system and we may factor / = (YL pa)g where pa is the 
product of the projections. The same technique as in 1.7 now yields the result. 

Section 2. Localization of i7-loops. Let G be an iPloop and let 
g: G —> n Gp be the defining system of all finite 77-loop quotients. Let P be a 
set of primes and g: YL Gp —> Gp/TP> (Gp) be the product of the quotient maps. 

Definition 2.1. If P ^ 0 the P-localization of an H-\oop G, L: G^>GP is 
SP>(qg{G),l\Gp/TP,(Gp)). 

Note that by 1.3 ker L = 7>(G), by 1.6 Gv is the P-local subloop of 
Y\.Gp/Tv>(Gp) generated by qg(G) and by definition x £ Gv implies that xn £ 
L(G) for some association, some n £ (P r). Thus we get: 
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THEOREM 2.2. If P is a non-empty set of primes and G is an H-loop then 
P-localization L: G —> GP is a P-equivalence and hence is a P-localization in the 
sense of ([6], 3.1). 

Let G be an U-loop and let/ : G —> I I Ga be any (not necessarily H) defining 
system. Let P ^ 0 and let 

k: G^G' = SP,(gf(G), Y\Ga/TP.(Ga)). 

PROPOSITION 2.3. There is a unique isomorphism k: GP —> G' such that k = kL. 
Thus up to canonical equivalence k: G —> G' is a P-localization. 

Proof. The product of the projections I I pa: I I G$ —>Jj[ Ga as defined in 1.8 
induces a map k: GP —> G' such that k = kL with the uniqueness of k a trivi­
ality of the construction. 

By 1.6 and 1.8 both L and K are P-equivalences. A trivial modification of 
([4], / 1.4) to loops shows that k is a P-equivalence. But both GP and G' are 
P-local loops and by ([4], / 1.5) a P-equivalence between P-local loops is an 
isomorphism. 

THEOREM 2.4. Let f: G —> M be a homomorphism of H-loops and let P ^ 0 be 
a set of primes. Then there is a unique fP: GP —> MP such thatfPLG = LMf. 

Proof. If K is a normal subloop of M of finite index then / - 1 ( i £ ) is normal in 
G of finite index. Thus given a defining system g: M—>Yl<*ei Ma extend 
G —» rX*€/ (£ / / - 1 (ke r go)) to a defining system g: G —> IXse j ^ an<^ define 
/ : I I G,3 —> I I M« to be trivial if fi G / — / and the obvious map if / 

In this manner we get the following commutative diagram: 

/ 
G >M 

€ / . 

UGs 

Ç.G 

•+IlMa 

r 
qM 

TlGp/Tp.iGt) > T\Ma/TP,{Ma) 

Let x G SP>(qGg(G), U Gp/TP>(Gp)) = GP then xn = LG(y) for some y G G, 
n G (P')- Thus 

and this implies tha t / r (x) lies in 

SP>(qMg(M), E[ Ma/TP.(Ma)) = MP . 

Le t /p be the restriction of/7 to GP. Since fP is unique on the image of G it is 
unique on its localization GP. 
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COROLLARY 2.5. (Universality) Let f: G —> H be a homomorphism of H-loops 
with MP-local (P ^ 0) . Then there is a unique/: GP —> M such thatfLG = f. 

i g 
COROLLARY 2.6. Let K >—> G -» N be a short exact sequence of H-loops. Then 

fp £p . 
the sequence KP >-> GP -» NP is short exact. Further if K is central then so is KP. 

Proof. By 2.4 we have the following commuta t ive diagram 

K>-
f 

•> G -> - • N 

LK 

KF 
u 

LG 

+ Gf 
gp 

LN 

> NP 

with the top row short exact. By 2.2 the vertical maps are all P isomorphisms. 

T h e proof now follows by the same arguments as ([4]. I 1.10). 

COROLLARY 2.7. On the category of H-loops the P-localization (P ^ 0) of G 
is characterized by any P-equivalence f : G —> G' where G' is a P-local H-loop. 

Proof. This is jus t a res ta tement of 2.2-2.5 combined with noting tha t GP is 
an iJ-loop. 

By combining the results of this section we get the following: 

T H E O R E M 2.8. On the category of H-loops there exists a P-localization functor 
( P ^ 0) which is universal and exact. Furthermore the localization of an H-loop 
of nilpotency class ^ n is also of class ^ n. 

S e c t i o n 3. Topo log ica l a n d g r o u p t h e o r e t i c c o n s i d e r a t i o n s . 

T H E O R E M 3.1. Let G be a finitely generated nilpotent group. Then G is an 
H-loop and loop localization is equivalent to loop localization. 

Proof. Trivially G is an h-\oop. By combining the results of [5] and [3] we 
get t ha t G is a pre-77-loop. By ([7], 3.25) G is an H-\oop and the localization 
construction of ([7], 8.5) is easily seen to be equivalent to the construction in 
this paper. 

T H E O R E M 3.2. Let X be a finite CW complex and Y be an H-Space with finitely 
generated homotopy groups in each dimension. Then [X, Y] is an H-loop and for 
every set of primes, P ^ 0, [X, YP] ^ [X, Y]P. 

Proof. T h a t [X, Y] is an A-loop was shown in ([6], 4.1). By ([1], VI 8.1) the 
map [X, Y] - * n ^ lx> (z/P)œY) is an injection where (Z/p)mY is the Z/p 
completion of Y. Fur thermore ([1], 4.3) (Z/p)œY = lim (Z/p), Y and all the 
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homotopy groups of (Z/p)s Y are finite when s is finite. Thus [Xy Y] includes 
into l\P f[s [X, (Z/p)s Y] with all the sets [X, (Z/p)s Y] finite. 

But a trivial modification of ([1], / 7.3) shows that all the (Z/p)s F'are 
i7-spaces with compatible structures so that [X, Y] is residually finite. That 
[X, F] is a pre-77-loop follows from ([1], VI 8.1). 

Property (ii) of 1.5 follows from ([4], 6.2). To prove that [X, F] satisfies (i) 
of 1.5 let K be normal in [X, Y] of finite index. Since [X, Y] —> lim (X, 
Y[p (Z/p)sY] is an inclusion there must exist an 5 such that ker [X, F] —» 
[X} I I (Z/p)sY] is contained in K which is equivalent to 1.5 (i). That 
[X, YP] ^ [X, Y]P follows from the fact that [X, YP] is P-local and [X, Y] -> 
[X, YP] is a P isomorphism. 
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