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Introduction. Pontrjagin rings over the field of rational numbers of com-

pact Lie groups are commutative in the sense of graded algebras (or anti-

commutative in the classical terminology) [14]. Pontrjagin rings over the field

Zp (p^O) of several compact simple Lie groups were studied by Borel [5].

The most examples are commutative. However, this is generally not true.

The first example of non-commutative Pontrjagin rings of compact Lie

groups is #*(Spin (10) Z2), [5], [1]. Then it was shown that the Pontrjagin

rings #*(Spin in) Z2), n^>lθ and n^2s + l, are non-commutative, [11], [18].

These known examples are all those over Z2.

In this work we prove that the Pontrjagin rings mod 3 of all compact ex-

ceptional groups except Gz are not commutative.

We denote by F+, Eβ, E7 and Es the compact, connected and simply-connected

groups among the local structures usually expressed by these notations.

In Chapter I we determine the ring structure of the Pontrjagin ring

H ΛFi', Zz). This is shown to be non-commutative. The proof is based on a

theorem of Kudo [12] on one hand, and on the scheme used by Borel [5] to

determine the Pontrjagin ring ϋ7*(Spin (10) Z2) on the other hand.

In Chapter II we discuss the homology maps H*(ΩF±\ Z) -» H*(ΩEβ; Z)

in degrees £ 10> H*(ΩEe; Z) -» H*(ΩE7; Z) in degrees ^ 10, and H*(ΩE7; Z)

--> H*(ΩES', Z) in degrees ^14, induced by the inclusions ft C β C fi C fi

In the description of these homology maps we use iΓ-cycles due to Bott-

Samelson [10].

In Chapter III we prove that the Pontrjagin rings mod 3 of Eβ, Adβ, EΊ

and Es are non-commutative using the results of Chapters I and II.

The author is thankful to Professor Arm and Borel who attracted my

interests in this direction and could give me valuable discussions.

Received June 3, 1960.

225

https://doi.org/10.1017/S0027763000002166 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002166
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Chapter I. The Pontrjagin ring B*(F4; Z3)

§ 1. Kudo theorem and the comparison theorem of spectral sequences

1. Let {Er, f > 0 } be the cohomology spectral sequence of Serre [15] over

Zp (p is an odd prime) associated with a fibration. About terminologies and

notations of cohomology spectral sequences we refer to [4], [15]. Kudo theorem

on transgressions [12] is stated as follows:

THEOREM K. Let a^E°'2k (k > 0) be transgressive. Choose a suitable re-

presentative βtΞElk+U0 of r(α), then

i) ap and β of'1 are transgressive,

ii) J*pβ and - ^ j S e ^ 0 , represents τiap) and τ(β ap~ι) respectively,

where τ denotes the transgression

+iKbn Uδfi) K&b+i) ~* Eb+ι

for each {a, b), JPp a cyclic p-th reduced power and δp the Bockstein operation

mod p.

2. Let {Er\ r>2) and {'Er', r^2) be canonical cohomology spectral se-

quences ([4], p. 122) of modules (or of algebras) such that Efb ~ b

and 'E?'b^'E1'0®fE°2>
b for all (a, b)^0. Let

{hr,r>2} :{Erl r^2)-*{'Erl

be a homomorphism of the spectral sequences such that

hVh^hV°^h%'b for all (a, &)>0.

The comparison theorem of spectral sequences ([13], p. 110) has three state-

ments. Among them the one we use later is the following:

THEOREM CSS. Let h\' be isomorphic for all b^O and hi'b be isomorphic

for all (a, b)^0. Then h"'° is isomorphic for all a > 0.

The conditions and the conclusion of this theorem can be weakened as in

the following:

THEOREM WCSS. Let h°*b be isomorphic for O^b^n and h% b be isomorphic

for Q^a + b^n + l. Then hV ° is isomorphic for 0 ^ a ^ n + 1.

This theorem is proved in the same way with the proof of the Theorem

CSS so that the proof is omitted.

https://doi.org/10.1017/S0027763000002166 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000002166
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§2. Universal cohomology spectral sequence of F4 over

1. By [5] we know that

3, x7, xiu

with the following relations of reduced powers and Bockstein operations

(1) X7 = J*\xs, Xro = ̂ \xu, Xa=δfxu

where suffixes denote degrees.

PROPOSITION 1. H*(F\\ Zz) has no system of universally transgressiυe

generators.

Proof. Assume that H*{FA\ ZZ) has a system of universally transgressive

generators: x3, #7, Xs, Xu, x™. We may regard the relation (1) as holding for

these generators.

Denoting by τ the transgression in the universal spectral sequence of F4

over Z3, by the Theorem K we can choose representatives

Hi+ί(BFί; Zs)=*yiu of r(*, ) (t = 3, 7, 8, 11, 15)

and

H26(BFi; Z2)Ξ>y2e of τ(yQ®xl)

satisfying

(2) > - -δ*ys and ^26 = -δ*J*\y*.

Construct a graded algebra

B - ZzlyΆ, yί, y'u, y'u, yklΘMyί)

and a spectral sequence over Zz which starts from

with
'Ei'° = B and Έϊ * = H* (F.ι Z3).

Successive terms of this spectral sequence is defined as follows:

d± κ\ xz = Λ4^ί, ^4 £4 Λ:/ = 0 for i > 3,

whence Έ-o = HCE*) =B!®Ci where β ι=S/Z3C^ί] and Ci = H*(F4', Z3)//A(ΛΓ3)

(// denotes a symbol to fo&£ «w;«y the tensor factor indicated thereafter. For

the strict definition of this symbol as a kind of quotient, cf., J. Milnor and J.
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228 SHORO ARAKI

Moore, "On the structure of Hopf algebras", to appear)

ds = d* = d7 = 0, Έs = Έβ = Έ7 = Έ8

dsκlx7 = κlyί, dsκlxi = 0 for i > 7,

whence '& = 5 2 ^ C 2 where fi> = Bi/ZzZyll and C3 = CJΛzixi)

db^ffs "= Λr̂ a and ί/gKg*; = 0 for i > 8,

whence Έio = Bz®Cz®Λz(xκ) where Bs = B2/Λz(yί), Cz = C2/Z*Zxal/(xl) and x'2s

d10 = rfu = o, ' S o = Έn = '£i2

î2Λ:i2ΛΓu = Λ:i223;ί2> di2«i2*i5 = 0 a n d rfi2riS^{s = 0,

whence '£t 8 = J54(g) C 4 Θ Aί/clS^'s) where 5 4 = Bz/Zzίy[2l and C 4 =

d1B = A 4 - dis = 0, ' £ 1 3 = 'Ex = '£iδ = 'fie

Λβ Λ:Ϊ6ΛΓ16 = /cie ί̂e and die κ\lx[s = 0,

whence fE17 = Zsίκl7y2^ΘΛs(κl°7xL) I

whence Έis^ Zz (trivial); finally

dr = 0 f or r > 17,

Έi8 = Έ19 = ' - - = '̂ oo - Z3 (trivial).

Denoting by {Er} the universal spectral sequence of FA over Z3, next we

define a homomorphism of spectral sequences

{hr, r>:2) : {'£„ r ^

in the following way:

canonically. Then, h2 is defined by

ίhy'i = yι and λ2 /̂ = Xi.

The choices of Λ Z, jy, and the construction of Έr allows us the successive defi-

nition of hr namely h2 commutes with d2 and induces the homomorphism hz,

hz commutes with dz and induces the homomorphism hh and so on.

Now, since K '-B. - £» and Λ? * : '^2' * = £? f * an identity map, by

Theorem CSS we can conclude that
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(3) hV° : H*{BF4\ Z5)~B.

In particular y2G *? 0 and this is the 53*-image of - J^άy9 by (2). Since B

contains only one odd degree generator yd and deg ^y* = 25 is odd, we have

(4) -c^S=^oβiβ

with aiG^H^iBFt', Z3). Consider δ*av& = b. b has odd degree so that b=y%c

with C&H*(BFA'> Z3) by the same reason as above. Then, applying δf on both

sides of (4) we have

^25 = δ} (y* Λiβ) = - y» δϊaiG = - y9y9 c = 0.

This contradicts to (3). Therefore H*(F4', Z3) has no system of universally

transgressive generators. (q.e.d.)

2. Remark. The same discussion can be applied to many other compact

Lie groups G for which ^-torsion (p odd prime) exist and the cohomology ring

H*(G't Zp) is known. For example,

H*(PU(p); Zp) (j£>*2), H*(Es; Z3),

H*(R; z3), ^ * ( ^ 8 ; z3), H*{Es; z s)

have no system of universally transgressive generators. These cohomology

rings are determined in [3; 5; 6]. Here we mention only that these coho-

mology rings contain only one (or two in case H*(E%\ Zs)) generator of even

degree with height p.

