ON THE NON-COMMUTATIVITY OF PONTRJAGIN
RINGS MOD 3 OF SOME COMPACT
EXCEPTIONAL GROUPS

SHORO ARAKI

Introduction. Pontrjagin rings over the field of rational numbers of com-
pact Lie groups are commutative in the sense of graded algebras (or anti-
commutative in the classical terminology) [14]. Pontrjagin rings over the field
Zy (px0) of several compact simple Lie groups were studied by Borel [5].
The most examples are commutative. However, this is generally not true.

The first example of non-commutative Pontrjagin rings of compact Lie
groups is H.(Spin (10); Z»), [5], [1]. Then it was shown that the Pontrjagin
rings H«(Spin (n); Z;), » =10 and # % 2°+ 1, are non-commutative, [11], [18].
These known examples are all those over Z:.

In this work we prove that the Pontrjagin rings mod 3 of all compact ex-
ceptional groups except G are not commutative.

We denote by Fi, Es, E; and E; the compact, connected and simply-connected
groups among the local structures usually expressed by these notations.

In Chapter I we determine the ring structure of the Pontrjagin ring
H.(F(; Z,). This is shown to be non-commutative. The proof is based on a
theorem of Kudo [12] on one hand, and on the scheme used by Borel [5] to
determine the Pontrjagin ring H,(Spin (10); Z,) on the other hand.

In Chapter II we discuss the homology maps H.(2F:; Z)- H(RE;; Z)
in degrees <10, H.(RQE;; Z) - H (QFE:;; Z) in degrees =10, and H.(QFE:; Z)
-~ H.(QF;; Z) in degrees <14, induced by the inclusions F, C E; C E; C Es.
In the description of these homology maps we use K-cycles due to Bott-
Samelson [10].

In Chapter III we prove that the Pontrjagin rings mod 3 of LEs, AdE;, E:
and Es are non-commutative using the results of Chapters I and II.

The author is thankful to Professor Armand Borel who attracted my

interests in this direction and could give me valuable discussions.
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Chapter I. The Pontrjagin ring H.(Fy; Z;)
§1. Kudo theorem and the comparison theorem of spectral sequences

1. Let {E,, » =0} be the cohomology spectral sequence of Serre [15] over
Zp (p is an odd prime) associated with a fibration. About terminologies and
notations of cohomology spectral sequences we refer to [4], [15]. Kudo theorem

on transgressions [12] is stated as follows:

TueoreM K. Let a € E7* (k> 0) be transgressive. Choose a suitable re-

presentative B< E¥F° of t(a), then
i) af and B+ a®! are transgressive,
i) PiB and —of P EF°, represents t(a?) and ©(B+ a?™') respectively,

where © denotes the transgression
2 . 2 -1 b b+1,
db+1l£br1 . (Irbu) (EZH) g EZI{* ¢

for each (a, b), ﬁ?, a cyclic p-th reduced power and 5, the Bockstein operation

mod p.

2. Let {E,; r=2} and {'E,; =2} be canonical cohomology spectral se-
quences ([4], p. 122) of modules (or of algebras) such that E¢° < E$°Q ES?
and 'Ef" = 'E#°Q'ES? for all (a, ) =0. Let

{hr, r=2} : {Er; r =2} > {'E;; r=2}
be a homomorphism of the spectral sequences such that
PP n’@hy?  for all (a, b) Z0.
The comparison theorem of spectral sequences ([13], p.110) has three state-

ments. Among them the one we use later is the following:

TaeoreM CSS. Let hi'® be isomorphic for all b=0 and h%° be isomorphic
for all (@, b) =0. Then h%° is isomorphic for all a=0.
The conditions and the conclusion of this theorem can be weakened as in

the following:

Tueorem WCSS. Let h$'® be isomorphic for 0<b<n and h’%° be isomorphic
for 0=a+b=<n+1. Then hi'° is isomorphic for 0 <a = n+1.
This theorem is proved in the same way with the proof of the Theorem

CSS so that the proof is omitted.
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§2. Universal cohomology spectral sequence of F; over Z;
1. By [5] we know that
H*(Fy; Zs) = 4:(%, %2, %, %15) @ Zalxs1/(%3)
with the following relations of reduced powers and Bockstein operations
(1) %= Pixs, K= Pixu, Xs=03%,
where suffixes denote degrees.

ProrosiTiON 1.  H*(Fy; Z,) has no system of wuniversally transgressive

generators.

Proof. Assume that H*(Fy; Z:) has a system of universally transgressive
generators: %3, %1, X3, Xu, %15, We may regard the relation (1) as holding for
these generators.

Denoting by r the transgression in the universal spectral sequence of Fy

over Zs;, by the Theorem K we can choose representatives

HHI(BP‘; Za)Byin of T(xi) (i=3, 7, 8, 11, 15)

and

HZS(BF,,; Z>) D ys  of r(yg®x§)
satisfying
(2) Yy = —'53*3’3 and yx = "5;3'2;)’9.

Construct a graded algebra
B = ZsL ¥, 35, ¥iz, Yis, Y61 @ Aol 35)
and a spectral sequence over Z; which starts from

By = @B
with
(E;'o =PB and ’E;}’ * =H=x*(Fy; Zy).

Successive terms of this spectral sequence is defined as follows:

dv=ds=0, 'Er="E;="Ey;
ducixngciyﬁ, d4l£§xi=0 for > 3,
whence 'E; = H(’Eﬂ = Bl®C1 where B1 =B,’Zs|:y1] and C; = H* (F4, Z:;)//Ag(xg)

(/] denotes a symbol to fake away the tensor factor indicated thereafter. For
the strict definition of this symbol as a kind of quotient, cf., J. Milnor and J.
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Moore, “On the structure of Hopf algebras”, to appear) ;
di=ds=di =0, 'By="E='E ='Ey;
dskixr=rKiyi, dskixi=0  for i>7,
whence 'E; = B:® C» where B, = B1/Z;[ 4] and Cs = Cy/A35(%7) ;
dokins=rkiys and dokii =0 for > 8,
whence 'Ei= B;® C:® Ax(xjs) where Bs = Ba/As(93), Ca= Cs/Zs[x:]/(%}) and x}s
= k1( 3 @ %3)
dw=du1=0, 'Enw="Ey="Ep;
dipkla %1 = k912, dizkh%is=0 and dprlxh =0,
whence 'Eis = Bs® C4® A3(k13%5;) where By = By/Z3[y},] and Ci= Cs/As(x11) ;
dis=du=dis=0, 'Ey="Ey="Es="Eq;
diskisxis = k15 yls and  disriexss =0,
whence 'Ey = Z; [kl y261®@ As(k17 %35) ;
A k11 X5 = K11 Yss,
whence 'Es = Z3 (trivial); finally
dr =0 for > 17,
'Eg="Ey=+++="'E, < Z; (trivial).

Denoting by {E,} the universal spectral sequence of F; over Z;, next we

define a homomorphism of spectral sequences
{hr, r=2} : {'Ey, r 22} > {E, r =2}
in the following way:
E;= H*(Br; Zs) @ H*(Fu; Zs)
canonically. Then, %, is defined by
heyi=y; and hoxi= x.

The choices of x:, ¥; and the construction of 'E, allows us the successive defi-
nition of k,; namely %, commutes with d» and induces the homomorphism #s,
hs commutes with d: and induces the homomorphism #%;, and so on.

Now, since &, :'E,XE, and hy* :'Ey*=E}* an identity map, by

Theorem CSS we can conclude that
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(3) b’ : HYBy,; Z;) = B.

In particular y; = 0 and this is the ¢;-image of — .9y, by (2). Since B

contains only one odd degree generator y, and deg .%'y, =25 is odd, we have
(4) - c94,'}’92,’)’96116

with ai < H(BF,; Z). Consider 6Fais=0b. b has odd degree so that b= yc
with ¢ € H*(By,; Z;) by the same reason as above. Then, applying 4 on both

sides of (4) we have
Yo = 5;(y9016) = "‘y953*am = —YyWC = 0.

This contradicts to (3). Therefore H*(F;; Z;) has no system of universally

transgressive generators. (qed.)

2. Remark. The same discussion can be applied to many other compact
Lie groups G for which p-torsion (p odd prime) exist and the cohomology ring

H*(G; Zp) is known. For example,

H*PUP); Zp) (px2), H*Es; Z3),
HY*(E:; Zy), H*(Es; Zx), H*(Es; Zs)

have no system of universally transgressive generators. These cohomology
rings are determined in [3; 5; 6]. Here we mention only that these coho-
mology rings contain only one (or two in case Hx*(Es; Z;)) generator of even
degree with height p.

