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ABSTRACT

We investigate the usual method of discretizing loss reserving data by calendar year
and show how this procedure may introduce fluctuations in the delay probabilities.
These fluctuations, when treated as random fluctuations, possess a special correla-
tion structure and we present a simple credibility method accounting for these
fluctuations. The results are illustrated by a numerical example.
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1. INTRODUCTION

Starting from a continuous time model, with claims occurring according to an
inhomogeneous Poisson process and with the waiting times until notification being
iid real-valued variables, it is shown how the traditional way of discretizing the
observations according to calendar year can introduce a time dependence in the
delay probabilities. Thus, variations between occurrence years in the delay
probabilities may occur simply as a consequence of the way the data is discretized,
even when the distribution of the actual delays is independent of time.

In recent years a number of papers on loss reserving have appeared where the
delay probabilities for observations in discrete time are assumed to vary between
occurrence years. In these papers (HESSELAGER and WITTING, 1988; NEUHAUS,

1992; LAWLESS, 1994; HESS and SCHMIDT, 1994a, b) the variations are treated as
random fluctuations between occurrence years and are modelled by a Dirichlet
distribution which is a mathematically very convenient construct. In the present
paper it is shown that fluctuations induced in the discretizing process possess a
special structure and that these fluctuations can not be described by a Dirichlet
distribution in a reasonable manner. In fact, in typical cases the probability that a
claim is reported in the year of occurrence is negatively correlated with all the other
delay probabilities, and these are positively correlated. In a Dirichlet distribution, all
probabilities are negatively correlated.
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120 OLE HESSELAGER

It should be noted that this paper deals only with the fluctuations which are
introduced in the discretizing process, and we are of course aware that there may be
other sources of variation.

2. FROM CONTINUOUS TO DISCRETE TIME MODELS

We start by considering the continuous time process (Tn, Wn), n = 1, 2, ..., where
0 < r | < r 2 < . . . denote the occurrence times, and VK,, W2, ... are the corresponding
real-valued waiting times from occurrence until notification. Most methods for loss
reserving assume that the observations have been discretized according to calendar
year as illustrated in Figure 1.

Delay

k
T Calendar time

i+j

FIGURE 1. Diagram for discretizing observations by calendar year.

The time axis is divided into intervals ( / - 1, / ] , / = 1, 2, ..., and the time interval
(<'- 1, i] is called year i. A claim incurred in year i is according to this method
reported with a delay of j years if it is reported in year i +j, and Figure 1 shows the
combinations of values (Tn, Wn) which fall into cell (/, j). It should be noted that
the cell (/, 0) is differently shaped and only half the size of the cells (i, j), j > 1.
Note also that the actual waiting time corresponding to observations in (/, j) is in
the interval [j - 1, j + 1], y> 1.

For i = 1, 2, ..., and j = 0, 1, ..., we denote by

I{TB e ( i - 1, i ] , Tn + Wn e (i+j- 1, i + y ] } ,

https://doi.org/10.2143/AST.25.2.563243 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.2.563243
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the number of claims incurred in year i and reported with a delay of j years. The
total number of claims incurred in year / is

Ni= lNij= I nTnz a-i,i]}.
j = 0 n == 1

We now make the following model assumptions pertaining to the continuous
time setting
(a) The claims occurrences {Tn]n are generated by a Poisson process with

parameter A(-) on [0, °°), where A(f) is a non-negative, non-decreasing and
right-continuous function representing the risk exposure for the interval [0, f\.

(b) The delays Wt, W2, ... are independent of {Tn}n and iid with common
distribution F.

For a Poisson process with parameter A(-) the number of events occurring in
disjoint time intervals are stochastically independent, and the number of events
occurring in (s, t] is Poisson distributed with parameter \(s, t) = A(t)- A(s). A
Poisson process with intensity X (•) has a parameter A it) = Jo' X (x)dx, such that A (•)
in this case is the measure with density A(-)-

While it is customary in collective risk theory to assume the existence of an
intensity, we choose here to work with the more general setting primarily because
we shall consider mixed Poisson models where A(-) is considered random, and
where t —» A (t) is not necessarily continuous (with probability one). Apart from this
technical reason, the reader should note that the case where A(-) is a non-random
measure having a mass point at t0, say, represents the situation where some event is
known to take place at time t0 generating a Poisson distributed number of claims
with parameter A(?o) - A(t0-). When in addition A(-) is taken to be random (a
stochastic process), one will also cover the cases where the time epochs for such
multiple claims (or catastrophes) are not known in advance.