But this property does not imply immediately that the "Pontrjagin ring

H*{G; Zp) is not commutative", as examples of Kojima [11] i^ίSpin (2S+ 1)

Z2) (5^4) show i t

3. By (1) and the Prop. 1 we can determine the behaviors of generators of

H*(Fίl Zs) in the universal spectral sequence.

LEMMA 1. H*(BFi I Z3) = Z3[^4, jVsIl ® Λ3(y9) in deg. <̂  11 with relations

y\ = τ(Xi)y ys = JPιy.\ and yQ = f

Proof. By (1) we see immediately that #3, XΊ, x$ are universally trans-

gressive because x3 is a generator with the lowest degree and J^ 1 and £3* com-

mutes with the transgression. Then a similar construction with that in the

proof of the Prop. 1 and Theorem WCSS prove this lemma. (q.e.d.)
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PROPOSITION 2. In the universal spectral sequence {Er) of F 4 over Z>& the

behaviors of generators of H*{FA\ ZZ) are as follows: xs, Xi, Xs are universally

transgressive Xu and X15 cannot be chosen to be universally transgressive and

they can be chosen such that

diKiXn = diκ)xχs = 0 for 2 ̂  i < 9,

= κl(y9Θxs) # 0,

^ 0.

Proof. By adding some decomposable elements we can change the generator

#n to satisfy

difcjXu = 0 for 2 ̂  i ̂ 8 .

If ddtclxu = Q, then the generators Xn and Xis = JP1Xn must be universally trans-

gressive. This contradicts to the Prop. 1. Therefore

On the other hand E\'% is 1-dimensional and generated by y*®xz. Hence

is ί/r-cocycles for all r S 2, yAy^ = 0 and

= fcl{y9®x3)

after changing the coefficient of Xn suitably. Then Xιz=-jPιXn (the changed

generator of deg. 15) is Λ-cocycles for 2 ̂  r ^ 8 and

by some properties of reduced powers in spectral sequences [2] (ie., relations

with dr and the Cartan formula). This implies that ysjyo = 0. Then d%κ\xiz # 0.

(q.e.d.)

By this proposition we can discuss the universal spectral sequence of Fι

over Z'6 in low degrees immediately, and we have

COROLLARY. Hr (BFi; Z 3) =Z%X_y^ y%\® A^VQ)/(yiy9t y8ys) in deg. ^ 19.

§3. The coproduct in H*(FA; Zz) and the Pontrjagin ring H*(FA; Z3)

1. For any connected compact Lie group G the group multiplication h : GxG

--» G induces the coproduct

h* : H*(G; ZP)-*H*(G; ZP)®H*(G; Zp)

for any prime p. For a principal G-bundle (E, B, π, G) the right translation
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h : E x G -> E induces a homomorphism

h* : Er-> Er®H*(G; Zp) ( r ^ 2 )

of associated spectral sequences over Zp [4], p. 174. The operation of

u^HsiG; Zp) on H*(G; Zp) of deg - s or on Er of deg (0, - s ) ,

#«* = Σ <#•, w> **•

where * e # * ( G ; Zj>) or e i ? r and fc** = Σ*/®:yiι was first defined by Leray

and then used by Borel [5] for the study of the coproduct in i/*(Sρin (10) Z2).

#« in the spectral sequence of a principal G-bundle has the following proper-

ties [5] :

i) ΰ-u commutes with dr and κr

tt

ii) in E2 = H*(B; Zp)®H*(G; Zp) we have ΰ-u(b ® x) = b ® &ux for

b(=H*(B; Zp) a n d * e t f * ( G ; Zp).

2. THEOREM 1. For generators of H*(F.il Z3) which behave in the universal

spectral sequence as stated in the Prop. 2, their coproducts are as follows:

a) Xz, Xu Xs are primitive,

b) h*Xn

C ) h*Xi5

Proof, a) is immediate by the Prop. 20.1 of [4].

Let ui be the dual class of x% and #, be the operation associated with m

(ί = 3, 8). Then

h* Xn = 1 ® Xn + Xu ® 1 -f- ΰ sXn ® Xz + d*Xii ® X%.

By the Prop. 2 and the property i) of ΰ u we see that ϋsXn is a permanent

element. Therefore

#8*11 = 0

since universal spectral sequences have no permanent elements except zero.

By the Prop. 2 and the properties i) and ii) of ϋ-u we see that ϋ zXn is dr-

cocycles for 2 ^ r ^ 8, and

Therefore #3ΛΊI - A;8 is permanent. Hence

= *8
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And b) is proved.

c) is obtained by applying J ^ 1 on both sides of b) since JPιXn = X15, J^ιXs

= xτ and c ^ ^ 8 = 0. (q.e.d.)

3. Since the generators #/, ί = 3, 7, 8, 11, lδ, form a 3-simple system of

generators of ϋ/*(F 4 ; Z3) by a terminology of [5],

Xi\ ' ' ' Xir> Xii ' ' ' XirXSi Xiχ * ' ' XirX%

form an additive basis of H^iFil Z 3) where {iu . . . , ir) are subsequences of

{3, 7, 11, 15}. We denote by Viu...tir1 ViXt...,ir\u Vilt...,ir;2 the dual basis in

homology. We use the symbol [>/, vf] to denote Vi^JVJ- ( -l)tJVjWvi.

THEOREM 2. The Pontrjagin ring H^iFil Z%) is non-commutative and has

a 3-simple system of generators Vs, v7, vs, Vu, Vι*> satisfying the following relations:

Vi V Vi = 0 for i # 8, ŝ V υs V vs = 0

Cvi, fly] = 0 /or ί <j and (i, /) % (3, 8), (7, 8),

. Every ^ e i 7 * ( F 4 ; Z3) can be written as

with ΛΓ, aid ^ i ^3) G Λ5{χo y χ7)^Z sίxsl/(xl). If we put

ii) = h*(aι) U1

then Λ*(^) — Σ ^ is symmetric in the sense of [5], p. 283. In case y is mo-

nomial, put v = xιv - - - Xirx\ (0 ^ e ̂  2), then

(5) fe*(.y)

If we write bj explicitly like bι = h*{aι) {x%®Xz)> etc., then we see easily

that

< bj, Viί,...,ir-ι®Vir > = 0

(6) <bj, Vilt...,ir®vs> = 0

<bj, Viu...tir.,i®υ% > = 0

for any subsequence {zΊ, . . . , ir) C {3, 7, 11, 15} and / = 1, 2, 3, and that
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< bu vi®Vj > = 0 if (f, j) * (8, 3),

(7) <Z>2, vi®Vj> = 0 if (/,/)=* (8, 7),

< fay Vi0vj > = 0 for all (f, / ) .

Using (5) and (6) we can see that

tf/i,...,ir = Vix,...,ir_χ\l Vir

whence by an induction on r we have

Viu...,ir = fl^V

for any {£, . . . , *V} C {3, 7, 11, 15}. Hence i;, , f = 3, 7, 11, 15, 8, form a 3-simple

system of generators.

(7) and the fact that h*(y) - *Σbj is symmetric show that

In. υjl = 0 for (i, j)*(8, 3), (8, 7) and i^j.

In particular we have v% V v% = 0 for f odd.

The proofs of the last two relations are entirely the same with the corre-

sponding part of the proof of [5], Theoreme 16.4, and are omitted. (q.e.d.)

Chapter II. On some homology relations of loop spaces
of compact exceptional groups

§ 1. Preliminaries

1. Let K be a compact connected and simply connected Lie group. Bott-

Samelson [10] described a homology basis of H*(ΩK; Z) {ΩK is the loop space

of K) by making use of K-cycles.

Let T C K be a fixed maximal torus in K, R be the universal covering group

of T and η : R ---> T be the covering map. Further we denote by D the diagram

defined on R.

By a singular plane of codimension 1 in D we mean a pair (0, n) of a root

form θ and an integer n. It is oriented and (θ, n) and ( — θ, —n) are dis-

tinguished. Let P = {pi, . . . , pk) be a finite ordered set of singular planes in

D of codimension 1. We use the following notations due to [10]: ~pi
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k

K(pi)= the connected centralizer of -pi, W(P) = ΊJK(pi). Then the K-cyc\e
1

Γ(P) associated with P is defined by Γ(P) = W(P)/Tk where the right trans-

lations of Tk on PF(P) are defined by

(XU . , Xk) (ft, . . . , tk) = (#ift, t\XX\U, . . . , tk-iXktk)

for U , . . . , AΓAΓ) e WXP) and (ft, . . . , tk) e Γfe.

