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ALBERT O. SHAR

In a previous work [6] it was shown that by imposing certain finiteness con-
ditions on a nilpotent loop certain algebraic results yielded properties about
(X, V] where X is finite CW and Y is an H-Space. In this sequel we further
restrict the category of nilpotent loops to a full subcategory called H-loops
which still contains all loops of the form [X, V]. We prove that on this category
there is a unique and universal P-localization if P # @ which corresponds to
topological localization. We also show that if the H-loop is a group then the
two concepts of localization agree.

The first section of this paper is devoted to the definition and basic proper-
ties of H-loops. In the second section we develop the localization construction
and prove uniqueness. Finally, in the third section we consider the topological
and group theoretic situations.

I would like to thank G. Mislin and U. Stammbach for their ideas and
helpful comments. I would also like to thank A. K. Bousfield for his prompt
and helpful communication.

Section 1. -1oops, pre-H-loops and H-loops. Recall [6] that a (centrally)
nilpotent loop G is an k-loop if for any set of primes Q; T, (G) = {x € G| ™ = ¢,
some association, some n € (Q)} is a finite normal subloop, called the Q-torsion
of G. (By {Q) we mean the multiplicative set generated by Q. If Q is the set of
all primes we will write 7°(G) for 17°4(G)).

Definition 1.1. An h-loop G is a Pre-I-loop if it is residually k-finite, i.e., there
exist a collection of epimorphisms { fo: G — G.| « € I} with each G, a finite
h-loop such that 7) f = 11 f,: G—1I G, is one to one and i) if xisan element
of G not in T'(G) then for any set of primes, Q, there is an @ € [ such that
e # fo(x) € To(Ga).

We will call f: G — 11 G, a defining system for G.

Note that any finite k-loop is trivially a pre-H-loop under the identity
defining system.

LemMA 1.2, Let G be a pre-H-loop and let {Gg| B € I} be the collection of all
finite h-loop quotients of G. Then g: G — 11 Gs is a defining system for G.

Proof. Let f: G — [Jaes Ga be a defining system for G. Then f = (I pa)g
where I1 p.: I G — 11 G, is the product of the projection maps. Since f is
one to one so is g and property (z) of 1.1 holds. That condition (2z) of 1.1 holds
is obvious.
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ProPOSITION 1.3. Let P be a non-empty set of primes and let f: G —[] Ga
be a defining system for the pre-H-loop G. Let go: Go — Gaof T'p/ (Ga) be the quotient
map. Then Ker (qf ) = Tp (G) where ¢ = 11 go. (P’ is the compliment of P.)

Proof. By ([6], 3.5) Tp (G,) is a normal subloop of G, so that G./T p/ ( Ga) is
aloop. If P’, the compliment of P, isempty ¢ is the identity and the proposition
is trivially true.

If x € Tp (G) then for each ain I, fo(x) is in T (G,) and hence Ker (¢f) 2
Tp (G).

Conversely, if x € Ker (¢f) then for all « in I, fo(x) € Tp (Ga). Thus by
(i1) of 1.1 x € T(G) since P is not empty.

Assume x is not in 75 (G). Then by ([6], 2.9) x = x’y with e # y € T (G)
for some p € P and T»(G) is a loop of p-power order.

Let (y) denote the loop generated by y. By ([2], VV 2.2) (y) has p-power
order and the same holds for all the loops f.({y)), @ € I. But by ([6], 2.3)
the order of Tp (G,) is prime to p. Since the order of f,({¥)) must divide
the order of 75/ (G,) we get that fo(y) = e for all « in [ so that f(y) = e. But
this contradicts the fact that f is one to one.

Definition 1.4. Let G be a loop, N a subloop and Q a set of primes. Define
the Q-1solator of N in G, So(N, G) to be the set {x € G| x™ € N for some associ-
ation, some m € Qf.

While if G is a nilpotent group the Q-isolator is a subgroup ([7], 3.25) the
same is not true for nilpotent loops.

Definition 1.5. Let G be a pre-H-loop. Then G is an H-loop if there exists
a defining system f: G — I1 G, such that (i) if gs: G — G is epic with Gs a
finite A-loop then there exists : 11 G, — Gs such that gs = gf and (i7) for any
set of primes Q, Sq(¢f (G), Il Go/T4(G.)) is a loop.

Note that any finite k-loop is an H-loop and that while for any pre-H-loop
there is always a defining system such that (z) holds, it is not clear if (72) holds.
We will call a defining system satisfying (¢) and (#7) of 1.5 an H-defining
system.

