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On the construction of soluble groups
satisfying the minimal condition

for normal subgroups

Howard L. Silcock

A general method is described for constructing examples of soluble
groups whose normal subgroups form a well-ordered chain under the
crdering of inclusion. This method is a variant of one introduced
in a recent paper by Heineken and Wilson. Each of the resulting
groups is obtained by an embedding procedure from a pair of

iterated wreath products Al wr A2 Wr ... VT An s

Bl wr 52 WI' ... WY Bn , where the constituent groups Ai’ Bi are

each either cyclic of prime power order or quasicyclic. Here =n
may be chosen arbitrarily, and the choice of constituent groups is
subject only to a condition on the sequences of prime numbers that

may occur as orders of elements in the groups

respectively. The construction is applied to give certain examples
which illustrate the limitations of results on particular classes
of soluble groups satisfying the minimal corndition for normal
subgroups obtained in recent papers by Hartley, McDougal!l, and the

present author.

Received 25 November 197h. The author would like to thank Professor
H. Heineken and Dr J.S., Wilson for providing a preprint of their forth-
coming paper in J. Austral. Math. Soc. 17 (197Lk). The author is also
indebted to Professor Heineken for some helpful suggestions concerning this
work, and to Dr D. McDougall, under whose supervision this work was
originally started, for his help and encouragement.

231

https://doi.org/10.1017/50004972700023844 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023844

232 Howard L. Silcock

1.

In their paper [3] Hartley and McDouga!l have given a detailed
classification of the metabelian groups that satisfy min-n (the minimal
condition for normal subgroups) and have no proper subgroups of finite
index. As every group satisfying min-n 1is a finite extension of a group
that satisfies min-n and has no proper subgroups of finite index (see
[13]), this classification gives a reasonably complete survey of the
metabelian groups satisfying min-n . Moreover, it is shown in [12] that
most of the results of McDougali's paper [5], which form the basis for the
work of [3], can be extended, with suitable modifications, to the class of
metanilpotent groups satisfying min-n . However, progress with the study
of more general classes of soluble groups satisfying min-n 1s likely to
be slow until we have more examples to illustrate the complexities that can
arise. The alm of the present paper is to describe a method of
constructing examples of this type, and to use the examples to illustrate

some of the limitations of the methods of [5] and [12].

One simple method of constructing examples of soluble groups is by
means of wreath products, and in the theory of soluble groups satisfying
max-n (the maximal condition for normal subgroups) wreath products provide
a convenient source of examples, as Hall showed in his well-known paper

[7]. One of Hall's results shows that if A4 , 4 ..., 4 is a sequence
1 n

2’
of polycyclic groups, then the iterated wreath product

Al WY A2 WY ,.. WT An

is a soluble group satisfying max-n . (Here, and throughout the paper,

X wr ¥ denotes the restricted standard wreath product of the groups X
and Y , and unbracketed wreath products with several factors are to be
interpreted as "left-normed", so that, for example, X wr Y wr Z stands
for (XwrY) wr 2 .) Unfortunately the analogous procedure of forming
iterated wreath products of soluble groups satisfying min (the minimal
condition for subgroups) does not lead directly to any interesting examples
of soluble groups satisfying min-n . In fact it is not hard to show that

the wreath product Al wr A2 of two non-trivial soluble groups can only
satisfy min-n 1if A2 is finite, DNevertheless our main aim here is to

show that iterated wreath products of soluble groups satisfying min do

https://doi.org/10.1017/50004972700023844 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700023844

Construction of soluble groups 233

occur as subgroups of soluble groups satisfying min-» , and to describe a
technique for embedding iterated wreath products of this kind in soluble
groups satisfying min-n .

Before stating the theorem that underlies this construction, we

introduce some terminology. If a and b are relatively prime positive

integers then ord(a, b) will denote the order of a modulo b ; that is,
the least positive integer m such that blam - 1 . By an adnissible

sequence of prime numbers we shall mean a finite sequence of prime numbers

pl, p2, ey pn , where »n = 2 , such that
. .
(i) p; # Py, foreach Z=m -1, and
(i1) if n =3, then p, ., | ord(pi, b;,) foreach isn -2

It follows from results of elementary number theory (see, for example,

Theorem 88 of [2]) that ord(pi, pi+l) always divides -1 3 hence

Piv1

condition (ii) is satisfied, in particular, when p I pj - 1 for each

J+l
J with 2=j<=n-1.

Our main result will be:

THEOREM A. Let n be an integer with n = 2 , and let

Pys Pys +-s P, be an admissible sequence of primes. If Ai 18 a non-
trivial locally cyelic p,-group, for 7 =1,2, ..., n, then there is a

soluble group G of derived length n , generated by isomorphic copies of

the wreath products

Al wr A3 wr A5 Wr ... wr A

n-1+¢

and

A2 wr Ah wr A6 Wr ... W An—s >

where € =0 if n 18 even and € =1 if n is odd, such that

(1) the normal subgroups of G form a well-ordered chain under
the ordering of set theoretic inclusion (and, a fortiori,

G satisfies min-n ), and .