Later we need if-cycles Γ( P) without the restriction of codim pi — 1 to

obtain some relations between homology classes in H*{ΩK', Z) expressed by

/^-cycles. They are called here the general /^-cycles to distinguish from the

original iΓ-cycles.

The if-cycle Γ(P) admits an iterated fibration with cross-sections. The base

space is K(pι)lT and the successive fibres are K(p2)/T, . . . , K(pk)lT. K(pi)/T

are orientable, whence Γ(P) is orientable. If codim pi = 1, then K(pi)lT is a

2-sphere and has a canonical orientation determined by the root vector of pi

as in [10], Chap. II, §3. Hence the original if-cycle has a natural orientation.

The orientation of a general i^-cycle Γ(P) is determined depending on the choice

of the orientations of K(pi)/T with codim pi^2.

2. Let Pf = {pilt . . . , pir) be a subsequence of P. We imbed Γ{Pf) as a

submanifold of ΓiP). Let i : W(P') -» PF(P) be an inclusion defined by

πt ° t(Xu . . . , Xr) = Xt if t e {ίi, . . . , ίr}

= ^ if ί Φ {A, . . . , ίV}

for {xι, . . . , xr) e PF(P'), where 7rί : FΓ(P) -»-fiΓ(̂ /) is the natural projection

onto the ί-th factor and e is the neutral element of the group. Let h : Tr ~> Tk

be a homomorphism defined by

πt ° h(tu . . . , U) = e if t <ii

= ίi if iι ^ t < i'£

= is if fe ^ ί < ίs+i for 5 < r

= ίr if ir ^ ί

for (ft, . . . , ίr) e T r where πt '> Tk -* T is the natural projection onto the ί-th

factor. Then f is clearly a boundle map relative to the homomorphism h and

induces an injection
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7: Γ ( P ' ) C Π P ) .

This imbedding may be considered as a canonical one, and Γ(P'), oriented natu-

rally or in a suitable way, gives an integral cycle in Γ(P), The submanifold

Γ(Pf) is called a sub ϋΓ-cycle in Γ(P).

3. H*(Γ(P) Z) has no torsion, and in case Γ{P) being an original one Bott-

Samelson [10], Chap. II, Prop. 4.2, determined the cohomology ring H*(Γ{P)

Z). Sub /^-cycles Γ(pi) in Γ(P) associated with a single plane pi (1 ^ i ^ k)

form a basis of H2(Γ(P) Z). Let {#/} be the dual basis of H2(Γ(P); Z).

Then by [10], Chap. II, Prop. 4.2, we see easily that x3\ - xjat jι<j2< * * <js,

form an additive basis of H*(Γ(P); Z). On the other hand ϊ* (xj\- xja) =

the top dimensional generator of H*(Γ(Pf) Z) or zero according as {ju . . . ,

js} = {iu - - , ίV} or not. From these we see easily that sub if-cycles in Γ(P)

form an additive basis of HJΓ(P) Z) when Γ(P) is an original one. Incase

of a general iΓ-cycle the description of the homology basis is more involved.

4. For any if-cycle Γ(P) there are associated a homology class P* in

H*{ΩK\ Z) [9, 10]. For the definition of a chain c = {c0, Ci, . . . , c&} subject

to P we refer to [9], §3. For any chanin c subject to P we have a map

fp : ΠP) -> i?K

Ps, is defined by jP*=/^(the fundamental class of Γ(P)). P* is determined

independently of c. These constructions are valid also for general if-cycles.

The only thing we should take care of is the orientation of Γ(P) as we men-

tioned already.

5. Let P= {p2, . . . , Pk) be an ordered set of k - 1 singular planes of condi-

mension 1 in D. Let βι and 02 be two roots of K such that they have the same

length and (θίf θ2) < 0. Then Θ3 = θ1 + Θ2 is a root of K. Let n be an integer

and we put qv = (θu n), q2- (θ2y 0), qs= (Θ&, n) and pi = QιΓ\ q2. Then φ, q2 and

<y3 contain j^i. Put P ' = {jί>i, P}. /"XPO is a general iΓ-cycle containing Γ{P)

as a sub ϋΓ-cycle. Put Pi = {φ , P} (ί = 1, 2, 3). The inclusions Kiqd C ίΓ(ίi)

induce inclusions WiPi) C Pf (PO, which are bundle maps and induce in turn

imbeddings

CΓ(P') for each / = 1, 2, 3.

The semi-simple part of K(pι) is of type Λ2 and is denoted by A2, which
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have ± θi (ί = 1, 2, 3) as roots. A2/T ~ K(pi)/T canonically where V = A2C\T

is a maximal torus in A2. Let r, ( f=l, 2, 3) be root vectors associated with

θi in the sense of Stiefel Γ17J, i.e., r, is perpendicular to 0; and 0;(r/) =2. r*

defines an integral cycle in Hi(T') with a relation τ3 - n-f r2. 2-spheres KiqdlT

in A2/Tf represent 2-cycles yι of H2(A2/T') such that their homology trans-

gression images in the fibration {A2, A2/T\ T1) are π. Since this transgression

defined on H2(A2/Tf) is injective, we have the relation

(1) ^3 = ^1 + ^1.

Γ(P') is fibred with Γ(P) as its fibre and with A?JT' as its base space.

The associated homology spectral sequence over Z is collapsed because the fibre

and the base space have trivial homology groups in odd degrees. The integral

cycle Γ(Pi) represents yi®P* in the E«> term for each ί = l , 2, 3, where P*

denotes the fundamental class of the homology group of the fibre. (1) implies

that

(1') 3>3®P*=>Ί(g>P*+;y2ΘP* in £«.

Since P* is a homology class of the fibre with the highest degree, (1') implies

in turn that

(2) Γ(Ps)* = Γ(P1)* + Γ(P>)*

where Γ(Pi)* denote the classes in H*(ΠP'); Z) represented by the integral

cycles ΠPi) in Γ(P').

PROPOSITION 1. Pu P2 and Pό are defined as above, then

P3* = Pi* + A* in H2k(ΩK; Z).

Proof. Let c be a chain subject to Pf. Then c is also subject to P, , ί = l,

2, 3. And

A =/£/ I Pi for each t - 1, 2, 3.

Then (2) and the definition of P* * imply the conclusion of this proposition.

(q.e.d.)

6. Let W be the Weyl group of K operated in R or in T. An element

w e W transforms an ordered set P={pu , Pk) of singular planes to wP

Let a be a representative of w in the normalizer iV(Γ) of T. The inner
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automorphism ψa : K-> K defined by a, maps K(pd onto K(wpi) as is easily

seen, and induces ψa' W(P) -> W(wP) defined by ψa = ψa x * * * x ψa. This is

a bundle, map relative to a homomorphism w : T^ -> Tk defined by the diagonal

action of w, whence we have an induced map

ψa* : Γ(P) -> ΠwP).

ψa* : H*(Γ(P)) ~> H*(Γ{wP)) depends only on w and does not depend on the

choice of a. The inner automorphism ψa induces a map ψa ΩK-> ΩK. Since

K is connected, 0fl is homotopic to the identity map and φa* H{ΩK) -» H(ΩK)

is equal to the identity.

Let c b e a chain subject to P, then zi c is a chain subject to wP. Now the

following diagram

/;
ΠP) > ΩK

V«$ I ! φa
JwP

Γ(wP) > ΩK

is clearly commutative, whence we have the

PROPOSITION 2. P* = (ivP)* for any W^ΞW.

In case Γ(P) is a general iΓ-cycle we must take care of the orientations of

Γ(P) and Γ(wP) in the above proposition.

7. Let P- {pu . . . , pk) be an ordered set of singular planes with codim

pj-1 except a plane pi. Assume that pi has codimension 2 and pi= (θu n)

ίλiθo, o) such that θι and ^2 have the same length and ( î, θ2) < 0. Then the

semisimple part of Kipi) is of type A2 and is denoted by A2 as in No. 1.5. Put

#3 = 01 + 02, then the plane (03. w) contains pi. The Weyl group PF(Λ>) of A2

is a subgroup of the Weyl group W(K) of K Let /?2 e W(A2) be the reflection

across (θ2, 0). /?2 maps (0i, n) onto (03, w) and vice versa. Hence R2 keeps

pi invariant.