But this property does not imply immediately that the “Pontrjagin ring
H.(G; Zp) is not commutative”, as examples of Kojima [11] H.(Spin (2°+1);
Z») (s = 4) show it.

3. By (1) and the Prop. 1 we can determine the behaviors of generators of

H*(Fy; Z) in the universal spectral sequence.

LemMa 1. H*(Br; Zs) = Zslys, 1@ A(vs) in deg. <11 with relations
va=1(x), y5= Py, and yo = 03ys.

Proof. By (1) we see immediately that x;, x:, xs are universally trans-
gressive because x; is a generator with the lowest degree and .#' and 67 com-
mutes with the transgression. Then a similar construction with that in the

proof of the Prop. 1 and Theorem WCSS prove this lemma. (q.ed.)
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ProposiTioN 2. In the wuniversal spectral sequence {E,} of Fi over Z; the
behaviors of generators of H*(F.; Z3) are as follows: xs, %1, % are universally
transgressive; %1 and xis cannot be chosen to be universally transgressive and
they can be chosen such that

digixy=digins=0 for 2=1<9,
ok %1 = £5(: @ x3) % 0,
dy ki %15 = k(3@ x7) =% 0.

Proof. By adding some decomposable elements we can change the generator
%11 to satisfy
ducf-xu=0 for 2=57<8.

If dyxsxy =0, then the generators x;; and x;; = . %#'x; must be universally trans-

gressive. This contradicts to the Prop. 1. Therefore
Eg’ 8 = d9x§x11 0.

On the other hand E}°® is 1-dimensional and generated by v ® x;. Hence y® 3
is d,-cocycles for all » =2, y;v, =0 and

dsligxu = xﬁ(y9®x3)
after changing the coefficient of wx; suitably. Then %;=.%'%, (the changed
generator of deg. 15) is dr-cocycles for 2 < 7 < 8 and
Aokixis = k(1 ® P ay) = ks (Y@ %7)

by some properties of reduced powers in spectral sequences [2] (ie., relations

with dr and the Cartan formula). This implies that ysys=0. Then dyxbxis % O.
(ged.)

By this proposition we can discuss the universal spectral sequence of F,

over Z; in low degrees immediately, and we have
COROLLARY. H* (Bm; Zq) = Zg[y4, ys]®Aa(_'V9)/(y1y9, ysys)) n deg. <19.

§3. The coproduct in H*(F,; Z;) and the Pontrjagin ring H,(F,; Z;)
1. For any connected compact Lie group G the group multiplication # : GX G
- G induces the coproduct

n*: HYG; Zp) - H*(G; Zp) QH*(G; Zp)

for any prime p. For a principal G-bundle (E, B, =, G) the right translation
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h : Ex G- E induces a homomorphism
" Er > E,QH(G; Zp) (r=2)
of associated spectral sequences over Z, [4], p. 174. The operation of
uwe Hy(G; Zp) on H*(G; Zp) of deg —s or on E, of deg (0, —s),
Fux=20< i, u> %

where x€ H*(G; Zp) or € E, and h*x =>)%®y;, was first defined by Leray
and then used by Borel [5] for the study of the coproduct in H+(Spin (10) ; Z,).
4 in the spectral sequence of a principal G-bundle has the following proper-
ties [5]:
i) ¢ commutes with d, and &},
ii) in E;= H*(B; Zp) @ H*(G; Zp) we have $,(b®@x) =bQ Jux for
be H*(B; Zp) and x H*(G; Zp).

2. THEOREM 1. For generators of H*(Fi; Z;) which behave in the universal

spectral sequence as stated in the Prop. 2, their coproducts are as follows:

a) %, %1, Xs are primitive,
b) h*xu =1Qxu+2uQ1+ %Q %,
C) Ws=1@ %5+ %501+ %:Q %1

Proof. a) is immediate by the Prop. 20.1 of [4].
Let #; be the dual class of x; and % be the operation associated with u;
(=3, 8). Then

%=1 %1+ 2uQ® 1+ hxu® %+ s xu @ ¥s.

By the Prop. 2 and the property i) of ¢, we see that #sxu is a permanent
element. Therefore
‘lyan'—‘O

since universal spectral sequences have no permanent elements except zero.
By the Prop. 2 and the properties i) and ii) of ¥, we see that whxy is d,-
cocycles for 2 = 7 < 8, and

dgﬁg Daxy = /igya = dslfgxs-
Therefore ;% — %3 is permanent. Hence

7933511 = X3.
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And b) is proved.
c) is obtained by applying .#' on both sides of b) since .P'x; = x5, P
=x; and . Pla=0. (qed.)

8. Since the generators x;, i=3, 7, 8 11, 15, form a 3-simple system of
generators of H*(F:; Z;) by a terminology of [5],

2
Kig 0 Kip Kiyt ot XiXs,  Fiytt KX

form an additive basis of H*(Fy; Z;) where {4, ..., ir} are subsequences of
{3, 7, 11, 15}. We denote by wvi,....i,» Vis,...,ipi1» Vis,....iri2 the dual basis in
homology. We use the symbol [;, »;]1 to denote v; Vv; — ( —1)7v; Vu;.

Tureorem 2. The Pontrjagin ring H(Fi; Zs) is mon-commutative and has

a 3-simple system of generators vs, vz, s, V11, Vis Satisfying the following relations :

viVui=0 for ix8, vsVvsVos=0
[v;, v;1=0 for i<j and (i, j) = (3, 8), (7, 8),

Los, vsl=ou, Lovs, vl =055
Proof. Every ye H*(Fy; Z;) can be written as
Y=X+a1X%u+ G %5+ G X11 %15
with %, @;(1 £ i< 3) € Ay(xs, %) @ Zy[xs1/(x3). If we put

R (ai%u) = ¥ (@) (xu® 1+ 1@ xu1) + by,
B (asxis) = B (@) (x:Q 1+ 1@ x15) + be,
B (as %1 %5) = B (@) (4@ 1+ 1® 21) (%1:Q 1+ 1 Q %15) + bs,

then £*(y) —>)b; is symmetric in the sense of [5], p.283. In case y is mo-
nomial, put ¥y =x;, * * * %;,%; (0=<e=2), then

(5) B (y) =206 =TT (%:,Q1+1Qxi,) * (#:Q1+ 1R %)°.

If we write b; explicitly like b= h*(a;) * (%® x;), etc.,, then we see easily
that
< bj, Vi, ...,ip., R0, > =0
(6) <bj, viy,...,i,Qus > =0
< bj, viy,...,im1Qus > =0

for any subsequence {4, ..., &) C{3,7 11, 15} and j=1, 2, 3, and that
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<b, viQu; > =0 if (1, 7)= (8, 3),
(7) <bs, ViQU; > =0 if (4, /)=(8,7),
< b, viQU; > =0 for all (3, j).

Using (5) and (6) we can see that

. . - . "
vllmn»lr - vll»---ﬂr-l\/blr

Viy, .. im1 = Uiy, .0 V Us

)
Uiy, i 2 =20y, . ip1 V Vs,

whence by an induction on 7 we have

Uiy, ooip =0 Vo 0 = Ny,
Viy, i1 =05V o« N, Vs

Vig, oo im2 =204,V ¢ -+ Vo, VgV

for any {4, ..., 4} C{3,7 11, 15}. Hence v;, =3, 7, 11, 15, 8, form a 3-simple
system of generators.
(7) and the fact that h*(y) — 3)b; is symmetric show that

[vi. v;1=0 for (4, j)=(8,3), (8, 7) and 1=

In particular we have v; V v; =0 for 7 odd.
The proofs of the last two relations are entirely the same with the corre-

sponding part of the proof of [5], Théoréme 16.4, and are omitted. (q.e.d.)

Chapter II. On some homology relations of loop spaces
of compact exceptional groups

§1. Preliminaries

1. Let K be a compact connected and simply connected Lie group. Bott-
Samelson [10] described a homology basis of H.(2K; Z) (2K is the loop space
of K) by making use of K-cycles.

Let T C K be a fixed maximal torus in X, R be the universal covering group
of T and % : R > T be the covering map. Further we denote by D the diagram
defined on R.