(i1) the factor G(i)/G(l+l) of the derived series of G 1is
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igomorphic to a direct power of An-i , for
=0, 1, ..., n-1 .

As in [12] we shall call a group F-perfect if it has no non-trivial
finite homomorphic images, and hence no proper subgroups of finite index.
A soluble group G has this property if and only if G/G' is a radicable
group - that is, a group in which extraction of n-th roots is possible
for every positive integer #n . (This is a consequence of Lemma 4.1 of [5]
and Lemma 9.22 of [101.) A related, but much stronger, condition that we
shall consider is that G should have a finite series all of whose factors
are radicable abelian groups. Periodic groups with this latter property
were called rPQ-groups in [6] and we shall adopt this terminology here.
For other unexplained notation and terminology we refer the reader to [9,

10].

One of the main results of [5] was that the p-subgroups of an
F-perfect metabelian group satisfying min-n are abelian, for each prime
p . This was generalized in [1Z], where we showed that if G 1is an

F-perfect metanilpotent group satisfying min-n then @' 1is nilpotent

B P
and, for each prime p , the p-subgroups of ( are nilpotent with class
not exceeding that of G' . It follows from Theorem A that no such
restrictions apply to the p-subgroups of F-perfect soluble groups
satisfying min-n in general, or even to the p-subgroups of p@;groups

satisfying min-n . In fact we shall use Theorem A to prove

THEOREM B. For every prime p and every integer n > 1 , there is a
PQ-group satisfying min-n that has a p-subgroup with trivial centre

whose nilpotent length s equal to n .

We shall see that it is also possible to deduce from Theorem A the
known fact that the class of F-perfect groups satisfying min-n contains
soluble groups of arbitrarily large derived lengths. This fact was proved
independently by McDougall [5] and Roseblade and Wilson [17], and
subsequent generalizations may be found in [3] (Lemma 3.4) and [12]

(Theorem D).

The methods of this paper are similar to those of Heineken and Wilson

[4].
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2.

We consider first the special case of Theorem A where n =2 . In
this case the existence of a group G with the stated properties is
already known, and the relevant facts may be found in [3]. However it will
be convenient to summarize the information we need concerning this case in
a rather different manner from that of [3]. We indicate briefly below how

to derive the results in the form stated here from the results of [3].
In [4] a locally soluble group was called an Lp-group, for an ordinal

number p , if its normal subgroups were linearly ordered by inclusion,
with order type p© + 1 . Here we shall say that a locally soluble group is
an L*-group if its normal subgroups are well-ordered by inclusion; that

is, if it is an Lp—group for some ordinal p .

LEMMA 1. Let p and q be distinet primes, and let A be a non-
trivial locally cyclic p-group and B a non~trivial locally cyelic
g-group. Then there is a direct power A of A and a homomorphism
8 : B> autd such that the associated semidirect product G = AB is a

metabelian L*-group, and
(i) G¢'=4,
(i1) the only normal subgroups of G are the subgroups
Z[pi] , for 1 =0,1, 2, ... ,and the subgroups
Z-B[qj] , for 4=0,1,2, ...,
(2it) if R/S s a chief factor of G with R < G' then
C.(R/S) = G’
Proof. Since B 1is a locally cyclic p'-group, it has a faithful
irreducible representation over the field Zp with p elements. (See,

for example, Lemma 2.5 of [3] and the remarks preceding that lemma.) Let

V be a ZpB—module affording such a representation. Then we may view V

also as a module for the integral group ring ZB and Lemma 2.3 of [3]
shows that the ZB-injective hull V of V has for its underlying group a
minimal divisible group containing the additive group of V . Moreover,
the remarks following the proof of Lemma 2.3 show that the only proper

submodules of V are the submodules
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V] = v €7 | pto = 0}

. e s
for 7 =0,1, 2, ... 3 and that each of the factor-modules V[pZ l]/V&fj
is isomorphic to V , and therefore affords a faithful irreducible

representation of B over Zp

As the additive group of V is a divisible abelian p-group, it is a
direct product of quasicyclic p-groups (groups of type poo ). Now A is

either a quasicyclic p-group or a cyclic p-group, so either V or one of

— 7 —
its submodules V[p ] has additive group isomorphic to a direct power 4
of A . We can use this isomorphism and the module action of B on 7 to
define an action 6 : B > autd . Then, by what has been said about v s

the only proper B-invariant subgroups of 4 will be the subgroups

i . L.
Mi = A[ﬁ ] , for 7 =0, 1, 2, ... 3 and each non-trivial factor Mi+1/Mi

will therefore be a chief factor in the semi-direct product G = AB

Furthermore, for each such chief factor Mi+l/Mi we have

CoM

7:+1/M7:) = Z., as the factor arises from a faithful representation of

B . Now B 1is either cyclic or quasicyclic, and in either case its only
proper subgroups are those of the form BEqJ] , for 4 =0,1, 2,

Thus the subgroups Mi , for 7 =0,1, 2, ... , and the subgroups

ZZB[bgj , for j=0,1, 2, ... , together form an ascending chief series

of G , after repetitions have been suppressed.

Now let N he a normal subgroup of (G with Z'i N . Then for some

i we have A n N = Mi < M.