If we fix an orientation of Kipi)IT, then the orientation of T\P) as well

as the orientation of Γ(R2P) is determined. Now R2 reverses the orientation

of T, whereas ψa preserves the orientation of K(pi) where ψa is an inner auto-

morphism of K(pi) defined by a representative a of R2 in N(TΠ A2). Hence

the induced map <pa% - K{pi)/T-* K{pi)/T reverses the orientation. Hence by

the Prop. 2 and the remark at the end of No. 2.6 we see that P* = - (Λ2P)*.
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In particular, if R2 keeps planes pj invariant of j # /, i.e., P = R2P, then we see

that P* = 0.

PROPOSITION 3. Let P be as above and assume that θ2 is orthogonal to all

roots of pj for j ^ i. Then P* = 0.

8. Here we give a modified description of an original if-cycle Γ(P) which

is convenient in the next No.

Let P={ρu . . . , ρk) be an ordered set of k singular planes of codimension

1. The semisimple part of K(pϊ) is a 3-sphere denoted by Sz(pi) whose maxi-

mal torus S1(pi) = S3{pi) Π T is a circle perpendicular to pi. We remark that

for any ί e T the inner automorphism defined by t maps Ss(pi) into itself.

Put W'(P) = ΠSHpi) and T'(P) = TLSHpi). Let Tf(P) operate on W'(P)
1 1

by
(Xi, . . . , Xk) (ti, . . . , tk) = (Xih, tι lX2tιt2,

tϊ1 fΓ-Wi U, . . . , tϊ1 tk )

for (xl9 . . . , * * ) € = W'(P) and (tu . . . , ^ ) e T ' ίP) . Then FΓ'(P) is a princi-

pal Tf(P) bundle. Let / : Tf(P)->Tk be a homomorphism defined by

f(tu . . . , * * ) = Ui, ίife, . . . , U ti, . . . , tt ίife)

for (ίj, . . . , tk) e T r (P). Then the natural inclusion W'(P)-+ W(P) is clearly

a bundle map relative to / and induces a homeomorphism of base spaces, i.e.,

9. Here we assume that the group K is simple and simply laced, i.e., all

roots of K have the same length. In an original ZΓ-cycle Γ(P) with P= {pi,

. . . , pk) let us assume that two successive planes pi and pi+ι are orthogonal

to each other and put P ' = {pi, . . . , pi-ι, pi<rU pi, pi+2, . . . , pk).

PROPOSITION 4. P* = Pi .

Proof. The roots of ^ and ^ + 3 are denoted by /?, and θin Since A' is

simply laced, θi±θi+1 are not roots. This implies that the semisimple part of

K(q)y q-pi ίλpi+ί, is of type Ai x Au and the direct factors are S3(i>/) and

S3(pi+1) respectively. Hence S*(pi) and S*(pi+ι) are elementwise commutative

in K.

Let 1 : W'(P) -> I^'IPO be a map defined by Z(^, . . . , # * ) = (ΛΓI, . . . ,

* ί - i , Λ ι + i , * ί , Λ Γ . + 2 , . . , Xk) f o r ( Λ Γ I , . , . , X k ) ^ \
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-» T'(P') is a homomorphism and X is a bundle map relative to χ inducing a

homeomorphism of base spaces

X :

X is orientation preserving since #* transforms the cohomology fundamental

class Xί - - - Xk to the cohomology fundamental class as is easily seen.

Let e={co, . . . , ck-i) be a chain subject to P" ~ {pi, . . . , pi-u Q, pivi,

. . . , pk). c may be considered as a chain subject to P or to P' with (z+ l)-th

polygon collapsed to a point. Since S3(pi) and S*{pin) are elementwise com-

mutative in K we see easily that the diagram

Γ(P')

is commutative. Hence P* = Pi. (q.e.d.)

10. Let Γ(P) be an original K-cyc\e with P = {£1, . . . , pk). Further, assume

that A ==£,•+1. Then

PROPOSITION 5. P* = 0.

Proof. Put P' - (A V - pk) by deleting pi from P. Let

α: : K{pι) X #(Λ+i) -> K(pi+1)

be the map defined by the multiplication in the group.

a=eX - XcXaXcX — Xt : W(P) -> W(P')

is a bundle map relative to a I T/<?, where c is identity map, and induces a may

α : ΠP) -> Γ(P').

Let c be a chain subject to P'. ^ is also subject to P with U+l)-th polygon

collapsed to a point. The diagram

is clearly commutative and
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a* (the fundamental class of Γ(P)) =0

since dimΓ(P) > dimΓ(P'). Hence P* = 0. (q.e.d.)

• 11. Let g be a fundamental chamber in D, i.e.,

% = {X<ΞR; ψi(X)>0 for all 1 ^ * ^ 7}

where ψi, l^i < I, are simple roots of a fundamental system of roots of K.

$ is subdivided in cells by singular planes in it. Let φ be the 1-skeleton

of the dual subdivision of $, called graph. To each vertex of φ there corre-

sponds a cell of $ and to each edge of $ there corresponds a cell in a singular

plane (0, n) in g. Let μ denote the dominant root of the fundamental system

of roots {ψi}. (μ} 1) is the nearest to the origin among the singular planes in

g so that ( l E g ; μ(X)<l} is a cell in $, i.e., the fundamental cell in £y

denoted by Δ%. v% is the vertex dual to J%. The dual vertex of a cell ά is

denoted by υ±.

Bott-Samelson [10], Chap. II, Prop. 9.1, described a homology basis of

H*(ΩK) Z) using if-cycles. To each vertex v^Φ there corresponds an element

P* of this basis such that P consists of the planes in a suitable path connecting

VA to v% in that order. Actually it would yield some difficulties to determine

the path carrying the generator. Nevertheless, in cases discussed in the next

section this point is solved by the Prop. 4.

By φι we denote the subgraph of φ containing all vertices and edges which

are connected to v% through, at most, i successive edges. φι is sufficient to

determine the homology basis of ΩK in deg. ^ 2 i.

§2. Homology basis in low degrees of loop spaces of F4, E&, E7i E8

1. The Schlafli figure of F4 is as follows:

where ψi, 1 <Ξ i <Ξ 4, is a fundamental system of roots of F4 and μ is the domi-

nant root of the fundamental system. φrA FA) is described as follows:

U 1) (μι, 1) (μ2, 1)
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where μi = μi-i-ψi for l ^ ί ' ^ 4 (μo = μ) and β[ = μ2-<pSm This is obtained

without difficulties by a succession of reflections of cells on some incident

singular planes starting from Jg.

Then the homology basis of H*(ΩFi\ Z) for deg. ^ 10 is given by

Pi*, P 2*, Λ*, P4*, P51* and P U ,
where

P/ = { U - i , 1), (A-2, 1), . . . , U 1)} for l gf ^ 4 ,

P5 = {(λii, 1), U , 1), . . . , (μ, 1)},

P ? = {(AIJ, 1), 0*8,1), . . . , U 1)}

and the double of the lower suffixes denote the dimensions of the corresponding

/vcycles.

2. The Schlafli figure of £ 6 is as follows:

o μ

where ψι and ψ\ are simple roots of a fundamental system of roots of E6 and μ

is the dominant root. ΦAEQ) is described as follows:

U, 1)

1) U , 1) (μ2, 1)

where μι = ̂ /-i - f , for 1 ^ 1 ̂  4 (^0 = A«) and μΊ = μ2- φf

df μ[ =

Notations of ordered sets of singular p lanes :

Pi - { U -i, D» (/M-2, 1), . . , ( A 1)} for 1 ύ

P i = { ( / i 3 , 1), Pa}, P ί = {0*3, 1), A } ,

^ = {(^4, l ) , (A13, l ) , P 3}, J°S = {(/i4, l ) , (^'3,1), P

P s = { ( / 4 , υ , (Λ*3, 1), Pa), P ί = { 0 i 3 , m (A*ί, 1), P

^ 3,
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Here we remark that μz and μ[ are orthogonal to each other, then by the Prop.

4 we see that Pl* = P\*. Hence the homology basis of H*(ΩEβ; Z) in deg.

^ 10 is given by

Pi*> P2*, P3*, PA*, P4*, P5*, P 5 * and P 5 *

where the double of lower suffixes denote degrees of these generators.

3. The Schlafli figure of E7 is as follows:

ψi Ψ2 ψz ψ4 ψs <Ps μ
o o o —o- O- o o

where μ is the dominant root. φi(Ei) is described as follows:

U , i)

~ --o o o -
U 1) (μlt 1) (μ2t 1) (U3} l )

where μι = μi-i - ψη-i for 1 ^ i ^ 6 (μo = μ) and μ\ = μ*- ψi, μ5 - μx - ψi.