Let P be a set of primes. Recall that a loop G is P-local if the mapping defined
by x — x"is a bijection for any association, any #» € (P’)and a homomorphism
fi M — N is a P-equivalence if ker f & Tp (M) (f is P-monic) and for any
x € Nthercisanr € (P’)and an association such thatx” € im f (fis P-epic).

Levya 1.6. Let G be a pre-H-loop with defining system f: G — 11 G,. Let P
be a set of primes and let S be the subloop of 11 Go/ T pr (Go) generated by Spr (gf (@),
L1 G./Tp (G.)). Then Sis the P-local subloop of L1 G,/ T p: (G.) generated by qf (G).

Proof. By 8.4 of (6] 11 G./T"» (G.) is P-local and hence the mapping x — x"
forn € (P’')isone toone on S. Further if x € Sand y" = x, n € (P’) then by
definition y € S so that x — x" is onto on .S. Thus .S is P-local.
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On the other hand any P-local subloop of I1 G./T» (G.) which contains
¢f(G) must also contain Sy (¢f(G), II G./7» (G.)). The result follows.

ProrositioN 1.7. Let G be an H-loop. Then the defining system g: G —
[ 1s¢s Gs of all finite h-loop quotients is an H-defining system.

Proof. Trivially 1.5 (¢) holds so that we need only demonstrate 1.5 (72).
Let f: G— Hael G, be an H-defining system and note that I € J. For any
g€ J— Iletf: Il G, — Gj satisfy (i) of 1.5and define 1: Haez Ga -»HBEJGa
by the product of the projections Py if 8 € I and by fzif 8 € J — I. Then the
following diagram commutes:

3 ' )
c—L1— me. > 11Go/ T (Go)
acl ag I
g 1 J
q
[1Gs — 11Gs/ T4 (Gs)
BeJ BeJ

where j is induced by 1.

It is easily seen that ¢ and j are both monic.

Thusby 1.6 j(Sp (¢'f (G), 11 G./Tp (G.)) isa P-local subloop of I1 Gs/ T (Gs)
which contains ¢¢(G). But it is clear that

[Lecr 2(Spr(ag(G), T1 Go/ T (Go))) S Ser(@f(G), T1 Ga/ T (Ga))
and that ([ Jacs pa)jis the identity on I G5/ 75 (Gs). Thus
JSp (@ f(G)), I] Ga/ T (Ga)) S Spr(ge(G), T1 Go/ T, (Ga)).
Once again applying 1.6 yields the required result.

THEOREM 1.8. Let G be an H-loop and let f: G — 11 G, be any defining system.
Then for any set of primes QpSo(qf (G), 11 G./T ¢(G.)) is a loop.
Proof. By 1.7 the defining system of all finite k-loop quotients, g: G — 11 G

is an F-defining system and we may factor f = (Il p.)g where p, is the
product of the projections. The same technique as in 1.7 now yields the result.

Section 2. Localization of H-loops. Let G be an H-loop and let
¢: G — II Gy be the defining system of all finite H-loop quotients. Let P be a
set of primes and g: 11 Gs — Gs/T 5 (Gs) be the product of the quotient maps.

Definition 2.1. If P # @ the P-localization of an H-loop G, L: G — Gp is
Sp(gg(G), 11 Gs/ T4 (Gy)).

Note that by 1.3 ker L = 1,,(G), by 1.6 G, is the P-local subloop of
[1Gs/ T, (Gs) generated by ¢g(G) and by definition x € G, implies that x" €
L(G) for some association, some n € (P’). Thus we get:
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THEOREM 2.2. If P is a non-empty set of primes and G is an H-loop then
P-localization L: G — Gp is a P-equivalence and hence is a P-localization in the
sense of ([6], 3.1).

Let G be an H-loop and let f: G — 11 G, be any (not necessarily H) defining
system. Let P = @ and let

k:G— G = Spqf(G), [] G/ Tr (G)).

PrOPOSITION 2.3. There is a unique isomorphism k: Gp — G’ such that k = kL.
Thus up to canonical equivalence k: G — G’ is a P-localization.

Proof. The product of the projections I p,: I1 Gy =[] G. as defined in 1.8
induces a map k: Gp — G’ such that £ = EL with the uniqueness of % a trivi-
ality of the construction.