41 = A . Consequently

Mg W) = A, Wl sd 0w =w

so that N = CG[ /Mi) =4 . This shows that every normal subgroup of G

M.

1+1
either contains or is contained in A4 . Hence every normal subgroup of
occurs as a term of the chief series just described. Thus (47) is

established, and G 1is an [L*-group.

Since G/Z- is abelian, we have G' < 4 . Also we have shown that Z
is the centralizer of every chief factor R/S of G with R < 4 . Since

the chief factors of G/G' are central, it follows that G' = 4 . Thus
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both (Z) and (i71%Z) are proved, and the proof of the lemma is complete.

The case n = 2 of Theorem A now follows immediately. For if A1
and A2 are locally cyclic groups satisfying the hypotheses of Theorem A
for n =2 , then taking A = Al and B = A2 in Lemma 1 we obtain a

metabelian L*-group G , which is a semi-direct product of a direct power

Z& of Al and the group A2 . Now identify Al with a direct factor of

Zi . Then Af must coincide with Zi since these groups have the same

exponent. Thus (G 1is generated by Al and A2 . Moreover, G' = Al s

which is a direct power of Al , and G/G' = A2

We next record another property of the group G of Lemma 1 that we
shall need later.

LEMMA 2. In the notation of Lemma 1, the automorphisms b8 induced
on Alpl by the elements b € B generate a subfield of the ring of
endomorphism of Alpl , and the additive group of this subfield is

tsomorphic to Alp] .

Proof. From the proof of Lemma 1 it is clear that we may regard Alp]

as a ZpB—module affording a faithful irreducible representation of B
over Zp . The structure of such modules is described in Lemmsa 2.5 of [31,

and the result may be readily deduced from the proof of that lemma.

3.

A basic tocl in the coustruction of the groups required for the proof
of Theorem A will be the treble product, which was introduced by Heineken
and Wilson in [4]. This is a special case of the twisted wreath product of
Neumann [7]. The data for its construction are three groups A4, B, ¢ and
two homomorphisms O : B > autd and T : ¢ > autB . The treble product

associates with these data a group
T =tr(4, B, C; 0, T)

generated by isomorphic copies of A4, B, ¢ {not here distinguished

notationally from the originals) with the following properties:

(i) the subgroup (A, B 1is the semi-direct product of A and
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B associated with the homomorphism ¢ , and the subgroup
(B, C? 1is the semi-direct product of B and ¢

associated with the homomorphism 71 ;

.. T c . .
(ii) +the normal closure A =4 of A in T 1is the direct

product of all the conjugates c_lAc , Where ¢ ranges
over (
(iii) T 1is a semi-direct product of AC and BC .
Notice that it follows from (ii) and (iii) that (4, > =24 wr C .

To construct 7 we may either proceed as in [4] or take T to be the
twisted wreath product of 4 and the semi-direct product BC , with B
doing the "twisting" according to the homomorphism 0 . For details we

refer the reader to [47.

We shall make use of the following lemma on minimal normal subgroups
of treble products, in which we combine the results of Lemmas 1 and 2 of

[4]. For the proof we refer the reader to [4].

LEMMA 3. et T =1tr(4d, B, C; 0, T) . Suppose that N is a minimal
normal subgroup of AB contained in A and that either N ¥ z(4) or the
following condition is satisfied: for every element c # 1 1in C there

18 a two-variable word pc(a, b) and there is an element x, in B such
that

(1) pc(l, b) =1 forall b in B,
(i7) pc(a, xc] #1 forall a4+l in ¥, and

(111) pc[a, cxcc-l] =1 forall a in N .

Then N is a minimal normal subgroup of T .

We also need a result similar to Lemma 3 of [41. However, the
conditions of that lemma are unfortunately a little too restrictive for our
purposes, We therefore indicate below how the proof may be modified to

yield the same conclusion under slightly weaker hypotheses.

LEMMA 4. Let T =+tr(4, B, C; 0, 1) , and let N be a normal sub-
group of AB contained in A such that N n X # 1 for every normal sub-
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group X of AR with 1 # X = A . Suppose also that CB(A) = kero

contains no non-trivial normal subgroup of BC . Then Nc nM+#1 for

every normal subgroup M # 1 of T .

Proof. Let M be a non-trivial normal subgroup of T . By the same
argument used in the proof of Lemma 3 of [4], we see that Mi = ACB nM is
a non-trivial normal subgroup of T . Hext suppose, if possible, that
M. = AC nM =1 Th

5 1 . en

Since (4, C) = A4 wr ¢ , the centralizer of AC in ¢ 1is trivialy; hence

c (AC) = CB(AC] , and this is a normal subgroup of B(C contained in

BC

] . Yy _ c
CB(A) . Therefcre, by our assumptions, CBC(A ] =1 , and hence Ml < A" .
Thus Ml = Hl n AC = 1 , contradicting the first part of the proof. This

contradiction shows that M2 1

To complete the proof we now argue exactly as in [4], noting that for
the final part of the proof it is only necessary to know that ¥ has non-
trivial intersection with those non-trivial normal subgroups of AB that

lie inside A4
Combining the results of Lemmas 3 and 4, we have the following result.