By a singular plane of codimension 1 in D we mean a pair (6, n) of a root
form 6 and an integer #. It is oriented and (8, #») and (~6, —#n) are dis-
tinguished. Let P={pi, ..., pry be a finite ordered set of singular planes in
D of codimension 1. We use the following notations due to [10]1: 2:=5(pi),
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k
K(p;) =the connected centralizer of :p;, W(P)= II K(p;). Then the K-cycle
1
'(P) associated with P is defined by I'(P) = W(P)/T* where the right trans-
lations of 7% on W(P) are defined by

(o oy ) s (B, ooy ) = (20t B0 %ty o oo, th21%RER)

for (%, ..., )& W(P) and (4, ..., ) e T

Later we need K-cycles I'(P) without the restriction of codim p;=1 to
obtain some relations between homology classes in H.(Q2K; Z) expressed by
K-cycles. They are called here the general K-cycles to distinguish from the
original K-cycles.

The K-cycle I'(P) admits an iterated fibration with cross-sections. The base
space is K(p,)/T and the successive fibres are K(p:)/T, . .., K(pp)/T. K(p:)/T
are orientable, whence I'(P) is orientable. If codim p; =1, then K($;)/T is a
2-sphere and has a canonical orientation determined by the root vector of p;
as in [10], Chap. II, §3. Hence the original K-cycle has a natural orientation.
The orientation of a general K-cycle I'(P) is determined depending on the choice

of the orientations of K(p;)/T with codim p; = 2.

2. Let P'={pi, ..., pi.} be a subsequence of P. We imbed I'(P') as a
submanifold of I'(P). Let i : W(P') - W(P) be an inclusion defined by

meot(X, o, Xp) =X iftel{i, ..., i)
=e if teE{d, ..., %)
for (%1, ..., %) W(P'), where =: : W(P) - K(p;) is the natural projection

onto the #-th factor and e is the neutral element of the group. Let k : T7 » T*
be a homomorphism defined by

meo bty ..., t)=e if t<4;
:tl if i[§t<ig
=t if 655t <isyq for s<v7

=tr ifir_g_t

for (t, ..., t;) € T" where n: : T* - T is the natural projection onto the #-th
factor. Then 7 is clearly a boundle map relative to the homomorphism % and
induces an injection
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i: I'(P')CI(P).

This imbedding may be considered as a canonical one, and I'( P'), oriented natu-
rally or in a suitable way, gives an integral cycle in I'(P). The submanifold
I'(P'") is called a sub K-cycle in I'( P).

3. H.(I'(P); Z) has no torsion, and in case I'( P) being an original one Bott-
Samelson [10], Chap. II, Prop. 4.2, determined the cohomology ring H*(I'(P);
Z). Sub K-cycles I'(p;) in I'(P) associated with a single plane p; (1=<i< k)
form a basis of Ho(I'(P); Z). Let {x;} be the dual basis of H*(I'"(P); 2Z).
Then by [10]. Chap. II, Prop. 4.2, we see easily that x;,- - - x5, 1<i<- - <Js,
form an additive basis of H*(I'(P); Z). On the other hand #* (xj,- - -%;,) =
the top dimensional generator of H*(I'(P'); Z) or zero according as {ji, . . .,
Jsb=1{é, ..., 4} or not. From these we see easily that sub K-cycles in I'(P)
form an additive basis of H.(I'(P); Z) when I'(P) is an original one. In case

of a general K-cycle the description of the homology basis is more involved.

4. For any K-cycle I'(P) there are associated a homology class P in
H.(2K; Z) [9, 10]. For the definition of a chain ¢={co, ¢, . . ., ck} subject

to P we refer to [9], §3. For any chanin ¢ subject to P we have a map
fb 1 T(P) - 2K.

P, is defined by P, =f% (the fundamental class of I'(P)). P, is determined
independently of ¢. These constructions are valid also for general K-cycles.
The only thing we should take care of is the orientation of I'(P) as we men-

tioned already.

5. Let P={ps ..., pr} bean ordered set of 2 — 1 singular planes of condi-
mension 1in D. Let 6; and 6. be two roots of K such that they have the same
length and (6;, 6.) <0. Then 6;=0,+0, is a root of K. Let » be an integer
and we put g, = (61, n), g2= (62, 0), gz= (63, n) and p1=¢q: N ¢q.. Then qi, ¢ and
g; contain p;. Put P'={p P}. I'(P') is a general K-cycle containing I'(P)
as a sub K-cycle. Put P;={q:;, P} (i=1, 2, 3). The inclusions K(q:) C K(p,)
induce inclusions W(P;) CW(P'), which are bundle maps and induce in turn
imbeddings

r(p;)Cr(prP for each 7=1, 2, 3.

The semi-simple part of K(p:) is of type A, and is denoted by A., which
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have +6; (i=1,2,3) asroots. A./T'= K($:)/T canonically where T/ = A,NT
is a maximal torus in A.. Let v; (i=1, 2, 3) be root vectors associated with
0; in the sense of Stiefel [17], i.e.,, v; is perpendicular to 6; and 0;(t;)) =2. <
defines an integral cycle in H,(T') with a relation 3=t + v». 2-spheres K(q:)/T
in A,/T' represent 2-cycles y; of H:(A,/T') such that their homology trans-
gression images in the fibration (A., A./7T', T') are r;. Since this transgression

defined on H:(A,/T') is injective, we have the relation

(1) Ys= Y1+ ¥i.

I'(P'") is fibred with I'(P) as its fibre and with A,/7' as its base space.
The associated homology spectral sequence over Z is collapsed because the fibre
and the base space have trivial homology groups in odd degrees. The integral
cycle I'(P;) represents y;® P, in the E. term for each 7=1, 2, 3, where P,
denotes the fundamental class of the homology group of the fibre. (1) implies
that

(1’) y3®P*=y1®P*+y2®P* in Em.

Since P, is a homology class of the fibre with the highest degree, (1') implies

in turn that

where I'(P;), denote the classes in H.(I'(P'); Z) represented by the integral
cycles I'(FP;) in I'(P').

ProrositioN 1. Pi, P, and P; are defined as above, then
Psy = Py + Py in Hyp(RK; Z).
Proof. Let ¢ be a chain subject to P'. Then ¢ is also subject to P;, 1=1,
2, 3. And
o= o B for each i=1, 2, 3.
Then (2) and the definition of P;, imply the conclusion of this proposition.
(q.ed.)
6. Let W be the Weyl group of K operated in R or in T. An element
we W transforms an ordered set P={p;, ..., pry of singular planes to wP

= (wpl, ey wﬁk>
Let a be a representative of w in the normalizer N(7T) of 7. The inner
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automorphism ¢, : KX - K defined by a, maps K(p;) onto K(wp;) as is easily
seen, and induces ¢,: W(P) - W(wP) defined by ¢o=¢ax - -+ X¢,. This is
a bundle. map relative to a homomorphism @ : T* - T* defined by the diagonal

action of w, whence we have an induced map
@as : I'(P) » I'(wP).

oy : H(I'(P)) > H.(I'(wP)) depends only on w and does not depend on the
choice of @. The inner automorphism ¢, induces a map ¢. : 2K > QK. Since
K is connected, ¢, is homotopic to the identity map and ¢qy : H(2K) -~ H(2K)
is equal to the identity.

Let ¢ be a chain subject to P, then we is a chain subject to wP. Now the

following diagram

[

P
rp)y ——> 9K

Soagl we i(ﬁa
I"(wP) Y, 0K

is clearly commutative, whence we have the
ProposiTION 2. P, = (wP). for any we W.

In case I'(P) is a general K-cycle we must take care of the orientations of

I'(P) and I'(wP) in the above proposition.

7. Let P={p:, ..., pr} be an ordered set of singular planes with codim
p;i=1 except a plane p;. Assume that p; has codimension 2 and p;= (6;, #n)
N (s, 0) such that 6; and 6. have the same length and (6, 6;) <0. Then the
semisimple part of K(p;) is of type A. and is denoted by A. as in No. 1.5. Put
03 =61+ 0>, then the plane (03, #) contains p;. The Weyl group W(A:) of A,
is a subgroup of the Weyl group W(K) of K. Let R.€ W(A:) be the reflection
across (6, 0). R, maps (6:, #n) onto (6s;, n) and vice versa. Hence R, keeps
i invariant.

If we fix an orientation of K(p;)/T, then the orientation of I'(P) as well
as the orientation of I'(R,P) is determined. Now R, reverses the orientation
of T, whereas ¢, preserves the orientation of K(p;) where ¢, is an inner auto-
morphism of K(p;) defined by a representative ¢ of R, in N(T N A,). Hence
the induced map @uy @ K(p;)/T—- K(p:;)/T reverses the orientation. Hence by
the Prop. 2 and the remark at the end of No. 2.6 we see that Py = — (R:P)x.
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In particular, if R, keeps planes p; invariant of j = 4, i.e.,, P= R, P, then we see
that P, =0.

