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On the construction of soluble groups

satisfying the minimal condition

for normal subgroups

Howard L. Silcock

A general method is described for constructing examples of soluble

groups whose normal subgroups form a well-ordered chain under the

ordering of inclusion. This method is a variant of one introduced

in a recent paper by Heineken and Wi I son. Each of the resulting

groups is obtained by an embedding procedure from a pair of

iterated wreath products A vr A \rr . .. vr A ,

B. wr B wr ... wr 3 , where the constituent groups A., B. are
i ^ yi 1*1,

each either cyclic of prime power order or quasicyclic. Here n

may be chosen arbitrarily, and the choice of constituent groups is

subject only to a condition on the sequences of prime numbers that

may occur as orders of elements in the groups

V Bl' V V "•' V Bn
respectively. The construction is applied to give certain examples

which illustrate the limitations of results on particular classes

of soluble groups satisfying the minimal condition for normal

subgroups obtained in recent papers by Hartley, McDougall, and the

present author.
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1 .

In their paper [3] Hartley and McDougalI have given a detailed

classification of the metabelian groups that satisfy min-n (the minimal

condition for normal subgroups) and have no proper subgroups of finite

index. As every group satisfying min-n is a finite extension of a group

that satisfies min-n and has no proper subgroups of finite index (see

[73]), this classification gives a reasonably complete survey of the

metabelian groups satisfying min-n . Moreover, i t is shown in [72] that

most of the results of McDougalI's paper [5], which form the basis for the

work of [3] , can be extended, with suitable modifications, to the class of

metanilpotent groups satisfying min-n . However, progress with the study

of more general classes of soluble groups satisfying min-n is likely to

be slow until we have more examples to i l lustrate the complexities that can

arise. The aim of the present paper is to describe a method of

constructing examples of this type, and to use the examples to i l lustrate

some of the limitations of the methods of [5] and [72].

One simple method of constructing examples of soluble groups is by

means of wreath products, and in the theory of soluble groups satisfying

max-tt (the maximal condition for normal subgroups) wreath products provide

a convenient source of examples, as Hal I showed in his well-known paper

[7]. One of Hal I *s results shows that if A , A , . . . , A is a sequence

of poiycyclic groups, then the iterated wreath product

A wr A wr . . . wr A

is a soluble group satisfying max-n . (Here, and throughout the paper,

X wr Y denotes the restricted standard wreath product of the groups X

and Y , and unbracketed wreath products with several factors are to be

interpreted as "left-normed", so that, for example, X wr Y wr Z stands

for (AVrY) wr Z .) Unfortunately the analogous procedure of forming

iterated wreath products of soluble groups satisfying min (the minimal

condition for subgroups) does not lead directly to any interesting examples

of soluble groups satisfying min-n . In fact it is not hard to show that

the wreath product A. wr A of two non-trivial soluble groups can only

satisfy min-n if A_ is finite. Nevertheless our main aim here is to

show that iterated wreath products of soluble groups satisfying min do

https://doi.org/10.1017/S0004972700023844 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023844


C o n s t r u c t i o n o f s o l u b l e g r o u p s 2 3 3

occur as subgroups of soluble groups satisfying min-n , and to describe a

technique for embedding iterated wreath products of this kind in soluble

groups satisfying min-n .

Before stating the theorem that underlies this construction, we

introduce some terminology. If a and b are relatively prime positive

integers then ord(a, b) will denote the order of a modulo b ; that i s ,

the least positive integer m such that b\a - 1 . By an admissible

sequence of prime numbers we shall mean a finite sequence of prime numbers

p , p , . . . , p , where n 2 2 , such that

(i) p . f p . for each i £ n - 1 , and

(i i ) if n 2 3 , then p . \ ord(p., p..-.) for each i < n - 2 .
U'£- Is Is* 1.

It follows from results of elementary number theory (see, for example,

Theorem 88 of [2]) that ord(p., p..,) always divides p. - 1 ; hence
Is 'h'^'J- Is* A-

condition (ii) is satisfied, in particular, when p . | p. - 1 for each
3 -*- 3

3 with 2 S j S n - 1 .