LEMMA 5. Let T = tr{d, B, C; 0, 1) and let N be a normal sub-
group of AB that is contained in every normal subgroup X of AB with
1# X¥=4 . Suppose further that the conditions of Lemmas 3 and L4 are

satisfied. Then wois contained in every non-trivial normal subgroup of

G .
4,
We now deal with the special case of Theorem A where n = 3 . OSuppose
that Al, Ag, A3 are non~trivial locally cyclic groups satisfying the

conditions of Theorem A. By Lemma 1 there are direct powers 4., 4 of
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A, A respectively and homomorphisms A, - autZi and 4

10 4y 5 - aut/l2 such

3
that the associated semi-direct products # = ZAAQ and K = ZéAB are

metabelian L*-groups. We identify Al with a direct factor of Zi and

A2 with a direct factor of Zé . Then as in §2 we see that the normal

closures Af and Ag coincide with Zi and Zé respectively, and we

have

To simplify our notation we now denote 4 A A by 4, B, C

1’ 72 73
respectively, and we write Bl in place of A2 , SO that
H ABl Al, Bl

and

= = )
K = BC Bl, c

Also we now write p, q, r instead of pl, pz, p3 for the sequence of
primes associated with the groups A4, B, C .
Let ¢ : Bl -+ autd be the action associated with the semi-direct

product H . To define G we first extend ¢ +to a homomorphism
0 : B> autd by composing it with the natural projection of B onto its

direct factor Bl . Then, writing T for the homomorphism C - autB
associated with the semi~direct product K , we set
G=tr(A, B, C; 0, T)

The restriction of o to Bl agrees with ¢ , so the group (G has a sub-
group ABl isomorphic to H and we shall identify this subgroup with H .

We now want to show that G has the properties claimed in Theorem A.
This will follow from

LEMMA 6. The group G <s a soluble L*-group of derived length 3

generated by Al’ Bl’ C and has the following properties:

(1) (A, O =A wr C;
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c c G

(i) 6" =4" and G' =4B=H ;

(t12) if 0 <42 <3 and R/S 1is a chief factor of G with

(Z+1) () (%)

G =S <R=G then CG(R/S) =G .

Proof. By Lemma 1 the only normal subgroups of H contained in A4
[e o]

are the subgroups AQ = A[bl] , for 17 =0,1,2, ... , and !} Mi =4
1=0

To prove that G 1is an L*-group we first show that if the factor Mi+l/Mi

of H 1is non-trivial then the corresponding factor M§+1/M§ of G is
. . - G .
contained in every non-trivial normal subgroup of G/Mi . We do this by
. G . . . -
proving that Ml is contained in every non-trivial normal subgroup of G

G
and then dealing with the remaining factors Mi+l/M§ by passing to
appropriate factor-groups of G .

The main step in the proof is to show that the conditions of Lemma 5

are satisfied. Let us write M = M1 and L = CB(A) . Then M is

contained in every non-trivial normal subgroup of H , and therefore also
in every non-trivial normal subgroup of AB that lies inside 4 . By the

definition of O , we have
L = kero = kern¢ ,

where T is the projection of B onto Bl . But ¢ must be a mono-

morphism, otherwise its kernel would be a non-trivial normal subgroup of #

intersecting A trivially. Thus L = kerm , and from this we see that

Since the non-trivial normal subgroups of X = BC all contain B[g] it
follows that none of them can lie inside L . Therefore the hypotheses of
Lemma 5 will be satisfied if we can establish the existence of a two-

variable woril pc(a, b) and an element T, € B with the properties

stipulated in Lemma 3, for every ¢ # 1 in (€ . We distinguish two cases:
either the .utomorphism induced on B by ¢ leaves [ invariant, or it

does not.
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Suppose first that ¢ 1is an element such that Lc $ L . Then for
some y €L we have z° € L . We take x, = ¥° and pc(a, b) = [a, b]
in this case, and note that conditions (Z) and (7ZZZ) of Lemma 3 are

satisfied. By our choice of y we have 1 # x;l

u € Bl for some u €L ,
and since the non-trivial elements of Bl induce non-trivial automorphisms
on M it follows that cM(xc) <M. But CM(xc) is normal in 4B : for

A is abelian and contains M , and if 3z € CM[xc) and b € B then using

the commutativity of B we have

[zb, xc] = [z, xe]b =1,

so that zb €C (m ) . As M 1is a minimal normal subgroup of 4B , it

follows that CM(xc) = 1 , and therefore

pc(a, xc) £1

for all a # 1 in M . Thus the conditions (%), (%), (Zi71) of Lemma 3
are all satisfied for this ¢ .

Next suppose that 1 # ¢ € ¢ and I°<L . Then ¢ induces an
automorphism on B/L . Now B/L is isomorphic to Bl , s0 it is a non-

trivial locdlly cyclic g-group and hence has a characteristic subgroup

(blL> of order g , which must be invariant under the automorphism induced

by ¢ . Let 8 be an integer such that

c —_
blL = blL .