For the moment we consider A ( ) as non-random and introduce for i = 1,
2, ...,

(2.1) A, = A ( / - 1, /), Ui(x) = A(i- l , i - l +x)/A,., x e (0, 1],

which is the total exposure for year i and the relative distribution of the exposure
over year /, respectively. It then follows from assumptions (a), (b) that the claim
numbers N^ are mutually independent and
(2.2) Ntj ~ Poisson (A,/?y),

where

Jo
- F(j-x)]Ui(dx)J>0,

and it is understood that F(z) = 0 for z<0 . The result (2.2), (2.3) is easily verified
by standard calculations making use of the fact that the occurrence times within
year /, conditionally given Nt, are distributed as the order statistics of Nt iid
variables with distribution £/,•(•) on (0, 1]. Alternatively, the result can be shown
using arguments similar to those given in the proof of Theorem 2 in NORBERG

(1993).
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The delay probabilities py will according to (2.3) in general depend on time i
through the distribution £/, of exposure over year i. This is very unfortunate from a
practical point of view, since it makes statistical estimation of the delay probabili-
ties difficult. However, if the Poisson process has an intensity A(-) which is
piecewise constant over the occurrence years,

HO = *m+I,
where [t] denotes the integer part of t, then

X (/ — 1 +s)ds

X (i - 1 + s) ds

(2.4) Ui(x) = — = x, x e (0, 1],

Jo

is the uniform distribution and is independent of time ;'. The delay probabilities /?,-,
are therefore also independent of i, and can now be estimated by statistical methods
in a straightforward manner. A more general situation where pVj becomes indepen-
dent of i is that where

A(f- 1, i - 1 +x) = X,A0(x), x e (0, 1], i = 1, 2, ...

This covers the situation where there exists a fixed measure A0(x) on (0,1]
representing seasonal variation in the exposure within occurrence years, whereas the
factors Xj represent the variation between the occurrence years. We obtain in this
case from (2.1) that

(2.5) U,(x) = A0(x)/A0(l), x e (0, 1],

which is again independent of i.

Remark 1. In the case (2.4) with a uniform distribution of exposure we may express
the delay probabilities (2.3) in terms of the stop-loss transform

(2.6) n(x) = I (1-FOO) dy
• X

for the continuous time delay distribution. This yields the expression

i")n\ \ i + n ( i ) —n(0), /=o
(•c. I) Pj — \ . . .

•

Remark 2. Had the occurrence times Tn and the waiting times Wn been discretized
separately, we would have that

N,j= I / { 7 B e ( i - l , /] , WnG{jJ+l]},
n = 1
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MODELLING OF DISCRETIZED CLAIM NUMBERS IN LOSS RESERVING 123

and it would then hold that the claim numbers Ntj are mutually independent and
Poisson distributed as

Ny ~ Poisson (A,pj),

with A, as in (2.1) and now with delay probabilities

which are always time-independent. The problem with this approach is of course
that the statistics NtJ with i+j = r can not be constructed (observed) at the end of
year r (at time r), since they involve reportings in the interval ( r - 1, r + 1].

From these remarks we are now able to conclude that when discretizing the
observations according to calendar year, or some other time unit, it is important to
choose the time unit in such a way that the risk can be regarded as constant over
these time periods, except possibly for the same seasonal variation within the time
periods. If this is not the case, one will introduce fluctuations in the delay
probabilities between the occurrence years. In particular, when seasonal variations
may occur within calendar years, one should be cautious about discretizing on a
quarterly basis, as is often done in practice.