ProrosiTiON 3. Let P bz as above and assume that 0, is orthogonal to all

roots of p; for j=1i. Then P,=0.

8. Here we give a modified description of an original K-cycle I'(P) which
is convenient in the next No.

Let P={pi, ..., prt be an ordered set of %k singular planes of codimension
1. The semisimple part of K(p;) is a 3-sphere denoted by S°(#;) whose maxi-
mal torus S'(p;) =S%(p;) N T is a circle perpendicular to ;. We remark that

for any t< T the inner automorphism defined by ¢ maps S%(p;) into itself.

k k
Put W/(P)= T1S%p;) and T'(P)= IIS'(p;). Let T'(P) operate on W'(P)
1 1

by
(%, ooy xR s (b, oo o, ) = (Hnty, 7 0t o . .,
T PEF 2 R N RS =t /RS 1))
for (%, ..., %)= WI(P) and (&, ..., tr) e T'(P). Then W'(P) is a princi-
pal T'(P) bundle. Let f : T'(P)- T* be a homomorphism defined by
f(t1...., tk):(h, tltz, “ ..y tl‘ "t;‘, “ s ey tl"‘tk)
for (¢, ..., &) € T'(P). Then the natural inclusion W'(P)- W(P) is clearly

a bundle map relative to f and induces a homeomorphism of base spaces, i.e.,
W'(P)/T(P)=T(P).

9. Here we assume that the group K is simple and simply laced, i.e., all
roots of K have the same length. In an original K-cycle I'(P) with P={p,,
., Dr} let us assume that two successive planes p; and pi-; are orthogonal

to each other and put P'={pi, . . ., bi-1, Dit1, Pis Di+zs - - » Dk
ProposITION 4. P, = Pl

Proof. The roots of p; and pi+: are denoted by 6; and 6;.,. Since K is
simply laced, 6;+ 6;+, are not roots. This implies that the semisimple part of
K(g), q=p: N pi+1, is of type A; x A,, and the direct factors are S°(p;) and
S®(pi+1) respectively. Hence S°(p;) and S®(p;+:) are elementwise commutative
in K.

Let X7 : W/(P)-> W!(P') be a map defined by Z(xi, ..., %)= (%, ...,
Kicis Xiv1, Xiy Xiez, « - ., %) for (xy, ..., x0) € W(P). 7=71T'(P): T(P)
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- T'(P') is a homomorphism and 7 is a bundle map relative to 7 inducing a

homeomorphism of base spaces
7:T(P)Y=TI(P).

7 is orientation preserving since ¥* transforms the cohomology fundamental
class x; - - - 2, to the cohomology fundamental class as is easily seen.
Let ¢={cy, ..., ck-1} be a chain subject to P"={p1, ..., Di-1, q, Di+2
., br}. ¢ may be considered as a chain subject to P or to P’ with ({+ 1)-th
polygon collapsed to a point. Since S’(p;) and S*(p;.1) are elementwise com-

mutative in K we see easily that the diagram

r(P)*
r(p" f8
is commutative. Hence P, = P}. (g.ed.)
10. Let 7'(P) be an original K-cycle with P={p;, . . ., pr}. Further, assume
that p; =pi+;. Then
ProposiTION 5. P, =0.

i

Proof. Put P'={p,---V ---pp} by deleting p; from P. Let
a @ K(pi) X K(pi+1) > K(piv1)
be the map defined by the multiplication in the group.
T=¢X - XeXaXex - -Xe: WP) > W(P)
is a bundle map relative to @ | T* where ¢ is identity map, and induces a may
& I'(P)->T(P).

Let ¢ be a chain subject to P'. ¢ is also subject to P with (7+ 1)-th polygon

collapsed to a point. The diagram

r(P)k
la/» 9K
(P

fE

is clearly commutative and
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& (the fundamental class of I'(P)) =0
since dim I'(P) > dim I'(P’). Hence P.=0. (qed.)

- 11. Let % be a fundamental chamber in D, i.e.,
F={XcR; ¢(X)>0 foralll<isl)

where ¢;, 1 £{ <, are simple roots of a fundamental system of roots of K.

% is subdivided in cells by singular planes in it. Let ¢ be the 1-skeleton
of the dual subdivision of 7, called graph. To each vertex of ¢ there corre-
sponds a cell of ¥ and to each edge of §§ there corresponds a cell in a singular
plane (4, #) in §. Let u denote the dominant root of the fundamental system
of roots {¢;}. (u, 1) is the nearest to the origin among the singular planes in
F so that {(XeF; u(X)<1} is a cell in &, i.e., the fundamental cell in &
denoted by 4z. vy is the vertex dual to 4y. The dusl vertex of a cell 4 is
denoted by v,.

Bott-Samelson [10], Chap. II, Prop. 9.1, described a homology basis of
H(QK; Z) using K-cycles. To each vertex v< ¢ there corresponds an element
P, of this basis such that P consists of the planes in a suitable path connecting
vy to vx in that order. Actually it would yield some difficulties to determine
the path carrying the generator. Nevertheless, in cases discussed in the next
section this point is solved by the Prop. 4.

By ¢; we denote the subgraph of ¢ containing all vertices and edges which
are connected to vy through, at most, 7 successive edges. ¢; is sufficient to

determine the homology basis of 2K in deg. <2i.

§2. Homology basis in low degrees of loop spaces of Fy, E;, E;, E;
1. The Schlifli figure of Fy is as follows:

23 12 P2 s @y
o————{— C —r -O

where ¢;, 1 <{<4, is a fundamental system of roots of F; and u is the domi-

nant root of the fundamental system. ¢s5(F;) is described as follows:

(/14, 1)

Ve O O L
T D (1D (D

(s, 1)
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where ui=pi-1—¢; for 1=<i<4 (u=p) and pui=,—¢;. This is obtained
without difficulties by a succession of reflections of cells on some incident
singular planes starting from 4g.
Then the homology basis of H.(2F:; Z) for deg. =10 is given by
Py, Poy, Py, Pi., Piy and Piy,

where
Ppo={(pi-1, 1), (ptice, 1)y oo oy (o, 1)} for 1 <4 <4,

Pé=<(.uh ]-)) (lufh l)y e ey (,Ll, 1)},
Pi={(u, 1), (ps, 1), .o o, (g 1)}

and the double of the lower suffixes denote the dimensions of the corresponding

Fy-cycles.

2. The Schlifli figure of E; is as follows:

!

Py @3 2 @3 2
Oo—O— - n®; Q

[

Y7
where ¢; and ¢; are simple roots of a fundamental system of roots of E; and x

is the dominant root. ¢s(Es) is described as follows:

(/14, 1)

Vo O————C —C
3 (g, 1) (p1, 1) (o2, 1)

where pi=pgti-1— @i for 1S4 =<4 (uo=p) and ph = — @3, pl= 03— @i,
Notations of ordered sets of singular planes:
Po= {1, 1), (pizz, 1), ..., (g, 1)} for 143,
Pi={(u, 1), P}, Pi={(p, 1), P},
Pi={(p, D, (4, 1), B}, Pi={(gi, 1), (s, 1), Py},
Pi={(ps, D, (a5, 1), Ps}, Pi={(m, D, (u3, 1), Ps}.
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Here we remark that u; and u; are orthogonal to each other, then by the Prop.
4 we see that Py = Pj,. Hence the homology basis of Hy(QEs; Z) in deg.
=10 is given by

Pl*, PZ*» P3>‘m P}*, Pi*, Pé*y Pé* and Pg*
where the double of lower suffixes denote degrees of these generators.

3. The Schlifli figure of E: is as follows:

[ (2 Py Py Ps (23 M

O 194 \% A 194 O

(24

where u is the dominant root. ¢;(E;) is described as follows:

(6, 1)

U%m .y ,L (ﬂ5, 1)

(w, 1) Cu, 1? (2, 1)U (3, 1)

(ud, 1)

where ;=i — @i for 1= i<6 (po=p) and uy = gy — @1, 25=p1— ¢r.

Notations of ordered sets of singular planes:

P ={(pi-1, 1), (e, 1), . .., (g, 1)} for 1<7=<4,
Pi={(p, 1), P}, Pi={(u, 1), P,

Pi={(us, 1), P5}, Pi={(pi, 1), P5}, Pi={(u, 1), P},
Pi={(u, 1), Pi}, Pi={(pi, 1), P}, Pj={(u 1), P},
Pi={(us, 1), P§}, Pi={(us, 1), P}}, Pi={(4, 1), P}.