Then since the order of ¢ is a power of the prime r we have

Pt

(1) s =1 (mod q)
for some integer t

By Lemma 2 the automorphisms induced on M by elements of B

generate a subfield § of characteristic p 1in the ring of endomorphisms

of A , and the automorphisms f = blo and BS = bio will be g-th roots
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. & . .
of unity in § . Hence B and B are roots of irreducible factors of

the polynomial 2 =1 over GF(p) .

F:] . .
We assume first that R and B are roots of the same irreducible

factor of xq - 1 , and show that this assumption leads to a contradiction.

s .
If B and B satisfy the same irreducible polynomial over GF(q) then
they are conjugate roots of unity in  and hence also in the finite sub-

field A of § that they generate. Thus there is a field automorphism of

A mapping B onto B . As A 1is finite its group of automorphisms is
generated by the automorphism that maps each element to its p-th power:

hence, for some integer k , we have

8
(2) g% =8P .
Therefore, using (1), we have

t t
kr sT =1 (mod q) .

p

Consequently ord(p, q) is a divisor of krt . But the primes p, g, r
form an admissible sequence, so
r | ordlp, g)
and therefore
ord(p, q) l k .
Hence pk =1 (mod q) , and it now follows from (2) that 8° =8 . Thus

bl and bi induce the same automorphism on A4 , and so Ebl, c] €L . As

(bl>c = Blq] , we have

[B[q], c] =L < Blq] .

However [B[q], c] is normal in BC and B[gq] is a minimal normal sub-
group: therefore [Blq], c] =1 . But this implies that (¢) is a non-
trivial normal subgroup of B[g]C that intersects Blg] trivially. Since

B[qlC is an L*-group, this is a contradiction. Therefore B and BS

cannot be roots of the same irreducible factor of xq - 1.
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This means that xq - 1 has an irreducible factor
m
= + + ... +
fla) ay +a;x + . a &

over GF(p) such that f(B) =0 and f(Bs) # 0 . We now define our two-
variable word pc(a, b) vy

m
o alb amb £(b)

pc(a, b)Y = a Oq oo a =a .

Then, substituting bl for b , we find that
pc(a, bl) =a =q =1,

for all a € M . On the other hand, as f(Bs) is non-zero and hence

invertible in Q we have

pufen 32) - 60 41

for all a # 1 in M . Therefore the conditions (<), (41), (1i%1) of Lemma
3 are satisfied if we take x, = bi .

We have now shown how to define z, and pc(a, b) for all ¢ # 1 in
C , and it follows from Lemma 5 that MG is contained in every non-trivial
normal subgroup of G .

For each integer ¢ = 1 +the factor-group A/Mi is isomorphic to a
direct power of a suitable factor-group of Al , and the action of B on
A induces an action of B on A/Mi . We can therefore repeat the
construction used to define (G , but taking A/Mi’ B, ¢ 1in place of A4, B,
C respectively. The resulting group

G =trla/m,, 8, C)
is easily seen to be isomorphic to G/Mg , since

(awrC) /M5 = (A/m) wr C .
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In G the role of M 1is taken by the subgroup Mi+l/Mi 3 and the normal
closure in G of this subgroup is mapped onto M§+1/Mg under the
isomorphism between G and G/Mg . Therefore, applying the above argument
to 5., we find that M§+1/M§ is contained in every non-trivial normal
subgroup of G/Mg .

Since A 1is the union of the subgroups Mi , it follows that every

normal subgroup of (G either contains AC or coincides with Mg for some

i =0 . However, G/AC is isomorphic to BC = X , which is an [L*-group,

so the normal subgroups of G containing AC form a well-ordered chain.

As the subgroups Mi are also well-ordered, G 1is an L*-group.

We can now identify the terms of the derived series of ¢ . For by

Lemma 1 () we have KXK' = B , so using the isomorphism between G/Ac and
K we have 46" =4%B . But ¢ is an L*-group and G' ¢ A° , SO
c c

A" =G, and therefore G' =4B . Also G/AC is metabelian, so we have

C .
G" = A” . 1If this inclusion were strict then for some J we should have

and consequently

(3) [G',MGI]SMG..

g+ J
Now Mg is a direct product of the conjugates M? , a8 ¢ runs over C ,

is a direct product of the conjugates 7 . Thus

and similarly Mq i1

g+l

RU AN L A

<13

and each factor M§+1/M§ in this direct product is invariant under the

action of H . Hence if (3) is to hold then H must centralize each of

these direct factors. However by Lemma 1 (i7%Z) we have
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c

My /M) = B <

so this leads to a contradiction. Therefore G" = AC and (Z7) is proved.
Finally, let R/S be a chief factor of G and suppose that

(2)

¢t <5 < r<glt) |

where 0 =1 <3 ., If 2

0 , then obviously CG(R/S) =¢. If =1,

then R/S corresponds to a chief factor of G/G" , and as this is a group
isomorphic to KX it follows from Lemma 1 (44%) that CG(R/S) =q' .

Suppose next that 7 = 2 . Then there is an integer j = 0 such that

R = M§+l and S = Mg . Now M§+1/M§ is isomorphic to a direct product of

groups M§+1/M§ , as ¢ ranges over ( , and each of these groups is
invariant under the action of B . Hence

).