3. THE STRUCTURE OF THE INDUCED VARIATION

We investigate here the structure of the fluctuations in the delay probabilities ptj

induced by variations in the distribution {/,• of exposure over year L Considering
only a fixed year /, we shall drop the subscript ;' in this section. For reasons of
simplicity we also assume that the continuous time delay distribution F has a
density /.

With Pj = po + ...+pj being the cdf. for the discretized delay distribution, we
obtain from (2.3) that

f F(j+\-x)U(dx)
Jo

(3.1) = F(j)+ f(J+l-x)U(x)dx,
Jo

where the latter equality follows by partial integration.
A pair of probability distributions with cumulative distribution functions G and

G* are ordered in stochastic order, written as G^SIG*, if (\-G)(x) s
(\-G*)(x) for all x. In the actuarial literature one also says that G* is more
dangerous than G, written as G <dG*, if there exists a c such that

G(x)<G*(x), x<c
( 3 ' 2 ) G(x)>G*(x), x>c'

and ixG(dx) :£ \xG*{dx). In addition to the sign change condition (3.2) for the
cumulative distribution function we shall also work with a sign change condition
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for the discretized delay probabilities. In this case we write P < 0 P* if

Po^Po,
( 3 3 ) Pj^Pf, J>0

It is well-known (e.g. KAAS et al, 1994, Th. III. 1.3) that G<dG* implies that G
is smaller than G* in stop-loss order, and also that P ̂ aP* implies that P ^stP*
(e.g. KAAS et al, 1994, Th. II. 1.3).

Lemma 1
(a) UrsstU*=> P^stP*
(b) If the density f is decreasing, then U £ „ U* => P —QP*

(c) If the density f is decreasing and convex, then U <d U* => P < 0 P*

Proof Assertion (a) follows immediately from (3.1) since

Pf-Pj= j f(j+l-x)(U*(x)-U(x))dx<0.
Jo •

Since Po=Po> this a l s o proves (3.3) fory = 0. For j s i , when/is decreasing, we
similarly find that

P* ~Pj= f (fU +l-x)- f(j-x)) (U* (x) - U{x))dx>0.
Jo • : • '

SO 30

which verifies (3.3) and hence assertion (b).
To verify (c) we write

Po~P%= fd-x)(U(x)-U*(x))dx

U*(x)] +f(l-c)(m*-m),

where m = j (1 - U(x))dx is the mean of the distribution U, and m* is the mean of
U*. Since/(I —x) is increasing it holds that/(I - x) - / ( I - c), and by assumption
also U(x)- U*(x), is positive for x>c and negative for x<c, and therefore
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For 7 ^ 1 we note that / being convex implies that h (x) - f(j + 1 - x) - f(j - x) is
decreasing. It then holds that h(x)-h(c) and U(x)-U*(x) have opposite signs,
and

f
Pj-pf =

Jo

1 M

(h(x)-h(c))(U(x)-U*{x))dx + h(c) [U(x) - U*(x)]dx
Jo

</z(c) [t/(x)-f/*(x)]Jx
Jo

= h (c) (m* - m) < 0,

since /i(c)<0. QED

Assertion (a) allows us to obtain lower and upper bounds for the discrete time
delay distribution when the distribution U of the exposure is completely unknown.
It follows that the lower and upper bounds are obtained by putting all the exposure
at the beginning and at the end of the year, respectively, which gives

(3.4) P~ = (F(l) , F(2), ...),

(3.5) P+ = (0, F( l ) , F(2), ...).

(Note that the - signifies the smallest distribution in stochastic order, which is the
largest cdf, and similarly for the +).

If the continuous time delay distribution has a decreasing density it can be
concluded that a stochastic increase in the distribution of exposure results in a
special type of stochastic increase in the discrete time delay distribution; namely
where mass is taken from the reportings with delay j = 0 and transferred to the
reportings with delay j > l . The same type of stochastic increase occurs if the
distribution of exposure becomes "more dangerous" (which is a weaker require-
ment), provided that the delay density is also convex.

We have seen that at least certain types of changes in the exposure distribution
lead to the special type of change in the delay probabilities where the probability of
immediate reporting varies inversely with the remaining delay probabilities. Thus, if
variations in the exposure distribution are considered as random, and only variations
satisfying the conditions of Lemma 1 are followed for, we will have that the
random probability of immediate reporting is negatively correlated with the rest of
the delay probabilities, and that these are positively correlated.