We remark that u is orthogonal to g4 and u; respectively. Then by the Prop.
4 we see that P, = Pis, Pi.=P}.=P5, and P}« = P!.. Hence the homology
basis of H.(2E:; Z) in deg. <14 is given by

P, (1<i=<4), Pis, Pli, Pix, Pix, Pix, Pix and Pi..

4. The Schlifli figure of Es is as follows:
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where 2 is the dominant root. ¢:(Es) is described as follows:

(us, 1)
U%O* O —O O C —O- O
(1, D (1, 1) (12, 1) (s, D (e, D (us, 1)
(p5, 1)
where u; = pi-1— ¢; for 1<i<6 (o=p) and puf = us— ¢s.
Notations of ordered sets of singular planes:
Pio={(pic1, ), (ptiee, 1)y o oo, (g, D} for 1=7i<6,

P17= {(,us, 1), P6>, P;:“,Ué, 1), Ps)-
The homology basis of H.(2Es; Z) in deg. =14 is given by
Pi. (1=i{<6), Pi+ and Pj4.

§3. The homology map H,(2F,) > H,(2FE;)
1. The inclusion f : Fy C Es is described by the following table, [16]. Let
T be a fixed maximal torus of E; and T'=F,NT.

T' is a maximal torus of F;. Let R and R’ be Fy Es
the universal covering groups of Es and Fi. R’ o, ¢4 ol
is identified with » 'T'C R where % : R-> T is
the covering map. The map defined by this @, @, Y
identification is denoted by f. Under the in-
clusion f every root form of E; determines a 2 P2
root form of F, if restricted to R’'. This corre-

¢ ¢1

spondence of root forms is given in the above

table, i.e.,
¢ (Es)| R' = O(Es) | R = ¢4(Fy),

03(Eg) | R! = ¢§(Es) | R' = ¢4(Fy),
¢:(Es) | R = ¢(Fy), 01(E5) | R = ¢:(Fy).

For every long root of F; there corresponds one root of E; and for every short
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root of F; there correspond two mutually orthogonal roots of Es [16]. These
roots of E; are called the associated roots with the given roots of F,. The

dominant root of Ej is associated with the dominant root of F,, since

w(Es) =20, 4+ 3¢, +2(03+ @) + (¢4 + 1)
and
u(Es) | R = 20:(Fy) +3¢0:(Fy) + 4593(F4) + 2?4(174)

_—‘M(FD-

By 7, (or ©,) we denote the root vector corresponding to the root form o
(or ) of Fy (or of E;) in the sense of Stiefel [17]. If p is a long root of Fi

and 6 is the root of Es associated with p, then

(3) o) =1

since 7, is orthogonal to the plane (4, 0) in R. In particular
F (el Fp) = rulEy)

where 2 denotes the dominant root of Fy or of E;. If p is a short root of F;

and 6;, 6, are roots of E; associated with p, then
(4) F(zp) = 7o, + 70,

This is proved as follows: since r, is orthogonal to (81, 0) N (8, 0) in R, f(z,)
is a linear combination of vy, and ve,, say ave, + bre,. Then, since §; and 6. are
orthogonal we have 6,(f(z,)) =2a and 6,(f(r,)) =2b. On the other hand
0;(f(z,)) =p(z,) =2. Hence a=b=1.

2. The inclusion f : Fy; - E; induces the map of Lie algebras

df 1 L(Fy) - L(Ep).
Let
L(F) =R +>]¢, (dime, =2),

L(E;) = R+2X¢; (dim ez =2)

be respectively canonical direct sum decompositions of L(F,;) and of L(Es)
into the invariant subspaces under AdT' and Ad T, where a« (or ) runs the
positive roots subject to the simple system of roots {¢;} (or {¢i, ¢i}).

Let » be a singular plane of codimension 1 in R’ and p be the root of p.
For the sake of simplicity we assume that p is positive. By a standard argu-

ment (3) and (4) imply that i) if p is a long root of Fy and @ is the associated
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root of Es, then

(5) df(e,) Cey;

ii) if ¢ is a short root of F; and 6,, 0, are the associated roots of Es, then
(6) df(e,) Ceo, + eo,.

Then we see that
(7) F(K(p)) C K(q) for each singular plane p = (p, %)

where ¢ is a singular plane of codimension 1 or 2 according as p is long or
short such that in case p is long g= (6, n) with 6| R' =p and in case p is short
q= (0, )N (6., n) with ;| R' =p. The singular plane ¢ is called the singular

plane in R associated with the plane p in R’

3. When p=(p, n) is a singular plane in R’ such that p is a long root of
Fy and g = (0, n) is the associated plane in R, then
b=/ 1K(p): K(p) > K(q)
induces a homeomorphism
(8) fp: K(p)/T' =~ K(@)/T

which is orientation preserving by the reason of (3).

When p = (p, #) is a singular plane in R’ such that p is a short root of Fj
and g= (6;, n)N\ (6., n) is the associated plane, then the semisimple part of
K(q) is of type Ay x A;. Let S*(6,) and S°(6.) be the semisimple part of K(6;)
and XK(6,) respectively. Then the semisimple part of K(q) is S%(6;) « S*(62)
and is isomorphic to S*(8;) x S*(8.) or to S’(6:) X 2,5°(8.) where Z, is identified
with the centers of S%6;), =1, 2. Since f is an injection f|S*(p) is injective,
where S°(p) is the semisimple part of K(p), which shows that the semisimple

part of K(q) is isomorphic to S*(6;) x S*(f:). Then the map
F1S%p) : S*(p) > S’(8,) x S*(8.)

is the diagonal injection by the reason of (4). And the induced map

(9) fp 1 K(p)]T'= S (p) - S*(0)) x S(6:) = K(@)/T

is the diagonal injection of 2-sphere, where S*(p) =S%p)/S'(p) and S°(6;)
= S%(0:)/S"(6:).
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Now S%(0;) is oriented by ro, and defines an integral 2-class in K(q)/T for
each i=1, 2. They are homology basis of H.(K(q)/T; Z). Let y;, i=1, 2, be
the dual basis of H*(K(q)/T), then

(10) foyi)=x

where x is the cohomology fundamental class of K(p)/T".

4. Let I'(P) be an original Fy-cycle associated with P={pi, . .., pr}. Put
fP={q, ..., g} where g; are singular planes associated with p;. Then the
map

ThiX s X fhe: W(P)>W(fP)
induces a map of K-cycles
fo: I'(P)-> I'(fP)
as is easily seen.

Put p; = (pi, »;) and let p;,, . . ., pi. be short roots and the rest be long roots.
Let 6i,, 6. be the roots of E; associated with p;,, 1 <s=<7 Further we put
at, = (6i,, m:,) and g = (0}, n;,) for 1<s=<7r. Now consider an ordered set of

singular planes
Q= {ql; LRI qil—ly ql"n qz’:y o e ey (1;'3» q:;y I Qk>

consisting of &+ 7 planes of codimension 1 in R. Then the product of maps

a; : K(g;) » K(g;) for j& 1,

b : K(qj) x K(qj') > K(qj) « K(q;) C K(q;) for jel,
where I={i, ..., i), a; are identity maps and b; are defined by the group
multiplication in FEs, induces a homeomorphism

Ie: T(Q)=T'(fP).

If we identify I'(Q) and I'(fP) by Zr, then Hy(I'(fP); Z) has a homology
basis consisting of sub Es-cycles K(g;)/T, j& I, and K(g})/T, K(g})/T, je L
Its dual cohomology basis is written as v, 7 I, 5, 37, 71 Then

fE(yi) =25 for j& I,

(11) " .
FEG) =f5(9) = x5 for jeI

by (8) and (10), where {#;}, 1 <7<k, is the cohomology basis of H*(I'(P); Z)
which is dual to the Fi-cycles K(p;))/T', 1<j<k.
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Let
Qi1, e15 23, €25« o . 5 tr, &) (es=1 or 2)
be a subsequence of @ which is obtained from fP replacing gi, by gi, or by g,
according as es=1 or 2for 1=s=7 This defines a 2k-dimensional sub FEs-cycle
of I'(fP) for each e, ..., ¢. Since @i, e1; %, €25 ... %r, &) is the dual
-y« - -9, by No. 1.3, (11) shows the

homology class of yi- - -9V -

ProrosiTioN 6. The 2k-cycles fpI'(P) and >\ (Q(41, e . . . ; ir, &)) repre-
sent the same class in Hop(I'(fP); Z).