But CB(R/S) is a normal subgroup of BC , so either it is trivial or else

Cg(R/S) = Cp (MJ. "

it contains B[q] and hence has non-trivial intersection with B1 .

However,

B, n Cp(R/S) =B n CH(Mj+1/Mj

Bl nH' =1,

)

and so we conclude that CB(R/S) =1. As ¢ =4 , it follows that

Cor(RIS) = 45
Also conjugation by a non-trivial element of ( permutes the factors
M§+1/M§ in a non-trivial féshion, so the centralizer of R/S in C is
trivial. As ( complements G' in G , this shows that

- C - "
CG(R/S) =4 =¢".

Thus (72%) is established in all cases, and the proof of Lemma 6 is

complete.
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5.

We now describe the construction that will be used for the proof of
Theorem A in the general case. The reader familiar with (4] will recognize

a variant of Heineken and Wilson's "treble product tower".
Let n be a positive integer and let pl, pe, ooy pn be a sequence

of primes such that p; # p; for 7 =1, 2, ..., =1 . Given a

+] °?
sequence of non-trivial locally cyclic groups Al’ A2, cees An , With Ai

& p;-group for each % , we shall define a group LLAl, A2, cens An) ’

A vees A (as usual,

1 722 n

these copies will be identified with the originals) and which has the

vhich is generated by isomorphic copies of A4

following properties:

(1) if 1 =121 <1 + 2§ =n , then the subgroup of
L{a,, 4 A

pr tees An) generated by Ai’ Ai+2’ L4l e

is isomorphic to

i+2]

Ai wr Ai+2 WI ... WY Ai+2j .

(2) if 1=m< n , then the subgroup of LLAl, Ay oons An]
generated by Al, A2, ooy Am is equal to

L(Al, A2, ey Am) , and its normal closure is complemented

A

by (4 meo?

m+1 cees A

(3) the subgroups (Ai’ A. ) of L(Al, A, ..., An) , for

2’
1=1, 2, ..., n=1 , are metabelian L*-groups of the type

i+1

described in Lemma 1.

The groups LLAI, A2, vees An) are defined inductively. We use a
generalization of the method of §4, replacing the three groups 4

A, A

1 72 73

used in §4 by the three groups LLAl, A2, vens An-2)’ An—l’ An . To start
the induction we set LLAl) =4, and take LLAI’ Az) to be one of the

metabelian L*-groups described in Lemma 1. Suppose now that =n > 2 and

assume inductively that the groups L(Al, A2, vees AmJ have been defined
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for all m<n . VWe write H = L(A A cees A and denote the normal

1’ e n—l)

closure of L(Al, A vess A in H by K . By our inductive

2’ n-—2)

assumptions, (2) above is satisfied when % is replaced by #n - 1 and m

by n-2 . Hence H 1is a semi-direct product of K and An Let

1

¢ : An 1 autX be the homomorphism associated with this semi-direct

product. By Lemma 1, there is a direct power An—l of An 1 and a

such that the semi-direct product A A

i : y
homomorphism T An - aut - -1y,

1

is a metabelian L*-group. Composing the natural projection of Z; 1 onto

An 1 with ¢ , we obtain a homomorphism 0o : An 1> autX . With the

actions 0 and T defined in this way, we now set
¢ = tr(x, A, 1,450, 7)
and verify that G has the properties listed above. Observe that when

n = 3 this construction coincides with that used in §4.

If we identify An— -1

1 with a direct factor of Z; not contained in

kerd then G contains a subgroup KAn isomorphic to H . We shall

-1

suppose that this subgroup has been identified with H . Then, writing

A, ey A)

Gy = L4y, 4, m

m
for m=1,2, ..., n , we see by induction that the groups G% form a
chain

< < < < =G .
G <Gy< .. <G <G =G

Suppose 7 and J are positive integers with < + 25 <#un . To

establish property (1), we note first that (KX, An) = K wr An , by the

definition of the treble product. If < + 25 =n , then

CAgs Bypps woes Appps p) = K
so that
CAgs Agups oes Ayppps? = WAps Appns oo Az o) VT Appns

By induction we may assume that the left-hand factor of this wreath
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product is itself an iterated wreath product of the required type, so (1)

holds in this case. On the other hand, if < + 2§ < n , then

(4., A

y) cees 4 )= H

i+25" =

i+2? ?

and (1) is a consequence of our inductive assumptions about # . Thus (1)

holds in all cases.