4. INDUCED RANDOM FLUCTUATIONS

In this section we consider the situation where the parameter A(-) itself is a
stochastic process. Note that there is a one to one correspondence between A (•) and
the pairs (A,, (/,), i = 1, 2, ..., and in the stochastic models considered here these
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pairs are iid for / = 1, 2, ..., and A, is independent of U,. The delay probabilities
(see (2.3))

• I

(4.1) Pij = I hi(x)Ut(dx),
">ij = hJ

Jo

(4.2) hj(x) = F(j+ 1 -x) - F(j-x), j = 0, 1, ...,

are in this case random variables with

• i

(4.3) JI: = EPii = I hi(x)u(dx),
Jo

Jo Jo
(4.4) c» = Cov(pu,pu)= \ I hj(x)hl{y)Q(dx,dy),

where

(4.5) u (x) = E U,(x), Q (dx, dy) = Cov (Ui (dx), Ut (dy)).

Conditionally given (A,, t/,-), the claim numbers Nijy j = 0, 1, ..., are mutually
independent and Poisson distributed with parameters AiPij (see (2.2)), which gives
the (unconditional) moments

(4.6) ENy = VJIJ,

(4.7) Cov (Ntj, Nu) = dji V7tj + 7ij JI, r2 + cjt (r
2 + v2),

where

(4.8) v = EA,, r2 = VarA,.

At the end of calendar year /, the observed claim numbers in respect of
occurrence year i are Af,-.= = (./V,o, ..., Nti /_,) ' , and fory > / - i we may predict N^
using credibility estimation as (see e.g. SUNDT, 1993, p. 34)

(4.9) Nij = ENij + Cov(^., N'is)0/arNisy
l (Nis - ENis).

The second order moments cjt may be written as cjt = yc/jCi, xjh where xjt

denotes the coefficient of correlation. We shall see that these for all practical
purposes can be a approximated by

(4.10)

1 - 1 - 1
- 1 1 1
- 1 1 1
- 1 1 1

and for this situation we have the following
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Lemma 2

With a moment structure (4.6), (4.7), and a correlation matrix (4.10), the credibility
estimator (4.9) is given by

where

T27l. „ ^-,
Zi = — , A; = >, Nnfjt.,

V + X 71. /<;-i

Q, = 2^ VI(NJI —ZiAjjti), EQi = v(l—Zj)v/mi,
m; 7i. isi-i

1 v 2 - 2
m> ~ ~~ ^ 7 r ' ^ ~ Z/ v '; 2+ (T +V )

and

V X V
jr. = 2J n /> v = — Z-i

/£/-; jr. ;</-i

'o = ~ ictxAo and v, = ycj/stj for j> 1.

Proof Letting a-s = vjTij, and assuming a correlation matrix (4.10), we may
according to (4.7) write the covariance matrix WarNis as

War N^ = vDiag (JT) + x2 jtst + (r2 + v2)aa\

where x = (JT0, ..., n,_ ,•)', and Diag (jt) is the diagonal matrix with the elements of %
placed in the diagonal. Using the inversion lemma (e.g. SUNDT, 1984, Lemma
6.1)

(Q+f9')-' = Q~x -Qlf9'Q'] 1—~,

one first calculates the inverse of P - vDiag (n) + r u n ' and subsequently uses the
same lemma to invert the matrix JP + (r2 + v2) aa'. The result then follows by
straightforward calculations from (4.9). •

Remark 3. The term 7r,-[(l —Zj)v + z,-A,-] appearing in Lemma 2 is the credibility
estimator for Ny in the discrete time mixed Poisson model

y

( 4 - H ) EA,. = v,
with fixed delay probabilities n-t and a random parameter A, as considered by
NORBERG (1986). The second term can therefore be viewed as a correction term,
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taking account of the random fluctuations in the delay probabilities induced in the
discretizing process. •

4.1. The exponential delay distribution

Consider the exponential continuous time delay distribution

F(x) = \-e~d\ x>0.