Let 2f : QF, > QFE; be the map of loop spaces induced by f. Then we have
the

ProPOSITION 7. 2f«(Py) = 20Q(%, e15 « . . r, &r)x where Qfy denotes the
homology map induced by 2f.

Let ¢ be a chain subject to Pin R'. Then fc¢ is a chain subject to /P and
to Q(, e1; - . .; ir, &) in R, and we have a commutative diagram

C

g4
r(P) —— 9F,

o o

rop 22, 0E, .

Now by the Prop. 6 we have immediately a proof of the Prop. 7.

5. Now we discuss the homology map

in deg. <10. Notations of Nos. 2.1 and 2.2 are used. If necessary to distinguish
things associated with Fy or with L we denote them by attaching (Fy) or (FEs).

The homology bases of H,(2F,; Z) and of H,(2F;; Z) in deg. =10 are
given in Nos. 2.1 and 2.2.

The planes (ui(E;), 1) are associated with (pi(Fy), 1) for 0=1i<2 (o= p).
The planes (u(E;), 1) N (ui(Es), 1) are associated with (4(Fy), 1) for i=3, 4.
The plane (u;— ¢4(Ey), 1) is associated with (x{(Fy), 1). Then by the Prop. 7
we see that

Qf*(Pi:z<(F4)):})i>:<(Es) for 173,

(12) 2
Qf*(P4*(FZ)) = }*(Es) + Pisx(Ep),
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2« (Pi(Fy)) = Py (Ey) + Pio(E)

(12"
+ <(/J;r 1), Pi}/"l“{(//‘b l)y PZ)*)
(12") Of o (Pis(Fy) ={(pa— ¢4, 1), Pitu+{(s— 93, 1), Pi}..
Now

R, {(ui, 1), Piy={(ul, 1), Pi} = PIE,.
Hence by the Prop. 2

{(ui, 1), Piti= Pis(Ep).

Similarly

<(ﬂ4, 1)‘ Pi}:kng*ng*(Es)-
Therefore
(13) Qf(PL(Fy) = Pho(Es) + Phi(Es) + 2 P34 (Ey).

Next, g3 — @3 = p; — ¢;. Then by the Prop. 1
<(/J3—‘€0§, 1), Pi}a: =Pg*" {(¢s, 0), PZ}A

Put ¢ = (¢, 0) N (us, 1). Since @3+ i3 = sz, (x2, 1) contains ¢ and the semisimple
part of K(qg) is of type A.. Put P'={(¢;, 0), Pi} and P"={q, (p, 1), (g, D)},
and let

a @ K(03) X K(ps) x K(p) — K(@3) « K(us) » K(2) C K(q)

be defined by the group multiplication.
axexe: W(P') - W(P")

induces
@ : I'(P)->T(P")

where ¢ is identity map.
Let ¢ be a chain in R subject to P'. ¢ is considered also as a chain subject

to P’ with the second and third polygons collapsed to a point. The diagram

El RFs
r(pPm—" fin

is clearly commutative. Then, since I'(P') and I'(P") have the same dimension
we see that
PL = pP with p € Z.
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On the other hand, by the Prop. 3 P! =0, whence P =0. Consequently
{ (e — ¢h, 1), Piti= Pii(Ey).

Similarly

{(/la"“p;, 1), Pi}* = Pé:k = Pg*(Es)
Therefore
(14) f(PLAF)) = 2P, (Eo).

(12), (13) and (14) describe the integral homology map £f. in deg. =< 10.

From these we see easily that

Prorosition 8. The homology map 2f. mod p is injective in deg. <10 for
any odd prime p.

Prorosition 8. The homology map 2f. mod 2 is injective in deg. =<8.
Of .\ Hiw(QFy; Z») has the kernel of dimension 1 (generated by P¥.(Fy)).

§4. The homology map H,(2FE;) - H,(QE,)

1. In the Schlafli figure of No. 2.3, the centralizer of the straight line
ifi\z(%, 0) is of type E; x 7Ty, [7]. As the semisimple part of this subgroup we
obtain the canonical inclusion E; C E;. In this inclusion the dominant root of
E; is not obtained as the restriction of the dominant root of E; to E5sNT (T is
the maximal torus of E:). By this reason we use another fundamental system
of roots described by the following figure.

—(p= @05~ @) ¢s

O— < 19 —O
Cot ¢z Lat @r O3+ Fa ¢4 P

¢s
Then the inclusion g : Es C Er is defined as the subgroup generated by the
closed system of roots spanned by (@4 €3, Q4+ Cr, 5, Ca+ Qs O+ Pa, @s).
This is equivalent to the canonical inclusion. Hence its homological effects are

the same with the effects of the canonical inclusion.

2, Let T be the maximal torus of E:, T' = E; N\ T be the maximal torus of
E; and g : R’ C R be the induced inclusion of the universal covering groups as
in §3.

For each singular plane p=(p, ) in R/, let ¢g= (6, n) be the associated
plane in R in the sense that p = R' N ¢. Then clearly g(K(p)) C K(gq) and the
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induced homeomorphism g5 : K(p)/T' = K(q)/T is orientation preserving.
Let I'(P) be an original Es-cycle with P={py, . . ., pr}. Put gP={qy, ...,
qr} where ¢; singular planes in R associated with p;. I'(gP) is an original E:-
cycle. The map
ghX * - X&h t W(P) > W(gP)

induces a homeomorphism of K-cycles
gr: I(P)X=TI(gP)
preserving orientations. Let
2g: QE; > QF;
be the map of loop spaces induced by g. Then it is immediate to see that
(15) 28.(Py) = (gP)x
where Qg is the map of integral homology groups induced by 2g.

3. We discuss the homology map
Qg.: H(QEs; Z) - HQE:; Z)

in deg. =10. Notations of Nos. 2.2 and 2.3 are used.

The planes (z;(E7), 1) are associated with (uzi(Es), 1) for 0 =<2 (o= p).
The planes (ui(E7), 1), (u(E7), 1), (us— ¢:(E;), 1) and (us(E;), 1) are associated
with (u3(E5), 1), (ua(Es), 1), (wu(Es), 1) and (ui(Es), 1) respectively.

Then by (15) We see that

(16) 08(Pi(Es)) = Py (Er) for 1<:¢<3,

(16'.1) 28+ (Pis(Es)) = {(pi, 1), Py(ED }y,

(16'.ii) 2g(Pi+(Es)) ={(p, 1), Pi(Ep)}y,

(16".1) 28:(Pix(Ee)) = {(ps—¢1, 1), (i, 1), PEr) by,

(16".ii) 28(PLAES)) ={ (s, 1), (15, 1), Py(Er) by,

(16". iii) 28:(P3(Es)) ={(us, 1), (uh, 1), Po(E:)}e.
Now

R’H((ﬂi’ 1)) PS} = P4(E7), Rqa;{(/li, 1)’ P3} = P4(E7);

where R;, denotes the reflection across the plane (¢;, 0). Hence by the Prop. 2
and (16.1) and (16".ii) we see that
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an 08.(Piu(E)) = P(E)  fori=1, 2.
Next
Ry, R (s — ¢z, 1), (4, 1), P} = Py(EY),
R, R, R, {(us, 1), (ps, 1), P} = Pi(Er),
R, {(py, 1), (g, 1), Py ={(s5, 1), PED)}.
Since g+ ¢, = 4}, by the Prop. 1 we have
{(, 1, Pi(ED}y = PiE) = {(¢3, 0), Pi(En)}s.
Then, applying the same argument with the proof of (14) {(use the Prop. 3 for
q= (¢, )N (us, DN, 1)), we see that
{(¢5, 0), P(EN}, =0.
Hence by the Prop. 2 and (16”.1), ii) and iii) we have the
18 08:(Pix(Eo)) = Pu(B)  fori=1,2,
28 (P3(Es)) = Piu(En).
(16)-(18) describe the integral homology map 2g: in deg. =10. From these
we see immediately the
Proprosition 9. The homology map 2g. mod p is surjective in deg. <10 for
any prime p.

§5. The homology map H,.(2FE;) - H,(RE;)
1. By the same reason with §4 we use the different fundamental system of

roots described by the following figure to define the inclusion % : £: C E;.

@s Lo @y Lo 1
o - O O— > O~ O
— (=1 =0y — @3 — @) Go+ Y5+ @5

Qo+ s+ Po+ ¥1

The inclusion % is defined as the subgroup generated by the closed system of
roots spanned by (@5, G5, P14+ €5+ ¢s, Cs, P2, €1, o+ @5+ s+ ¢7). This is equiva-
lent to the canonical inclusion and its homological effects are the same with
those of the canonical one.