Notations of ordered sets of singular planes:

Pi ={(μi-u 1), (μi-2, 1), . . , (μ, D) for 1 ̂  i^ 4,

P^ = {(̂ 4, 1), P4}, PS = {(AI!, 1), Λ>,

Pl = {U, 1), Pί>, Pl = {(μ'u 1), Ps), PS = {(A*4, l), Pi),

pJ = {U, 1), p{>, P7

2 = {(/ ,̂ 1), pj}, P Ϊ = { W , 1), Pi),

P } = { U , 1), Pel, J°?={U, 1), Pe), P? ={(/!{, 1), Pa).

We remark that μί is orthogonal to μ± and ̂ 5 respectively. Then by the Prop.

4 we see that PU = Pe*, P?* = P}* = P7* and P?* = P6

7*. Hence the homology

basis of H*(ΩE-i', Z) in deg. ^14 is given by

P. * ( l ^ f ^ 4 ) , PU, PS*, PU, PU, PU, PU and Pj* .

4. The Schlafli figure of Es is as follows:
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o

where μ is the dominant root. φi(Es) is described as follows:

U, i)

U

where μ; = μt-ι - ψi for 1 < i £ 6 (/Λ0 = A?) and /̂δ = μ~* ~

Notations of ordered sets of singular planes:

Pi ={(ui-u 1 ) , (βi-2, I), . . . , (μ, 1 ) }

,, 1), P 6 }, P? = { ( ^ 1). Pel

for l ^ i ^6 ,

The homology basis of H*{ΩEsl Z) in deg. ^14 is given by

Λ* (1£W^6), Pk- and P?*.

§3. The homology map

1. The inclusion / : F4 C ^ 6 is described by the following table, [16]. Let

Tbe a fixed maximal torus of £6 and V = FAΓ\T.

Tf is a maximal torus of F4. Let R and /?' be

the universal covering groups of E6 and F4. R'

is identified with rj^T'CR where y : R-+T is

the covering map. The map defined by this

identification is denoted by /. Under the in-

clusion / every root form of EQ determines a

root form of F4 if restricted to R'. This corre-

spondence of root forms is given in the above

table, i.e.,

R' = <ρί

R f = ̂ 2

I R' =

For every long root of F.± there corresponds one root of E& and for every short
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root of FA there correspond two mutually orthogonal roots of Ez [16]. These

roots of E% are called the associated roots with the given roots of F4. The

dominant root of EG is associated with the dominant root of FA, since

μ(Es) =2ψt + 3^2 + 2(?>3 +^3) + (ΨA + <PA)
and

R9 = 2<PΛFA) + 3^2(F4) + 4<?3(F

By τp (or τo) we denote the root vector corresponding to the root form μ

(or β) of FA (or of E%) in the sense of Stiefel [17]. If p is a long root of FA

and θ is the root of Eβ associated with p, then

(3) /(τ>) = ro

since rp is orthogonal to the plane (0, 0) in R. In particular

where μ denotes the dominant root of F 4 or of E6. If p is a short root of FA

and 0i, 02 are roots of Ee associated with p, then

(4) f(τ?) = τOl + ro2.

This is proved as follows: since rP is orthogonal to (0i, O)Π(02, 0) in i?, f(τP)

is a linear combination of τox and ΓΘ2, say <ZΓΘ1-I-&ΓΘ2. Then, since 0i and 02 are

orthogonal we have 0i(/(rp)) = 2 α and 0 2(/(rP)) = 26. On the other hand

di(f(τp)) = p(τ>) = 2. Hence a = b = l.

2. The inclusion / : F4-+ E6 induces the map of Lie algebras

df: UFA) -> L(Es).

Let

= /?' + Σ e α (dim eα = 2),

eβ (dime,, = 2)

be respectively canonical direct sum decompositions of L(FA) and of L(E*)

into the invariant subspaces under A d T ' and Ad T, where a (or β) runs the

positive roots subject to the simple system of roots {ψi) (or {ψit ψi}).

Let p be a singular plane of codimension 1 in R' and p be the root of p.

For the sake of simplicity we assume that p is positive. By a standard argu-

ment (3) and (4) imply that i) if p is a long root of FA and θ is the associated
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root of Eβ, then

(5) β?/(eP)Ceθ;

ii) if p is a short root of F 4 and θu θ2 are the associated roots of E%, then

(β) ί//(eP)CeOι + Co3.

Then we see that

(7) f(K(p)) C K(q) for each singular plane p = (p} n)

where q is a singular plane of codimension 1 or 2 according as p is long or

short such that in case p is long q-{θ, n) with 0 | R' = p and in case p is short

<?= (0i> n)Γ\(d2, n) with θi\Rf = p. The singular plane # is called the singular

plane in R associated with the plane p in Rf.

3. When p ~ (p, n) is a singular plane in R' such that p is a long root of

F 4 and <? = (#, n) is the associated plane in R, then

induces a homeomorphism

(8) fp :

which is orientation preserving by the reason of (3).

When p = (p, n) is a singular plane in Rf such that p is a short root of F4

and q=(θχ, n)ΓΛ(θ2, n) is the associated plane, then the semisimple part of

K(q) is of type Aι x A±. Let S3(0i) and S3(02) be the semisimple part of K(θι)

and K(θ2) respectively. Then the semisimple part of K(q) is S3(0i) • Ss(θ2)

and is isomorphic to S\θi) x S3(02) or to S3(0ι) xz2S
s(θ2) where Z2 is identified

with the centers of S3(0, ), f = 1, 2. Since / is an injection f\S3(p) is injective,

where S3(p) is the semisimple part of Kip), which shows that the semisimple

part of K{q) is isomorphic to S3(0i) x S3(02). Then the map

f\SHp) : S 8 (p)->S 3 (fc)xS 8 (Λ)

is the diagonal injection by the reason of (4). And the induced map

(9) fp : K(p)lT ^ S2(p) --> S2(0i) x S2(02) ^ K(q)/T

is the diagonal injection of 2-sphere, where S2{p) = Sz(p)/Sι(p) and S2(0, )
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Now S2(θi) is oriented by τOί and defines an integral 2-class in K(q)/T for

each ί = l , 2. They are homology basis of H,,(K(q)/T; Z). Let jy, , * = 1, 2, be

the dual basis of H2(K(q)/T), then

(10) f*{yi)=χ

where * is the cohomology fundamental class of K(p)/T'.

4. Let Γ(P) be an original F4-cycle associated with P = {jfr, . . . , ̂ } . Put

fP={qu * . , qk) where qι are singular planes associated with pi. Then the

map

fk x ' * * x fk : W(P) - Wί/P)

induces a map of if-cycles

/* : Π P ) -* Γ(/P)

as is easily seen.

Put pi = (p/, #/) and let (0/p . . . , Pir be short roots and the rest be long roots.

Let θis, θ'is be the roots of E6 associated with piH> 1 ^ s £ r. Further we put

q'is = (θ'ts> m8) and q/8= (θi'sf ms) for l<Ls<Lr. Now consider an ordered set of

singular planes

r\ ί ( i f in \

Q- \qu . . . , (fo-i, qiιt qlχ, . . . , φ β, #/s, . . . , qu)

consisting of k + r planes of codimension 1 in R. Then the product of maps

aj : K{qj)-> K(qj) for j$I,

bj : K(q'j) x ΛΓ(^ ') -̂  î ((?y) K(q'/) C i ί (φ ) for j e /,

where 7={ίΊ, . . . , /rh βy are identity maps and &/ are defined by the group

multiplication in EG, induces a homeomorphism

If we identify Π β ) and Γ(fP) by ZP, then H2(Γ(/P) Z) has a homology

basis consisting of sub β cycles K{qj)lTy j $ I, and K(qj)/T, K(q")/Tt j e 7.

Its dual cohomology basis is written as yj, yφ 7, jvy, ^y', y e 7. Then

for

for

by (8) and (10), where {xj}, l<j^k, is the cohomology basis of H2(Γ(P); Z)

which is dual to the F4-cycles K(pi)/Tf, l^ji
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Let
Q(iι> si i2, e2; . . . J zV, εr) ( ε s - l or 2)

be a subsequence of Q which is obtained from fP replacing QJS by q\8 or by q/3

according as es = 1 or 2 for l^s^r. This defines a 2^-dimensional sub F6-cycle

of Γ(fP) for each εi, . . . , εr. Since Q(ii, εi z2, ε2; . . . zV, εr) is the dual

homology class of yi* 'yίll)m - -yilδ)' ^ by No. 1.3, (11) shows the

PROPOSITION 6. The2k-cycles fpΓ(P) and ΣF(©(zΊ, εj . . . zV, ε r))

ί/ze 5«w^ cfoss in H2k(Γ{/P) Z).