From (2.3) we obtain that

(4.12) pm = l - e " 1 " 1 * , .

(4.13) Pij = e-jlli(l-e-Uli)Vi,j= 1,2, ...,

where

(4.14)
Jo

It is seen from (4.12), (4.13) that the probabilities ptl are linearly dependent, and
that the correlation structure (4.10) is exact in this case.

Because (4.10) holds true, we may then use the credibility approach described in
Lemma 2, and for the constants vj introduced in Lemma 2 we furthermore observe
from (4.12), (4.13) that

(4.15)

Thus, if the parameters TCJ and v, r2 of the mixed Poisson model (4.11) are known, it
is also possible to calculate the credibility adjustment accounting for random
fluctuations in the delay probabilities ptj, when the mean E % and the coefficient of

variation iyVarli',/ElI', are known.
Consider the simple model where

dU, (x)
(4.16) '-±- = ( l -* l -) l [ O , i ]W + (l+fel-)l(i, i|W.

dx
and bj is a random variable with mean zero. This means that the exposure is (a
priori) expected to be constant over the year, but that variations occur such that the
actual exposure is ( l - £ , ) x l 0 0 % during the first half of the year and
(I +bj) x 100% during the second half. In this case we find that

exlfldx + bi\\ exlfidx - f exlfldx
o L J 1/2 Jo
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and

(4.17) EW, = fiie1'11-!),

(4.18)
1

Remark 4. We may view the above as a quick and dirty method of performing the
credibility adjustment in Lemma 2, based on the assumption of an exponential delay
distribution. Note that we do not necessarily suggest that the parameters jtj are
obtained from (4.3) with an exponential delay distribution, since these can be
estimated in a straightforward manner from the observed claim numbers N,j in the
run-off triangle. The exponential distribution is only used to generate the correlation
structure (4.10) as assumed in Lemma 2 and to reduce the number of second order
parameters c-jj (or vj) via (4.15). In Section 5 it will be demonstrated by example
that the correlation structure (4.10) can safely be assumed even when the delay
distribution is not exponential.

The model (4.16) is not essential to the simple approach presented here, and the

coefficient of variation ^VarVj/EW, can easily be obtained using other models for

(/,. Adopting (4.16) we suggest to fix the standard deviation ^Varfc, on a purely
subjective basis. •

4.2. The time continuous Poisson/Gamma model

Recall that the claim occurrences in the continuous time setting are assumed to be
generated by a Poisson process with parameter A (•)• In this section we consider the
time continuous Poisson/Gamma model, where A (•) is viewed as the realization of
a gamma process with parameters (y (•), /?)•

The gamma process with parameters (y(-)» $) has independent increments and
A(.s\ t) is gamma distributed with shape parameter y(s, t) = y(t)-y(s) and scale
parameter /?. Since the sample paths of a gamma process are not continuous, the
(conditional) Poisson with parameter A (•) does not have an intensity.

Remark 5. The Poisson/Gamma process has independent increments since the
Poisson process as well as the mixing gamma process have independent increments.
With

N ( s , t) = # { n \ T n s (s, t\]

denoting the number of occurrences in (s, t], it follows that the distribution of
N(s, t) is a gamma mixture of Poisson distributions, which yields a negative
binomial distribution,

with q = (1 + / ? ) " ' • •
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From the distribution of A(-) we want to derive the distribution of (A,, [/,) for i
= 1, 2, ..., and use this to investigate the distribution of the (random) delay
probabilities.