Let T be the maximal torus of K, T'= TN E: be the maximal torus of
E: and % : R' C R be the inclusion of the universal covering groups of 7" and T.

With each singular plane p = (p, ») in R’ there is associated a singular
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plane g = (8, ) in R inthe sense that p = R’ N ¢q. For each ordered set P={p,
..., pr) of singular planes with codim p; =1 we define hP={qi, . . ., qry such
that-q; are associated with p; for 1=:=<k Let

Qn . QF; > QF;

be the map of loop spaces induced by 2 and 2k be the map of integral ho-
mology groups induced by 2h. Then, in the same way with No. 4.2 we see
that

2. We discuss the homology map
.QhP : H‘:(..QE';; Z) - Hg:(.QER; Z)

in deg. =14. Notations of Nos. 2.3 and 2.4 are used.

The planes (;(Es), 1) are associated with ((E7), 1) for 0 <7< 3 (10 = p).
The planes (ui(Es), 1), (us—¢s(Fs), 1) and (pn— @s— ¢5(Es), 1) are associated
with (4 (EY), 1) for 4 <{=<6 in its order, and (u — ¢:(Es), 1) and (p5 - ¢7 — ¢
— @5 — 0 (Es), 1) are associated with (,(£;), 1) and (zi(E7), 1) respectively.

Then by (19) we see that

(20) Oh (P (E7)) = Pi. (E;) for 174,
(20’ l) AQ]l;k(Pé:}:(E‘/)) = {(ﬂé, 1), P4(Es)>(,
(20/. i) 2hi (Piw(ED) = {(ps — 01, 1), Pi(Es)},
(20”.i) Qh,L(Péz(ET)) = ((/16_(,08; 1)y (I«Cév 1)) P4};;:,
(20.i1)  2h(Piu(E)) = {5 — @1, 1), (i, 1), Pibs,
(20.1) Qh (P (E) ={(ms— 95— @5, 1), (ms—¢s, 1), (u, 1), P}y,
(20".11) Qh(P?(Eﬂ) = ((/A; — O, 1), (/1(, - @y, 1), (/Aé, 1), P4}(
Firstly
R’w; R’;s'{(/-té) 1); Pl} = P:.(Es), R’;s R’;s R’;s<(ﬂ6 - 997: 1)9 1)4> = 1)5(EB)~
Hence by the Prop. 2 and (20.1) and ii) we see that

(21) On, (PL(E)) = Ps.(Es) for i=1, 2.
Secondly

Rqugq;Rgd{(ﬂa_(PS, 1), (/«té’ I-), P4>=P6(E8)y
R?SR’;SR?7<(,UG_(;07: 1): (ﬂg9 1)) Pl) :<(/«56_(p3—¢5y 1), PS(ES)}

https://doi.org/10.1017/5S0027763000002166 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002166

PONTRJAGIN RINGS MOD 3 253

Since s — €5 — €5+ (@54 s+ ¢s) = 5, by the Prop. 1
{ps = s — 05, 1), Pstye= Psy — {(05+ 05+ ¢35, 0), Psls.
Further R,,R.,{(¢s+ @5+ @5, 0), Ps} = {(¢;, 0), Ps},

{(‘;03, 0), P5>~;f = “Ps*'l‘ ((/,ll, 1), (/14, 1), Pt).-;: by the Prop. 1,
= — P;, by the Prop. 5.

Therefore by the Prop. 2 and (20”.1) and ii) we see the

Qh‘(P(l;*(E—;)) = Ps:g:(Es),
(22) 2
Qh;ﬁ(Psq:(E';)) =2Ps4<(Es).

Thirdly
R%R';UR//’S((,UG_‘,DS—SOS; 1), (/16—953, 1), (,/-5(,3’ 1)» Pl} :P;7
R’,‘«G R%R';s((,uﬁ'—sp’h l)y (/16—(1067 1)» (/l(’;, 1)) P4>
={(us — Q1 — Qs — @5 — @5, 1), Ps}.

By the Prop. 1 we have
{(ps = Or — O — O35 — @, 1), Piyy = Py — {@5+ s+ ¢r+ @5, 0), Psts.

Further
R, (@5 + Qo+ @1+ @5, 0), Ps}={(@s+ @5+ ¢s, 0), Py}
and
{(@5+ 05+ ¢5, 0), Psby={(¢5, 0), Psho+{(05, 0), Ps}.+{(¢s, 0). Ps}:

by the Prop. 1. Here
{((ps, 0), PG}* =0

by an argument used in the proof of (14) (for g= (¢s, 0)N(us, 0)N(u, 0)),

and
{(&, 0), Pitp= — Pis, {(¢5, 0), Pshi= — Pl

by an argument used in the proof of (21). Hence by the Prop. 2 and (20".1)

and ii) we see that
(23) Qh. (P (E;) = Piy(Ey),
7 D (Po(B)) =2 Py & PE(Ly).

(20)-(22) describe the integral homology map 2k, in deg. <12 completely,
whereas (23) describes 2k, in deg. 14 partly with the exception of Q. (Pj.(E:)).

Nevertheless by (20)-(23) we see immediately the following
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Proposition 10. The homology map 2g. mod p is surjective in deg. <14

Jor any odd prime p.

Chapter III. The cohomology maps mod 3 induced
by the inclusions F,C E; C E;CE;
§1. Preliminaries
1. By K we denote any one of groups F;, E;, E:, Es when they are discussed
at the same time. Similarly by 2 we denote any one of inclusions f, g, .

H*(2K; Z,) in low degrees are described as follows:

H*™(QFy; Zy) = Zslue, wo] in deg. =10,
H*(RE;; Zy) = Zs[us, us, we] in deg. <10,
H*(QFE:; Zy) = ZsLwo, thro, u] +in deg. <14,
H*(QEs; Zy) = Zs[uz, uis]l in deg. <14,

(1)

where suffixes of generators denote degrees. u. is defined as the dual class of
P,,. Then, since 2k;(P;;) = P;, by (I.12), (I1.16) and (II.20) we see that

(2) QF () = uy

where 2k denotes the cohomology map mod 3 induced by 2k By a discussion
of Bott-Samelson [10], Chap. II, §13, we know that

(3) i %0

for K = E;, E; and Fs. Since 2f%| H%(QE;; Z,) is bijective by (IL.12), we see
that (3) is true also for K= F,. By (3) and the Poincaré polynomials of com-

pact exceptional groups (e.g., cf. [8]), we can see that (1) is true.

2. H*(K; Z3;) are known by [3, 5, 6]. All elements of them have height

=3 and their systems of generators of type (M) are as follows:

Fit %, %1, %5, %11, %155
Es @ %, %7, X5, X9, %11, Xi5, X175
Er © x5, %0, %5, Xu1, K15y o . .

Es @ %3, %7, %5, %15, . . . .

The omitted generators are not needed in our present discussion. The following

relations about Steenrod reduced powers and Bockstein operation hold :

(3) %= P'xy,  xs= 05 % for all groups K,
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(6) X5 = Pay for K=F,.

3. In the spectral sequences mod 3 associated with usual fibrations of loop
spaces of K (K=base space, 2K =the fibre), the generators of fibre coho-
mologies described in (1) are all transgressive and the transgression image of
u; is represented by %41.

This is proved by discussing these spectral sequences one by one, and of
course not generally true. For example, H*(2G:; Z;) has generators us, us,

., with #3 =0, and the second generator u; is not transgressive.

The transgression image of u, is the well-defined element x;. Hence, by

(2) we see that £*(x3) = %. Consequently, by (5) we see that
(7) E*(xi) = % for i=3,7, 8.

The generators x3;, x; and x5 are universally transgressive. Hence, by making
use of Theorem WCSS of Chap. I we see that

(8) H*(BK; Zs) = Za[y4, y]® Aa(yg) in deg. =9

for all K=F,, Es, E; and E;, where y; is the image of x; by the universal trans-

gression and ys = P yy, yo = 05 vs.

§2. f*: H*(Es; Z3) > H*(Fy; Zy)

1. We choose the generators of H*(Fy; Z,) to satisfy the Prop. 1.2. Con-
sider the spectral sequences mod 3 of loop spaces of F; and E;, and the homo-
morphism of them induced by f.