Let us now write p = (4 4 ) , for
m n

1 Am+2, ees
m=1,2, ..., n=1 . To establish property (2) it will be sufficient to
verify that

(*) & np =1
m m
for all m<»n . As Gn 5 = K we have
G _ G = -
Gy ,nD _,=K nd 4 =13
so (¥) holds for m=#n - 2 . Also, as Z;—l is the normal closure of
An—l in (An_l, An) , we have
G
Gn-l An—l

and therefore

G = =
¢ np _ =KZ a4 =1,

showing that (*) also holds for m =#n - 1 . Next suppose that

m<n=-2. Then

D
= m_—
Dy = WAy woeo Ay o) A A,
and since
D
m
(A pys -vos & ) " =K,

the modular law shows that
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¢ Dn(~ G
Gn—z n Dm = <Am+1’ tee An-z) [ n-lAnnK ]
D
=y s A
GG _ G Dm .
Hence m " Dm = Gm n (Am+1’ cees An-2) . This last group can be

expressed as a direct product of conjugates

GH An-l a
[mn(Am+l’ cees An—e) ] ,

where a ranges over 4 , and by induction

4
n-1 _ _
¢ NCA s s A ) s Gfln NCA s s A D=1,

Therefore

and (2) is established in all cases.

Finally, property (3) is an immediate consequence of the definition of

'3 =_ . » 3 *_
G , since (An—l’ An> An—lAn , and this is a metabelian L*-group of the

regquired type.

Thus by induction the groups L(Al, Ay vuus An) are defined and have

2,
properties (1), (2), (3) for all n 2 1 . We now show that by choosing our
prime sequences appropriately we obtain groups satisfying the conclusions

of Theorem A.

LEMMA 7. Let n = 2 and suppose the sequence of primes
Pys Pps +++5 P, 18 admissible. Then G = L(Al, Ays vees An) is an

L*-group and, for each integer i with 0 =i < n , we have

(Z) G(i)=L(A e 4 )9,

1° Az’ n-1

(iz) G(i)/G(1'+l) is isomorphic to a direct pover of A . ,

T

(1i1) if R/S is a chief factor of G with

G(i+1) ()

S S<R=GC , then CG(R/S) = G(i)
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Proof. If n = 2 then the result follows from Lemma 1,

If n =3 then the construction described above is essentially a
repetition of that used in §4, and in this case the result is a consequence

of Lemma 6.

Suppose now that 7 = 4 , We define H and K as sbove and set

H
={ N .
L={A), Ay, A, o)
Since property (2) holds with n - 1 in place of n , we see that L 1is
i ( ) =4 . A <
complemented in H by An—2’ An—l An—ZAn-l Now LAn—Q K , s0 we
have

K=Kn LAn-QAn-l

= LAn-Z(KnAn-l)

= LAn-E .

Therefore Z; is a complement to L in K which admits the action of

2

An-l , and hence also that of Z? . Consequently X/L and Z;_ are

-1 2

— G .
isomorphic as operator groups under the action of An . Now G/L is

1

isomorphic to the treble product

tr(K/L, Zn_l, An)

formed using this action of E; 10 and therefore also to

tr (Zn-z’ Zn—l’ An) :

But this last treble product is precisely the group that results from

applying the construction of §4 to the sequence of groups An-z’ An 1 An .

Since the sequence p is admissible, Lemma 6 shows that G/LG

n-2* Pn_1° Py

is an L*-group. Hence the normal subgroups of G containing LG form a

well-ordered chain.

Now suppose that M 1is a minimal normal subgroup of H . By
induction we may assume that H 1is an [L*-group and that the assertions of

the Lemma are true with H in place of G and »n - 1 in place of =n .
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Thus M is contained in every non-trivial normal subgroup of H , and

hence also in every non-trivial normal subgroup of KZ? 1 that lies inside

K . In particular M =L = " < K , S0 our inductive assumptions show that

c

H(M) < K ; in other words, M 1is not central in X . Furthermore kerc

contains no normal subgroup of An lAn s, by the argument used in the proof
of Lemma 6., Therefore the conditions of Lemma 5 are satisfied, and we

conclude from that lemma that MG is contained in every non-trivial normal

subgroup of G .
As H is an L*-group there is a unique ascending chief series

= <M < ... <M =
=My <M p=1

of H between 1 and L , where 0 is some ordinal number. If a < p

then, by passing to the factor-group

G/Mg =tr(k/M, 4, 1, 4)

and using the above argument, we see that M§+1/M§ is contained in every

non-trivial normal subgroup of G/Mg . Therefore the series

Lot i i g

0 1

is a unique ascending chief series of (¢ Dbetween 1 and LG , and every
normal subgroup of (G either contains LG or coincides with Mg for some

a < p ., As we have already shown that the normal subgroups containing LG

form a well-ordered chain, it now follows that G is an L*-group.

To identify the terms of the derived series of G we first use the

isomorphism

G o
G/L™ = tr A, o An—l’ An)

and Lemma 6 (77Z) to deduce that
¢'t® =5, 1% =% .

Now G is an L*-group and G/LG is not metabelian, so we must have
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= HG and G" = KG .

G
L7 =¢" Hence the above equations show that G’

Thus assertion (7) of the lemma is true if < < 2 . Suppose next that

7 > 2 . In this case we can write

A (KG)(i—2)

.

G . . .
Now K is a direct product of conjugates of X , so

(KG} (7-2) - (K(‘l:—Q))G .

Moreover, by induction we have

() - gl

and it follows that
l’ 2,

as claimed. Hence () is true in all cases.