Since A, and [/, depend only on the increments of A (•) over year i according to
(2.1), we immediately conclude that (A,, £/,), i = 1, 2, ..., are stochastically
independent, and since A, is the increment of A (•) over year (' we also have that A,
~ Gamma (y(i- 1, i), fi). The distribution £/, is obtained from (2.1) by normalizing
the increments of A(-) over year i, and so it follows from FERGUSON (1973,
Section 4) that £/,-(•) is a Dirichlet process on (0,1] with parameter y(i-\,
i- 1 + x), x e [0, 1], and furthermore that £/,•(•) is stochastically independent of A,.
In particular, Ut(x) has a beta distribution with mean

u(x) = EUi(x) = y ( i - l , i - l + x ) / y ( i - \ , i),
and (FERGUSON, 1973, Th. 4)

(4.19) Cov(Ut(dx), Ut(dy)) = {dK yu(dx)-u(dx)u(dy)},
yd- 1 , 0 + 1

where dx< y equals 1 if x = y and zero otherwise.
In order for the pairs (A,, t/,) to be iid (which was previously assumed) we then

need to require that y(i- 1, i—l+x) and y(i- 1, 0 are independent of i, and
expressed in terms of the parameters (4.8) we have that y(i- 1, 0 = v2lx2 and
/3 = vh2. From (4.3)-(4.5) together with (4.19) we then find the first and second
order moments of the discrete time delay probabilities, which become

(4.20) jtj = Pij= I hj(x)u(dx),
Jo

(4.21) 4 = - 1 — j I hj(x)h,(x)u(dx)-JtjjiX,
V2 + TZ [ J o J

where ht(x) = F(j+ 1 -x) - F(j-x) was introduced in (4.2).
Notice that the bracket in (4.21) can be written as Cov(hj(Y), h,(Y)), where Y is

a random variable with distribution u (x) on (0, 1]. The delay probabilities pVj and pn

are therefore positively correlated if both ht and h, are either increasing or
decreasing, and are negatively correlated if one is increasing while the other is
decreasing. It is seen from (4.2) that ho(x) is always decreasing, and hj(x) for_/> 1
is certainly increasing if F has a decreasing density. This result matches assertion
(b) in Lemma 1.

Example 1. The (American) Pareto distribution with parameters (ij, a) has cdf (see
e.g. HOGG and KLUGMAN, 1984)

Tj + X
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a (decreasing) density

and a mean fi =

fix) =
arj"

\a+\
, x>0,

(v+xf

. It is a noteworthy property of this distribution that when
a-\

X is Pareto distributed with parameters (rj, a), then the conditional distribution of
X-y given that X>y is again Pareto with parameters (rj +y, a). The mean residual
lifetime (MRL) then becomes

(4.22) m (y) = E(X-y\x>y) = — = n + y.
a - 1 a-\

BENKTANDER and SEGERDAHL (1960) suggested to use the MRL as a useful tool for
investigating the tail of a severity distribution.

With a Pareto (r/, a) delay distribution, and u(x) = x, x e [0, 1], the average delay
distribution is calculated from (2.7) with the stop-loss transform given by

(4:23) = H-
a- I

whereas the parameters JT,7 appearing in (4.21) have to be calculated numerically.

•
5. NUMERICAL RESULTS

For a portfolio of accident policies we have observed all claim occurrences between
1/1/82 and 31/12/90, which have been reported before 3/3/92. The data have been
discretized according to calendar period, using an interval length of 3 month. Table
1 shows the run-off triangle by 31/12/90 containing the numbers of reported
disability claims, and since the portfolio has been observed until 3/3/92 we are also
able to construct the claim numbers which were eventually reported in this case.

TABLE 1

DISABILITY CLAIMS REPORTED BY 31/12/90, AND LATER REPORTINGS

I
2

3
4
5
6

0

72
71
69
70
67
55

1

35
35
42
31
31
—

Run-off triangle

delay j

2 3

7 4
6 3
4 4
9 —

— —
— —

4

3
2

—
—

—

5

0
—
—
—
—

—

0 1

_ _
— —

—
— —
— —
— 48

Actual reportings

delay j

2 3

_ _
—
—
2

4 2
7 4

4

_

3
1
1
2

5

_
2
3
2
1
2

These are shown in Table 1 as well. For the period 1/1/82-31/12/90 there has been
reported a total of 4015 disability claims, and the average reporting delay for these
claims was ,M = 0.91 (with a time unit of 3 month).
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In the mixed Poisson model (4.11) we have estimated the delay probabilities jr;

on the basis of all the observations for the period 1/1/82-31/12/90, and the estimated
probabilities jij are shown for j = 0, ..., 5 in Table 2. Finally, using the method of
moments, we have estimated the parameters (4.8) obtaining the results

v= 110.5, r 2 = 164.0

In this mixed Poisson model, the credibility predictions for the outstanding claim
numbers are calculated in accordance with Remark 4, and the result is shown in
Table 3 as the first set of predictions.