Qf *-image of i, of 2Fs; must be transgressive. If Qf*(u) =0, then u, of
QF,; is not in the images of 2f*. This contradicts the Prop. II.8 because we
see that 27" is surjective in degree 10 by this proposition. Hence we can choose
w0 of QF; such that

OF " (u10) = w10.
Then, by No. 1.3, we see that f*(xu) = % + axs % with a < Zs.

We can choose x; of E; such that it is d,-cocycles for » < 4 in the universal

spectral sequence. Then, using the Prop. 1.2 we see that
(7 f*(xu) = Xit.
Now, by (5') f*( . %'%) = %55 Is indecomposable in H*(F; Z;). Hence .#xy

is not decomposable in H*(Fs;: Z;), and we can choose the generator xi of
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H*(E;; Zy) to satisfy
(6" X153 = J/"ML

Then f*x; =%, and by (4), (7) and (7') we see that /* mod 3 is surjective.

Hence we have the

ProrosiTiOoN 1. Fy is totally non homologous zero mod 3 in E;.

2. Prorosition 2. In the universal spectral sequence mod 3 of E; the be-
haviors of generators of H*(Es; 7)) except x» are as follows: xi, x:, %s and xy
are universally transgressive; xu and x5 are nevev universally transgressive and

they can be chosen such that

dicixy =diins =0 Jor 2 =4<9,
ds;lfgxu = mﬁ(y:J@x.e\) * 0,
d:»)iﬁgxm = lig(,%@ x%7) % 0.

The fact that xy can be chosen to be universally transgressive is easily seen.

Then the Prop. 1.2, (6’) and (7') prove this proposition.

CoroLLaRY. H(Br,; Z3) = Zs[vy, ¥5 0l @ As(9:)/ (519, ¥sys) in deg. =17

where yio <= HBnp,; Z3) is a representalive of the transgression image of xs.

Remark. The behavior of xi; in the universal spectral sequence is not de-
termined. About this we have two possibilities: x;; can be chosen to be uni-
versally transgressive or not. If x; is never universally transgressive, then we

can choose it such that dixixi; =0 for 2 <7 <10 and dwkio%r = xi( Yy @ %s) = 0.

3. The coproduct ¢™ : H™(Es; Z)) - H*(Es; Z3) @ H*(Es; Zy) is determined

in the same way as Theorem I.1.

ProrosiTioN 3.  For generators of H (Es; Z») which behave in the universal
spectral sequence as stated in the Prop.2 (and the vemark to it) their coproducts

are as follows:

a) X3, X, X3 and xy are primiiive,
b) ¢Txn=1Q %1+ 2xu®1+ %@ %,
¢) ¢F =10 %5+ 201+ 60w,
A ¢ =1Q0%r + QL+ 6 Qx5, =7,

where =0 or 1 according as xv; can be chosen to be universally transgressive
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0r not.

Then the Pontrjagin ring H.(FE;; Z;) can be discussed in the same way as

Theorem I.2.

TueoreEMm 1. The Pontriagin ving H.(Es; Zi) is non-commutative and has a
3-simple system of generators vs, v1, Vs, Vs, Vi1, Vi and vy satisfying the following
relations

viVui=0 for i 8, vsVosVus=0,
[v:, v;1=0 for i <j and (i, 7)=(3, 8), (7, 8), (8§ 9).

[vs, val= vy, Lvs, v:]= w5, Loy, vs]=cev
where [vi, v;1=v;V v, — (~1D70;V o and ¢ is the same with that in the Prop. 8.

Remark. The generators v, 1=3, 7, 8 11, 15 of H.(E;; Z;) can be chosen
as the fi.-images of generators v; of H.(F,; Z;). Then the relations of non-
commutativity [vs, vsl=wvu, [vs, v71=v;; are inherited from the corresponding
ones in H*(Fy; Zy).

4. H*(AdE;; Z;) has a system of generators xi, %», %, %, Xs, %5, %1, ¥15 Of
type (M) [3]. Let n : Es > Ad E; be the projection. The above generators can

be chosen to satisfy
mx(x7) = x4 for 1==3, 7, 8, 11, 15.

Since coproducts commute with the projection, from the Prop. 3 we see that
the coproducts ¢*xu and ¢*x; in H¥(Ad E;; Z,) are not symmetric (by a defi-
nition of [5], p.283). Then by [5], Prop. 2.5, we have the

TueoreMm 2. The Pontrjagin ring H.(Ad Es; Z:) is not commutative.

§38. g% H¥(E;; Zy) > H¥*(E;; Z3)
1. By the Prop. I1.9 we see that 2g" mod 3 is injective in deg. 10. Hence
Qg7 (u) %0 and is transgressive in the fibration of loop space of E; by No. 1.3.

Hence we can choose u#, of 2F; such that
Qg (u10) = to.

Then by the same discussion as No. 2.1 we can choose the generators x;; and
x5 of H*(E:; Zi) to satisfy

(7 gx(xu) = %1,
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(6") X15 = ﬂIXu-
Now f*g*xs= %3 and by (4), (7), (7") and (7") we see that f*g* mod 3 is
surjective. In another word

ProrosITION 4. Fy is totally non homologous zero mod 3 in E.. f*g* mod
3 is bijective in deg. <18.

Then by Theorem WCSS the induced cohomology map of classifying spaces
of F; and E; is bijective in deg. <19. Hence by the Cor. to the Prop. 1.2 we

see the

CoroLLARY. H¥(By,; Zs) = Zslys, ¥51@ Ax(55) [ (439, ¥sys) in deg. < 19.

2. The behaviors of generators xi, %13 of H™(E;; Z;) in the universal
spectral sequences and their coproducts are entirely the same as those of corre-
sponding ones of H*(E;; Z;). So that we omit to write them down.

As a corollary of the Prop. 4 we see the following

Tueorem 3. The Pontrjagin ring H(L7; Zy) in deg. =18, has 3-simple
system of generators vi, i=3, 7, 8, 11, 15, satisfying the relations described in

Theorem 1.2. H.(E;; Z;) is not commutative.

Remark. The relations of non-commutativity [vs, vs] = vy, Lus, v7]1 =05 are

inherited from those in F; and in FEs.

§4. r*: H*(Es; Z3) > H* (E;; Zy)
1. By the Prop. II.10 we see that 24" mod 3 is injective in deg. 14. Then,
in the same way with No. 3.1 we can choose the generators wi € H*(2Es; Z3)

and xis€ H*(Es; Zy) to satisfy
(9) Q0 (1) = wa, R (%15) = %15
Then, by similar discussions with those in preceding sections we have the follow-
ing results.

ProrosiTioN 5. The generator x5 of H™(Es; Z;) behave in the universal
spectral sequence as follows:

dikixis=0 for 2=<4i<9, doksxss = k(2 ® x7) = 0.

The coproduct ¢* x5 in H*(Es; Z3) is as follows:

x5 = 1@ X5+ X5Q 1+ %R x7.
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CoroLLARY. H™(Bg,; Zy) = Zs[ys, 1@ As(v9)/(3s3s) in deg. =19.
TueorEM 4. The Pontrjagin ring H.(Es; Z;) is not commutative and has
non-zero elements v, vr, vs, vis, which generates H.(FEs; Z3) in deg. <18 and
satisfy the following relation of non-commutativity
Los, v7]= 5.

Remark. The relation [vs, v7]=v;5 is inherited from the corresponding one

in F4, Ea, and E7.

§5. On homotopy abelians
Let G D H be a group and a subgroup. The maps

Apu:HxH-G
are defined by A(x, ¥) = xy = u(y, x) for x, y= H. When 4 and x are homotopic,
then H is called homotopy abelian in G, [19]. When G = H and G is homotopy
abelian in G, then we say simply that G is homotopy abelian.
As is well-known, if G is homotopy-abelian, then the Pontrjagin products
of G over any coefficient field are commutative; if H is homotopy abelian in
G, then the Pontrjagin products of H into G over any coefficient field are com-

mutative.
Hence, by Theorems 1, 2, 3 and 4 and the remarks to them we can see the

following Theorems.

Tueorem 5. E;, Ad E;, E;, Ad Er and Es are not homotopy abelian.

THEOREM 6. In the inclusions

F, C E; C E; C E;,

every subgroup is not homotopy abelian in any group containing it.

Remark. Theorem 5, jointly with the results of James-Thomas [19], proves
that every compact simple Lie group is not homotopy abelian.

The author knows another proof of Theorem 5 in the same line with the

James-Thomas’ proof [17] of homotopy non abelian of other compact simple

Lie groups, cf. [20]. Nevertheless, I think the Theorem 6 is a new result.
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