Our main result will be:

THEOREM A. Let n be an integer with n > 2 , and let

p , p , . . . , p be an admissible sequence of primes. If A. is a non-

trivial locally cyclic p .-group, for i = l , 2 , . . . , n 3 then there is a

soluble group G of derived length n , generated by isomorphic copies of

the wreath products

and

A, wr Ao wr A wr . . .• wr A

wr Ar wr . . . wr A

6 n-e

where e = 0 if n is even and e = 1 if n is odd, such that

(i) the normal subgroups of G form a well-ordered chain under

the ordering of set theoretic inclusion (and, a fo r t io r i ,

G satisfies min-n ), and

(ii) the factor G /G of the derived series of G is
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isomorphio to a direct power of A . , for

i = 0, 1, . . . , n-1 .

As in [7 2] we shall cal l a group F-perfect if i t has no non-trivial

f ini te homomorphic images, and hence no proper subgroups of finite index.

A soluble group G has this property if and only if G/G' is a radicable

group - that i s , a group in which extraction of n-th roots is possible

for every positive integer n . (This is a consequence of Lemma U.I of [5]

and Lemma 9-22 of [70].) A related, but much stronger, condition that we

shall consider is thai G should have a finite series al l of whose factors

are radicable abelian groups. Periodic groups with this la t ter property

were called p^-groups in [6] and we shall adopt this terminology here.

For other unexplained notation and terminology we refer the reader to [9,

70].

One of the main results of [5] was that the p-subgroups of an

F_—perfect metabelian group satisfying min—n are abelian, for each prime

p . This was generalized in [72], where we showed that if G is an

F-perfect metanilpotent group satisfying min-n , then G' is nilpotent

and, for each prime p , the p-subgroups of G are nilpotent with class

not exceeding that of G' . It follows from Theorem A that no such

restrictions apply to the p-subgroups of F-perfect soluble groups

satisfying min-w in general, or even to the p-subgroups of pQ-groups

satisfying min-n . In fact we shall use Theorem A to prove

THEOREM B. For every prime p and every integer n > 1 , there is a

pQrgroup satisfying min-n that has a p-subgroup with trivial centre

whose nilpotent length is equal to n .

We s h a l l see t ha t i t i s a l so poss ib l e t o deduce from Theorem A the

known fact t h a t the c lass of F-perfect groups s a t i s f y i n g min-n contains

soluble groups of a r b i t r a r i l y l a rge derived l e n g t h s . This fact was proved

independently by McDougall [ 5 ] and RosebIade and Wilson [ 7 7 ] , and

subsequent ge ne ra l i z a t i ons may be found in [3] (Lemma 3.h) and [7 2]

(Theorem D).

The methods of t h i s paper are s imi l a r t o those of Heineken and Wi I son

141.
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2.

We consider first the special case of Theorem A where n = 2 . In

this case the existence of a group G with the stated properties is

already known, and the relevant facts may be found in [3]. However It will

be convenient to summarize the information we need concerning this case in

a rather different manner from that of [3]. We indicate briefly below how

to derive the results in the form stated here from the results of [3].

In [4] a locally soluble group was called an L -group, for an ordinal

number p , if its normal subgroups were linearly ordered by inclusion,

with order type P + 1 . Here we shall say that a locally soluble group is

an L*-group if its normal subgroups are well-ordered by inclusion; that

is, if it is an L -group for some ordinal p .

LEMMA 1. Let p and q be distinct primes, and let A be a non-

trivial locally cyclic p-group and B a non-trivial locally cyclic

q-group. Then there is a direct power A of A and a homomorphism

8 : B -*• autA such that the associated semidirect product G = AB is a

metabelian L*-group, and

(i) G' = I ,

(ii) the only normal subgroups of G are the subgroups

A\_p ~\ , for £ = 0 , 1 , 2 , . . . , and the subgroups

A'B[qJ] , for j = 0 , 1 , 2 , . . . ,

(Hi) if R/S is a chief factor of G with R 5 G' then

CJR/S) = G' .