Let Ωf : ί?F4 -» i2β be the map of loop spaces induced by / . Then we have

the

PROPOSITION 7. Ωf*{P*) = Σ © ί / i , ei; . . . ir, ε r)* where Ωf* denotes the

homology map induced by Ωf.

Let c be a chain subject to P in R'. Then fc is a chain subject to fP and

to Qdu εi,* . . . try εr) in R, and we have a commutative diagram

/?

Γ(fP) —*L+ ΩEβ .

Now by the Prop, β we have immediately a proof of the Prop. 7.

5. Now we discuss the homology map

\ Z) -» i/*(^E 6 ; Z)

in deg. ^ 10. Notations of Nos. 2.1 and 2.2 are used. If necessary to distinguish

things associated with F 4 or with EG we denote them by attaching (F4) or {E6).

The homology bases of H*(ΩF4; Z) and of HJΩE6; Z) in deg. ^10 are

given in Nos. 2.1 and 2.2.

The planes (/M(E6), 1) are associated with ί/̂  (F4), 1) for 0 ^ ί ^ 2 (^0 = A«)

The planes (ME&)y 1)Π(^/(F 6 ), 1) are associated with W F 4 ) , 1) for z = 3, 4.

The plane (m-ψί(Eβ), 1) is associated with (^J(F4), 1). Then by the Prop. 7

we see that

Ωf*\PiΛF,))=Pi*{E,) for 1 ̂  / ^ 3,
(12)

i 2 / ( P ( F ) ) PU(E) PU(F)
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ΩMPUiFj) = P\*(Et)+PU(Es)

+ UΛ, l ) , p}}+

(12")

Now

Hence by the Prop. 2

Similarly

Therefore

Next, μz - φ'z = μ[ - ψz. Then by the Prop. 1

{(μ*-ψΊ, 1), Pi}* = P35*-{(^3, 0), P}}*.

Put <? = (ψ3, 0) Π (μ3, 1). Since ψ3 + μ3 = μz, (μi, 1) contains ^ and the semisimple

part of K(q) is of type ^ 2 . Put P! = {(φz, 0), Pi} and P" = {q, (μu 1), ( ^ D>>

and let

α : K{ψz) X K{μ*) X K(μ2) -* ϋΓC β̂) * K(μs) * K{μz) C iί(^)

be defined by the group multiplication.

α: x f x ί : W(P') -> ίF(P")

induces

α : Γ(P') -> Γ(P")

where c is identity map.

Let c be a chain in R subject to P". c is considered also as a chain subject

to P' with the second and third polygons collapsed to a point. The diagram

is clearly commutative. Then, since Γ(P') and Γ{Pn) have the same dimension

we see that

Pi = βP'Jί with β e Z .
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On the other hand, by the Prop. 3 P* = 0, whence P* = 0. Consequently

Similarly*

{(/to-< l), P;U-PU = PL(S).
Therefore

(14) i?/*(P?*(F4))=2PL(£6).

(12), (13) and (14) describe the integral homology map Ωf* in deg. ^10.

From these we see easily that

PROPOSITION 8. The homology map Ωf* mod p is injective in deg. ^ 10 for

any odd prime p.

PROPOSITION 8'. The homology map Ωf% mod 2 is injective in deg. < 8.

Ωf,,\H]o(ΩF^; Z2) has the kernel of dimension 1 {generated by Pξ*(Fi)).

§4. The homology map H*(ΩEζ) -* H*(ΩE7)

1. In the Schlafli figure of No. 2.3, the centralizer of the straight line
7

Π (ψi, 0) is of type E6 x Tu [7]. As the semisimple part of this subgroup we
2 = 2

obtain the canonical inclusion E5 C E7. In this inclusion the dominant root of

E$ is not obtained as the restriction of the dominant root of Ei to E»ΠT (T is

the maximal torus of E~). By this reason we use another fundamental system

of roots described by the following figure.

-o

0 <fβ

Then the inclusion g : Eβ C En is defined as the subgroup generated by the

closed system of roots spanned by (^2+^3, <P*+<p7, ψs, ψz + ψi, fi + ̂ 2, ^β).

This is equivalent to the canonical inclusion. Hence its homological effects are

the same with the effects of the canonical inclusion.

2. Let T be the maximal torus of E7, Tf = & Π T be the maximal torus of

E5 and g : R1 C R be the induced inclusion of the universal covering groups as

in §3.

For each singular plane p~(p, n) in R\ let g=(0, w) be the associated

plane in R in the sense that p - R' Γ\ q. Then clearly g{K(p)) C iί(ρ) and the
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induced homeomorphism gp : K(β)/Tf ^ K(q)/T is orientation preserving.

Let Γ(P) be an original jRr cycle with P = {pu . . . , Pk). Put gP = {qu

Qk) where qt singular planes in R associated with pi. Γ(gP) is an original EΊ-

cycle. The map

'pπ '- W(P)-»W(gP)

induces a homeomorphism of iΓ-cycles

gP : Γ(P)~Γ(gP)

preserving orientations. Let

Ωg : ΩEβ -> ΩEΊ

be the map of loop spaces induced by g. Then it is immediate to see that

(15) Ωg*(P*) = (gP)*

where Ωg* is the map of integral homology groups induced by Ωg.

3. We discuss the homology map

Ωg* : H*{ΩE6; Z) - H,(ΩE7; Z)

in deg. ^ 10. Notations of Nos. 2.2 and 2.3 are used.

The planes (μi(EΊ), 1) are associated with (ME5), 1) for 0 ^ * ^ 2 (μQ = μ).

The planes (μ[(Ei), 1), (MEΊ), 1), (μs-φΛEi), 1) and (μtiEi), 1) are associated

with (μz(E5), 1), {μs(E6)y 1), (AuίS), 1) and (μ[(E*)9 1) respectively.

Then by (15) we see that

(16) Ωg*(Pi*{E5)) = P/*(£7) for 1 =g ί ^ 3,

(lθ'.i) ^ J | s (Pί*(£ β ) ) = {(/ιi, 1), P 3(^)}*,

(lβ'.ii) Ωg*(P\*(Es)) = {(̂ 4, 1), P*(E7)U,

(16".i) ^*(P6*(^β)) = {(Ais-ίP7, 1), (^, 1),

(16".ii) ^*(PB*(£β))={(Aiβ, 1), (Λ«4, 1), P8(£

(16".iii) ^ + (Pί*(£β)) = {(̂ 4, 1), (^!, 1),

Now

#, 7{U, 1), P3} = P4(£7), Λφi{(^, 1),

where i?^ denotes the reflection across the plane (^, , 0). Hence by the Prop. 2

and (16'. i) and (16'. ii) we see that
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(17) Ωg*(PU(Es)) = PA,(EΊ) for i = 1, 2.

Next

R?M(M*-?7, i), (/JJ, i), PZ) = P\(E7),

R?tR7ίR9Λ(M** 1), (A«4, 1), P*} = Pl(EΊ),

R?{(fu, 1), (μί, 1), P3} = {04, 1), P ^ ) } .

Since /4 + ?3 = Ai'i, by the Prop. 1 we have

( U , l), P 4 ( £ 7 ) U - P ^ ( £ 7 ) - { ( ^ , o), P 4(^T)}*.

Then, applying the same argument with the proof of (14) (use the Prop. 3 for

q=(φ3, 0)Π(μs, l)Γ\(μ2, D), we see that

{(<f3, 0), P 4 ( £ 7 ) K = 0.

Hence by the Prop. 2 and (16". i), ii) and iii) we have the

Ωg*(PL(E*))=PU(&) ίori = ly2t

Ωg*(PU(E*)) = Pl*(EΊ).

(16)- (18) describe the integral homology map Ωg* in deg. ^ 10. From these

we see immediately the

PROPOSITION 9. The homology map Ωg* mod p is surjective in deg. ^ 10 for

any prime p.

§ 5. The homology map h

1. By the same reason with § 4 we use the different fundamental system of

roots described by the following figure to define the inclusion h : EΊ C E8.

We (pf (β <\ ^P2. i I.

—o
- (μ - ψi ~ ψ2 - ψz ~ <pi)

o

The inclusion h is defined as the subgroup generated by the closed system of

roots spanned by {ψδ, ψs, ψi + ψz-i-φs, ψs. Ψ2, ψu ^4+^5 + ̂ 6 + ̂ 7). This is equiva-

lent to the canonical inclusion and its homological effects are the same with

those of the canonical one.

Let T be the maximal torus of Es, T' = T Γ\ E7 be the maximal torus of

Ei and h : R' C R be the inclusion of the universal covering groups of T' and T.