By 1.6 and 1.8 both L and K are P-equivalences. A trivial modification of
([4], I 1.4) to loops shows that % is a P-equivalence. But both Gp and G’ are
P-local loops and by ([4], I 1.5) a P-equivalence between P-local loops is an
isomorphism.

THEOREM 2.4. Let f: G — M be a homomorphism of H-loops and let P %= @ be
a set of primes. Then there is a unique fp: Gp — Mp suchthat fpl.¢ = Ly f.

Proof. 1f K is a normal subloop of M of finite index then f ~!(K) is normal in
G of finite index. Thus given a defining system g: M — [[ae; M. extend
G = [lacr (G/f ~'(ker g.)) to a defining system g: G — [[sc, Gs and define
F: I Gs — I1 M., to be trivial if 8 € J — I and the obvious map if 8 € 1.

In this manner we get the following commutative diagram:

/

G—m—mmM

4 g

Y N Y

11G, ;» 11,

da qm
N ! Y

LG/ Tp (Gg) —> TIMo/T e (M)

Let x € Sp(g68(G), 11 Gs/Tp (Gs)) = Gp then x* = Lg(y) for some y € G,
n € (P’). Thus

(S @) = f1&") = qug f(y)

and this implies that f’(x) lies in
Spr(grg (M), H Mo/Tp (M) = Mp.

Let fp be the restriction of f’ to Gp. Since fp is unique on the image of G it is
unique on its localization Gp.
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Cororrary 2.5. (Universality) Let f: G — H be a homomorphism of H-loops
with M P-local (P 5 ). Then there is a unique f: Gp — M such that f Lo = f.

g
COROLLARY 2.6. Let K >> G —» N be a short exact sequence of H-loops. Then

P gp . . . .
the sequence Kp>—> Gp - Np is short exact. Further if K is central then so s Kp.

Proof. By 2.4 we have the following commutative diagram

f a
K)——‘—*G—é—»-»N

LK L G LAV

fr 142
KI’ > Gp - Np

with the top row short exact. By 2.2 the vertical maps are all P isomorphisms.
The proof now follows by the same arguments as ([4]. I 1.10).

COROLLARY 2.7. On the category of H-loops the P-localization (P # @) of G
1s characterized by any P-equivalence f: G — G’ where G’ is a P-local H-loop.

Proof. This is just a restatement of 2.2-2.5 combined with noting that Gp is
an H-loop.

By combining the results of this section we get the following:

TurorEM 2.8. On the category of H-loops there exists a P-localization functor
(P # 0) which is universal and exact. Furthermore the localization of an H-loop
of milpotency cluss < n is also of class < n. '

Section 3. Topological and group theoretic considerations.

TurorREM 3.1. Let G be a finitely generated nilpotent group. Then G is an
H-loop and loop localization is equivalent to loop localization.

Proof. Trivially G is an k-loop. By combining the results of [5] and [3] we
get that G is a pre-H-loop. By ([7], 3.25) G is an H-loop and the localization
construction of ([7], 8.5) is easily seen to be equivalent to the construction in
this paper.

THuroreM 3.2. Let X be a finite CW complex and Y be an H-Space with finitely
generated homotopy groups in each dimension. Then [ X, V] is an H-loop and for
every set of primes, P # 0, | X, YVp] = [X, V]p.

Proof. That [ X, Y] is an h-loop was shown in ([6], 4.1). By ({1], V'] 8.1) the
map [X, Y] — [Ir [X, (Z/p). V) is an injection where (Z/p),Y is the Z/p
completion of V. Furthermore ([1], 4.3) (Z/p), Y = l_ml (Z/p),Y and all the
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homotopy groups of (Z/p), V are finite when s is finite. Thus [X, V] includes
into [Ir [], [X, (Z/p), Y] with all the sets [X, (Z/p), V] finite.

But a trivial modification of ([1], I 7.3) shows that all the (Z/p), ¥ are
H-spaces with compatible structures so that [X, V] is residually finite. That
[X, Y] is a pre-H-loop follows from ([1], VI 8.1).

Property (i7) of 1.5 follows from ([4], 6.2). To prove that [X, V] satisfies ()
of 1.5 let K be normal in [X, V] of finite index. Since [X, Y] —>l_i_1_1_1>(X,
[1s (Z/p),Y] is an inclusion there must exist an s such that ker [X, V] —
(x, 11 (Z/p),¥] is contained in K which is equivalent to 1.5 (). That
[X, Vp] = [X, Y]p follows from the fact that [X, Vp]is P-local and [X, V] —
[X, Yp] is a P isomorphism.
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