~
as ' =H =k An , and G" = K7 , we see from the definition of @

as a treble product of X , Z% 1 , and An that G/G' = An and

— y L+
G¢'/¢" = A _, - Thus G(L)/G(i 1) is isomorphic to a direct power of 4 .
when 7 =0 or 7 =1 . Suppose now that 7 = 2 : +then, using again the

fact that ¢" = KG is a direct product of conjugates of K , we find that

‘4 . .
(Z+1) is isomorphic to a direct power of K(l 2)/K(‘L 1) . However,

G(i)/G
(i—l)/H(i) is isomorphic

g72) ) E-1) _ pE-1) 1y (8) 4 by induction &

L L+
to a direct power of An i Hence G(t)/G(t 1) is isomorphic to a direct

power of An—z , and (%) is proved.

Finally, let R/S be a chief factor of ( , and .suppose that

G(¢+1) <gs<p=< G(z) ,

where 0 =< {<n . If 72 <2 then R/S is effectively a chief factor of

G/G(B) = G/LG , and, using again the isomorphism

G ~ i
G/L” = tr(Zn_E, 4, 10 4)
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and Lemma 6 (277), we have

_ Al2)
CG(R/S) =G .

On the other hand, if < > 2 then R = G(3) = LG , and so for some a < p

G s s . .
we have R = M§+l and S = Mg . Now M&+1/M§ is isomorphic to a direct

product of the groups M§+1/MZ , @& @ Tranges over An , and the direct

factors are all invariant under the action of H . Furthermore M&+1/Mﬁ

is a chief factor of H and

B <y <y <)
o o+

so by induction

) = 85D

Using an argument like that given in the last paragraph of the proof of

Lemma 6, we deduce from this that
C(R/S) = @6 2 )

Thus (777} is established and the proof of Lemma T is complete.

Theorem A now follows immediately from Lemma 7. For

G = L(Al’ A2, e An) is generated by Al, A2, ens An , and by the

properties established in the course of construction of L(A e A )

1’ A2’ : n

we see that the subgroups

cees 4 )

(41> A5 4 lte

S,
and

(Uys Ay Ags wees A

are expressible as wreath products of the required type. Hence (¢ 1is
generated by these wreath products, and the other properties are

established in Lemma 7.
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6.

Proof of Theorem B. Given a prime p and an integer »n > 1 , we want
to construct a rQ-group G satisfying min-n with a p-subgroup P of
nilpotent length n , such that Z(P) =1 .

We choose a prime q > p such that p I ord(p, q) : this is
possible, for if p # 2 we can use any prime g >p with ¢ = 1 (mod p) ,
and if p =2 we can take q = T , for example. Let Pys Pps cees Py, be

the sequence of primes defined by
Poja =P Py 59

for ¢ =1,2, ..., n . Our choice of q ensures that this sequence is

admissible. Now take Ai to be a quasicyclic pi-group for each 7 < 2n .

Then by Theorem A there is a soluble L*-group G of derived length 2n
generated by

P = Al wr A3 Wr ... Wr A2n-l

and

Q= A2 wr A)4 Wr ... WI A2n

(2),,(i+1)

such that & /G is isomorphic to a direct power of , for

A2n-i

1=0,1,2, ..., n=1 . As the groups Ai are radicable, so are all the

factors G(i)/G(i+l)

: hence G is a PQ-group.

Now P is a p-subgroup of G , and we have ¢(P) =1 , for it is
known (see, for example, Corollary 3.4 of [§]) that the wreath product of a
non-trivial group and an infinite group always has trivial centre. Further
P is evidently a pQ-group of derived length 7 , so Theorem 4.5 of [6]
shows that the nilpotent length of P 1is also equal to »n . Finally, G
is an L*-group, and a fortiori satisfies min-n , so the proof of Theorem

C is complete.

The group G constructed above shows also that there is no upper
bound on the derived lengths of eQ-groups satisfying min-n , for (G was
a pQ-group of derived length 2n , and 7 was an arbitrary integer with

n>1 . Thus we have a new proof of Lemma 3.4 of [3].
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We conclude by remarking that if we drop the requirement that our
sequences of primes be admissible, then the constructions of §4 and 85 do
not in general produce L*-groups. This may be shown by the following
example. Let (a) and (@) be cyclic groups of order 2 and let (b)
be a cyclic group of order 3 . The construction of §4, applied to the

three groups f(a?), (b}, (e) , gives us a group

G

tr(4, B, C; 0, 1) »

where A and B are direct powers of {(a’ and (b} respectively, and

C ={¢) . The direct powers A and B are chosen so that the semi-direct
products H = A{b) and K = B{e) are metabelian L*-groups, and it is not
hard to verify that the only possibilities for H and K are groups
isomorphic to the alternating group Ah and the symmetric group 53

respectively. Thus we may assume that 4 = (q, ab) and B =(b) , and

that the following relations hold in G :

2
Ea, ab] =1, ab = aab , b » L.
G c c . .
Now A" =A" =4 x4 , and we can express this subgroup also as a direct
product
AG _ (aabc, acab) % (aac, aababa)
in which each of the direct factors is a normal subgroup of & . Thus the

normal subgroups of G are not well-ordered, and consequently G 1is not

an L*-group.
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