With each singular plane p = (p, n) in R1 there is associated a singular
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plane q = (θ, n) in R in the sense that p = R' Γ\ q. For each ordered set P={pi,

. . . , pk) of singular planes with codim pi = 1 we define hP~ {φ, . . . , qk) such

t h a t φ are associated with pi for 1 <: z<: &. Let

Ωh : ΩE7 -> ££*

be the map of loop spaces induced by h and ΩhM be the map of integral ho-

mology groups induced by Ωh. Then, in the same way with No. 4.2 we see

that

(19) Ωh,(PΫ) = UP),-.

2. We discuss the homology map

7; Z) -> KΫ(ΩEp,; Z)

in deg. ^ 14. Notations of Nos. 2.3 and 2. 4 are used.

The planes (μi(Es), 1) are associated with {μι(E7), 1) for 0 ^ z'^ 3 (/JO^/J).

The planes (μί(E9), 1), (μβ-ψsiEs), 1) and (/J - ^δ - ψz{E$), 1) are associated

with (μi(EΊ), 1) for 4 ^ / ^ 6 in its order, and (μ6-φΊ(Es), 1) and {μβ-ψΊ-ψs

-ψs-φ^Es), 1) are associated with (/^(li1?), 1) and (μf

5iEΊ), 1) respectively.

Then by (19) we see that

(20) ΩhΛPi*(E7)) - Pi^(Ez) for 1 ^ / ̂  4,

(20;.i) Ωh*(PU(E7)) = {(μί, 1), PAEs)}*,

(20Mi) β**(PS*(£7)) = {U-?>7, 1), P4(B8)}*,

(20". i) i2/^(PU(^τ))-{(/^-^8, 1), (μi 1), P4}*,

(20".ii) Ωh^PUiEτ)) = {(μδ- φ7, 1), (/Λ, 1), P4}*,

(20'". i) Ωh±(P]:ΛE7)) = {(μ5-ψs-<p5, 1), ( ^ - f t , 1), (μί, 1), P4}*,

(20"'.ii) M t(P7

2,,(^7)) = {(^"^ 7 , 1), ( /ΛI-^, 1), ί/i{, 1), P4>*.

Firstly

Hence by the Prop. 2 and (20'. i) and ii) we see that

(21) £MPU(£V)) =PsΛEs) for ί = l, 2.

Secondly

<P*> 1), U , 1), P4} = Po(^s),

φ7, 1), U , 1), Λ } - { ( ^ - ^ - f δ , 1),
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Since μ5 - <fs - ψ5 + (ψ5 + ψ5 + <fs) = μ-ύ, by the Prop. 1

{(/.ts-<P$-<Pt, 1), PrX = P^-{(ψr>+ψ6-\-ψs, 0), Pfi}*.

Further J ^ / ^ U ^ + ^ + ̂ β, 0), P,} = {(^5, 0), P5},

{(^5, 0), P5}+ = - P 6 * + { ( ^ , 1), (/M, 1), P4}* by the Prop. 1,

= - P 6 * by the Prop. 5.

Therefore by the Prop. 2 and (20". i) and ii) we see the

Ωh*(Pl*(E7)) = Pβ*{E*)t
(22)

Ωh*(PU(Ei)) =2Pβ*(Es).

Thirdly

RtoR-riRniiw-φs-φ-** i)» (^-^8, l), (jMβ, i), Px)-Pi

RnRvtRvΛiW-φΊ, 1), (i"6-^8, 1), (̂ 6, 1), Pi)

= {(^6-^7- ̂ 8-^5-^6, 1), Po}.

By the Prop. 1 we have

{(V8-<P7-<P*-~<fo-<Pe, 1), P6}* = P } * - {?5+¥>6+f7+?>3, 0), P6} + .

Further

^ { ( ^ 5 + ̂ 6 + ̂ 7+^8, 0), P6}={(?>5+?>6 + Ϋ>8, 0), P6}

and

{(^5 + ̂ 6 + ̂ , 0), P 6U = {(?5, 0), P6}>|.-+U^6, 0), Pβk + UPβ, 0), P6K

by the Prop. 1. Here

{(^6, 0), P6}+ = 0

by an argument used in the proof of (14) (for q-{ψr0J 0)Γ\(^5, 0)Γ\(/i4, 0)),

and

{(?6, 0), P 6 } ; , - - P U , {(fβ, 0), P ό U = - P ? *

by an argument used in the proof of (21). Hence by the Prop. 2 and (20'". i)

and ii) we see that

(20)-(22) describe the integral homology map Ωh% in deg. ̂ 12 completely,

whereas (23) describes J2/z+ in deg. 14 partly with the exception of Ωh^{PU(E7)).

Nevertheless by (20)-(23) we see immediately the following
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PROPOSITION 10. The homology map Ωg* mod p is surjective in deg. ^ 14

for any odd prime p.

Chapter III. The cohomology maps mod 3 induced

by the inclusions

§1. Preliminaries

1. By K we denote any one of groups F4, E5, EΊy Ez when they are discussed

at the same time. Similarly by k we denote any one of inclusions /, g, h.

H*(ΩK; Z3) in low degrees are described as follows:

H*(ΩF*l Z3) = Z3[ίfe, MIO] in deg. ^10,

H*(ΩE5; Zz) =ZzLu2, us, «io3 in deg. ^10,

H*(ΩEil Za) = Z 3 [^2, wio, uiJ ιin deg. ^ 1 4 ,

H*(ΩE9; Z 3)=Z 3[w2, uui in deg. ^14,

where suffixes of generators denote degrees, u* is defined as the dual class of

Pi*. Then, since βiMPi*) = P i * by (11.12), (11.16) and (11.20) we see that

(2) Ωk*{u2) = u2

where Ωk* denotes the cohomology map mod 3 induced by Ωk. By a discussion

of Bott-Samelson [10], Chap. II, §13, we know that

(3) ^ 0

for K^Eβ, E7 and E8. Since Ωf*\H*(ΩE6; Z3) is bijective by (11.12), we see

that (3) is true also for K-Fi. By (3) and the Poincare polynomials of com-

pact exceptional groups {e.g., cf. [8]), we can see that (1) is true.

2. H*(K\ Zz) are known by [3, 5, 6]. All elements of them have height

^ 3 and their systems of generators of type (M) are as follows:

FA ' #3, %7, %S, #11, #15 5

EQ I #3, #7, #8, #9, # i l , #15, #17 \
(4)

EΊ : #3, #7, #3, #11, #15, . i

E 3 : x z , χ Ί i # 3 , Λ Γ i δ , . . . .

The omitted generators are not needed in our present discussion. The following

relations about Steenrod reduced powers and Bockstein operation hold:

(5) #7 = J ^ # 3 , #s - δ*x7 for all groups K,
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(6) Xu>=J*ιXn for K=F*.

3. In the spectral sequences mod 3 associated with usual fibrations of loop

spaces of K (iΓ^base space, ΩK=the fibre), the generators of fibre coho-

mologies described in (1) are all transgressive and the transgression image of

Ui is represented by Xi+1.

This is proved by discussing these spectral sequences one by one, and of

course not generally true. For example, H*(ΩG2'> Z3) has generators u2y uG,

. . . , with u\ = 0, and the second generator u5 is not transgressive.

The transgression image of u2 is the well-defined element Xz. Hence, by

(2) we see that β*(#3) = #3. Consequently, by (5) we see that

(7) k*(xi)=Xi for * = 3, 7, 8.

The generators x3, XΊ and x$ are universally transgressive. Hence, by making

use of Theorem WCSS of Chap. I we see that

(8) H*{Bκ\ Zz) =ZzX_y.u yl®Λ*(y*) in deg. ^ 9

for all K= F4, Es, En and Fs, where y4 is the image of xΆ by the universal trans-

gression and ys = JPιy*, yd = δ*ya.

§2. / * : H * ( J E : 6 ; Z8)->Jy*(F4; Z3)

1. We choose the generators of H*(F4', Z3) to satisfy the Prop. 1.2. Con-

sider the spectral sequences mod 3 of loop spaces of FA and Eζy and the homo-

morphism of them induced by / .

i2/*-image of uio of ΩE5 must be transgressive. If $/*(wio) = 0, then wί0 of

ΩFA is not in the images of i2/*. This contradicts the Prop. II. 8 because we

see that Ωf* is surjective in degree 10 by this proposition. Hence we can choose

#io of ΩE5 such that
Ωf*(uιo) = UIQ.

Then, by No. 1.3, we see that/*(#n) = Xn + ax3xd with a^Zz.

We can choose xxl of Ee such that it is <ir-cocycles for r ^ 4 in the universal

spectral sequence. Then, using the Prop. 1.2 we see that

(70 / * ( * π ) = * π .