TABLE 2

DISCRETE TIME DELAY PROBABILITIES IN %

j 0

58.03

1

29.27

2

4.72

3

2.38

4

1.57

5

0.69

TABLE 3

CREDIBILITY PREDICTIONS

1
2
3
4
5
6

" Ordinary " credibility
predictions

delay j

0 1 2 3 4 5

— — — — 2 1
3 2 1

— — 5 3 2 1
— 30 5 2 2 1

Credibility predictions
based on Lemma 2

delay j

0 1 2 3 4 5

1
— — — — 2 1
— — — 3 2 1
— — 5 3 2 1
— 34 6 3 2 1 .

By inspection of the data in Table 1 it is seen that the observed number of
immediate reportings in respect of period 6 is significantly below average. In the
mixed Poisson model this will be interpreted as a result of a low-risk period, and
the predictions will be correspondingly low. An alternative explanation would be
that the claims in this period have occurred later than expected by the model, and
that a smaller proportion (than expected) of the incurred claims have therefore been
reported already in the occurrence period. Comparing with the actual reportings in
Table 1 it is seen that this was probably the case, since the number of reported
claims with delay j = 1 is above average for that period.

In order to account for fluctuations due to the discretization we apply the
credibility method in Lemma 2 using the simple approach described in Section 4.1.

With a standard deviation y\/arbi =0.2 we obtain the predictions as shown in
Table 3. Comparing with Table 1 it is seen that the credibility method based on
Lemma 2 performs better in this case, even though both methods underestimate the
number Af6>,.
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Lemma 2 is based on the assumption of a correlation structure (4.10), which from
Section 4.2 is known to be correct in the case of an exponential delay distribution.
For the data considered here we have access to the continuous time delays Wn, n
= 1, ..., 4015, and in Figure 2 we have shown the empirical MRL for these
observations, the MRL for the Pareto distribution considered in Example 1, and we
have also fitted the curve
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Mean residual lifetime
Disability

-

-

I , i , i , I

) 5 10 15 20
month

—•— Empirical
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—•— Benktander II

i , |

25 30

FIGURE 2. The MRL for the continuous time delay distribution, disability claims.

obtaining the values a = 0.409 and c = 0.226. It is seen that this gives an almost
perfect fit, and the corresponding distribution, a shifted version of Benktander's
type II distribution (see BEARD et al., p. 82), has cdf

F(x) = 1 -
a + x

' - 1]

In Figure 3 we have also plotted the empirical MRL for reporting delays for
dental claims from the same portfolio. It is seen that the Pareto distribution from
Example 1 gives a adequate description in this case, and the estimated parameters
are ft- 1.14 (with a time unit of 1 month in this case) and a= 1.343.
For these two delay distributions we have calculated the coefficients of correlation
assuming the time continuous Poisson/Gamma model treated in Section 4.2. This
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FIGURE 3. The MRL for the continuous time delay distribution, dental claims.

gives the results shown in Table 4, and it is seen that even though the continuous
time delay distributions in these cases are far from exponential, the correlation
matrix is well approximated by (4.10) as assumed in Lemma 2.

TABLE 4

CORRELATION MATRIX. BENKTANDER TYPE II DELAY DISTRIBUTION POR DISABILITY CLAIMS (UPPER TABLE)

AND PARETO DELAY DISTRIBUTION FOR DENTAL CLAIMS (LOWER TABLE)

0 1 5

- 0.999
1

-0.991
0.984

1

-0.982
0.974
0.999

- 0.977
0.967
0.997
0.999

I

- 0.973
0.963
0.995
0.999
0.999

1

- 0.999
1

- 0.982
0.976

1

- 0.969
0.960
0.998

1

- 0.960
0.951
0.995
0.999

I

- 0.955
0.945
0.993
0.999
0.999

I
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