Now, by (5') /*(J^1Λu)=ΛΓi5 is indecomposable in H*(FA', Z3). Hence J*ιxu

is not decomposable in H*(F*'. Z3), and we can choose the generator xί5 of
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H*(EG; Z3) to satisfy

(6') #15=J^#11.

Then /*#iδ = #15, and by (4), (7) and (70 we see that / * mod 3 is surjective.

Hence we have the

PROPOSITION 1. Fi is totally non homologous zero mod 3 in Eβ.

2. PROPOSITION 2. In the universal spectral sequence mod 3 of E$ the be-

haviors of generators of H*(EQ; Z*) except #17 are as follows: Xz, XΊ, #S and #»

are universally transgressive Xu and ΛΓ35 are never universally transgressive and

they can be chosen such that

diKiXπ — diKiXiz = () for 2 ^ i < 9,

daiclxn = ici(yo<g}Xz) =¥ 0,

ddfclx 15 = ΛJgί.Vs®^) ^ 0.

The fact that x9 can be chosen to be universally transgressive is easily seen.

Then the Prop. 1.2, (60 and (70 prove this proposition.

COROLLARY. H*(Bt:b\ Z3) = Zslyi, y*, Vio] Θ Λ-Xy^liyφ, ysy ύ) in deg. SY1

where 3̂ 10̂  H10{BF.6 '> Z%) is a representative of the transgression image of XQ.

Remark. The behavior of Xn in the universal spectral sequence is not de-

termined. About this we have two possibilities: x17 can be chosen to be uni-

versally transgressive or not. If Xπ is never universally transgressive, then we

can choose it such that diκ]x\- — 0 for 2 ^ i < 10 and dwic%Xπ — /Γiol̂ ioΘ^s) # 0.

3. The coproduct 0* : H*iE6; Z3) -~> H*(EQ; ZZ)®H'-(E5; Z3) is determined

in the same way as Theorem 1.1.

PROPOSITION 3. For generators of H*(EG', Z?>) which behave in the universal

spectral sequence as stated in the Prop. 2 {and the remark to it) their coproducts

are as follows:

a) #3, XΊ, %S and xQ are primitive,

b) ψ*Xn = 1® tfii+ ΛΓii®l + # 8 ® #3,

C) 0*#15= l 0 # 1 5 + # 1 0 0 l +

d) </;*tfi7

ivhere 5 = 0 or 1 according as #17 can be chosen to be universally transgressive
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or not.

Then the Pontrjagin ring H^iEsl Zs) can be discussed in the same way as

Theorem 1.2.

THEOREM 1. The Pontrjagin ring H^{EZ Z3) is non-commutative and has a

3-simple system of generators fl3, vΊ, v$, vϋ, flu, vί5 and vn satisfying the following

relations

vι V Vi = 0 for i ^ 8 , fls V v$ V υs = 0,

[fl/, fl/] = 0 for i<j and (i, j) * (3, 8), (7, 8), (8, 9).

[flg, Wa] = Vn, [fls, fl7] = 0i5, [flu, fls] = ̂ J7

ivhere [_vi, vf] = ̂ Vz/y - ( - l)lJ'vjV vj and ε is the same with that in the Prop. 3.

Remark. The generators v-;, i = 3, 7, 8, 11, 15 of H^E5l Z3) can be chosen

as the /^-images of generators v% of H*(F.ι'f Z3). Then the relations of non-

commutativity lv$, v*] = flu, [flι?, v7l = fli5 are inherited from the corresponding

ones in H*(F*l Z3).

4. //" ' '(Adβ; Z3) has a system of generators xif x2, Λ:3, ΛΓ7, ΛΓ8, #O, ΛΓU, î5 of

type (M) [3]. Let 7r : EG -> Ad ̂ 6 be the projection. The above generators can

be chosen to satisfy

π* (Xi) = Xi for i - 3, 7, 8, 11, 15.

Since coproducts commute with the projection, from the Prop. 3 we see that

the coproducts φ*Xn and ψ*Xis in H^iAάEz', Z3) are not symmetric (by a defi-

nition of [5], p. 283). Then by [5], Prop. 2.5, we have the

THEOREM 2. The Pontrjagin ring H*(AdEβ', Zz) is not commutative.

§3. g*:H*(E7; Z3)->^*(£ 6; Z3)

1. By the Prop. II. 9 we see that Ωg* mod 3 is injective in deg. 10. Hence

Ωg:'(uio) =*F 0 and is transgressive in the fibration of loop space of £5 by No. 1.3.

Hence we can choose uio of ΩE7 such that

Ωg* (wio) = Wio

Then by the same discussion as No. 2.1 we can choose the generators Xa and

#i5 of H*(EΊ; Zn) to satisfy

(7") g*(Xn)=Xiu
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(6") Xit

Now f*g*Xit=.χis, and by (4), (7), (70 and (7") we see that f*g* mod 3 is

surjective. In another word

PROPOSITION 4. FA is totally non homologous zero mod 3 in £V. f*g* mod

3 is bijective in deg. ^ 18.

Then by Theorem WCSS the induced cohomology map of classifying spaces

of FA and EΊ is bijective in deg. ^ 19. Hence by the Cor. to the Prop. 1.2 we

see the

COROLLARY. H*(BE7', Z8) = Z 8L>4, yH® Λz(y*)l(yφy y$y$) in deg. ^19.

2. The behaviors of generators xn, ΛΓIB of H*(Ei\ Z3) in the universal

spectral sequences and their coproducts are entirely the same as those of corre-

sponding ones of H*(EQ', ZZ). SO that we omit to write them down.

As a corollary of the Prop. 4 we see the following

THEOREM 3. The Pontrjagin ring H*(EΊ; Z3) in deg. ^18, has 3-simple

system of generators Vi, i = 3, 7, 8, 11, 15, satisfying the relations described in

Theorem 1.2. H*(E7 Z3) is not commutative.

Remark. The relations of non-commutativity 1>S, v*~] = vn, Lvs, Vil^v^ are

inherited from those in F 4 and in E%.

§4. Λ*:iy*(£ 8 ; z3)->Br*(£7; r̂3)

1. By the Prop. II. 10 we see that Qlfi* mod 3 is injective in deg. 14. Then,

in the same way with No. 3.1 we can choose the generators uu^H*(ΩEsl Zs)

and x1B^H*(Esl Z3) to satisfy

(9) Ωti*(uu) = uu, h*(x!s) = Xvo.

Then, by similar discussions with those in preceding sections we have the follow-

ing results.

PROPOSITION 5. The generator Xro of H*{E$; Z3) behave in the universal

spectral sequence as follows:

diKiXiB = 0 for 2 ^ i < 9, d^tc\xro= £9(^9®#7) =*F 0.

The coproduct ψ*X\ζ in H*(E5; Z3) is as follows:
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COROLLARY. H*(BES; Z^ = Z3Ljy4, y»l®Λz(y9)/(j>8>) in deg. ^19.

THEOREM 4. 77z£ Pontrjagin ring H*(E$', Z?,) is not commutative and has

non-zero elements υz, v7, vSf viz, which generates H*{E$; Z3) in deg. ^ 1 8 and

satisfy the following relation of non commutatiυity

tv8, Vτ\ = Vis-

Remark. The relation [>8, v7] = #15 is inherited from the corresponding one

in F4, En, and £ 7 .

§ 5. On homotopy abelians

Let G D H be a group and a subgroup. The maps

λ, μ : Hx H-> G

are defined by λ(x, y) = xy = μ(y, x) for x, y e //. When A and μ are homotopic,

then H is called homotopy abelian in G, [19]. When G = H and G is homotopy

abelian in G, then we say simply that G is homotopy abelian.

As is well-known, if G is homotopy-abelian, then the Pontrjagin products

of G over any coefficient field are commutative if H is homotopy abelian in

G, then the Pontrjagin products of H into G over any coefficient field are com-

mutative.

Hence, by Theorems 1, 2, 3 and 4 and the remarks to them we can see the

following Theorems.

THEOREM 5. E5, Ad£β, EΊy AάEr and Es are not homotopy abelian.

THEOREM 6. In the inclusions

F4CE5CE7C Es,

every subgroup is not homotopy abelian in any group containing it.

Remark. Theorem 5, jointly with the results of James-Thomas [19], proves

that every compact simple Lie group is not homotopy abelian.

The author knows another proof of Theorem 5 in the same line with the

James-Thomas' proof [17] of homotopy non abelian of other compact simple

Lie groups, cf. [20]. Nevertheless, I think the Theorem 6 is a new result.
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