Proof. Since B is a locally cyclic p'-group, i t has a faithful

irreducible representation over the field Z with p elements. (See,

for example, Lemma 2.5 of [3] and the remarks preceding that lemma.) Let

V be a Z B-module affording such a representation. Then we may view V

also as a module for the integral group ring 1.B and Lemma 2.3 of [3]

shows that the Zfl-injective hull V of V has for i t s underlying group a

minimal divisible group containing the additive group of V . Moreover,

the remarks following the proof of Lemma 2.3 show that the only proper

submodules of V are the submodules
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v[pV] = {v £ V \ pLv = 0}

for i = 0, 1, 2, ... ; and that each of the factor-modules V[p

is isomorphic to V , and therefore affords a faithful irreducible

representation of B over Z

As the additive group of V is a divisible abelian p-group, it is a

direct product of quasicyclic p-groups (groups of type p ). Now A is

either a quasicyclic p-group or a cyclic p-group, so either V or one of

its submodules v\p J has additive group isomorphic to a direct power A

of A . We can use this isomorphism and the module action of 5 on V to

define an action 9 : B -*• autA . Then, by what has been said about V ,

the only proper B-invariant subgroups of A will be the subgroups

M. = Alp'1] , for i = 0, 1, 2, ... ; and each non-trivial factor M. + ./M.

will therefore be a chief factor in the semi-direct product G = AB .

Furthermore, for each such chief factor M. /M. we have

C AM. /M.) = A , as the factor arises from a faithful representation of

B . Now B is either cyclic or quasicyclic, and in either case its only

proper subgroups are those of the form B [q ] , for j = 0, 1, 2, ... .

Thus the subgroups M. , for i = 0, 1, 2, ... , and the subgroups

A'B\C{ ] , for j = 0, 1, 2, ... , together form an ascending chief series

of G , after repetitions have been suppressed.

Now let I be a normal subgroup of G with A ^ N . Then for some

t we have A n N = M. < M. £ A . Consequently

[M. , N] £ [J, N) SA n N = M. ,

so that N - C r[M. ,./M.) = A . This shows that every normal subgroup of G

either contains or is contained in A . Hence every normal subgroup of C,

occurs as a term of the chief series just described. Thus (ii) is

established, and G is an L*-group.

Since G/A is abelian, we have G' £ A . Also we have shown that A

is the centralizer of every chief factor R/S of G with R 5 A . Since

the chief factors of G/G' are central, it follows that G' = A . Thus
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"both (i) and (Hi) are proved, and the proof of the lemma is complete.

The case n = 2 of Theorem A now follows immediately. For if A

and A are locally cyclic groups satisfying the hypotheses of Theorem A

for n = 2 , then taking A — A and B = A in Lemma 1 we obtain a

metabelian L*-group G , which is a semi-direct product of a direct power

A of A and the group A . Now identify A with a direct factor of

n

A . Then A must coincide with A since these groups have the same

exponent. Thus G is generated by .4 and A . Moreover, G' = A ,

which is a direct power of A , and G/G' •= A

We next record another property of the group G of Lemma 1 that we

shall need later.

LEMMA 2. In the notation of Lemma 1, the automorphisms hQ induced

on A[p] by the elements b £ B generate a subfield of the ring of

endomorphism: of A[p] , and the additive group of this subfield is

isomorphio to A[p] .

Proof. From the proof of Lemma 1 it is clear that we may regard A[p]

as a Z B-module affording a faithful irreducible representation of B

over Z . The structure of such modules is described in Lemma 2.5 of [31,

and the result may be readily deduced from the proof of that lemma.

3.

A basic tool in the construction of the groups required for the proof

of Theorem A will be the treble product, which was introduced by Heineken

and WiI son in [4]. This is a special case of the twisted wreath product of

Neumann [7]. The data for its construction are three groups A, B, C and

two homomorphisms O : B -*• aut/4 and x : C •* autB . The treble product

associates with these data a group

T = tr{A, B, C; a, T)

generated by isomorphic copies of A, B, C (not here distinguished

notationally from the originals) with the following properties:

(i) the subgroup (A, B) is the semi-direct product of A and
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B associated with the homomorphism O , and the subgroup

( B, C) is the semi-direct product of B and C

associated with the homomorphism T ;

T C
(ii) the normal closure A = A of A in T is the direct

product of all the conjugates a Ac , where a ranges

over C ;

Q

(iii) T is a semi-direct product of A and BC .

Notice that it follows from (ii) and (iii) that (A, C) ~A wr C .

To construct T we may either proceed as in [4] or take T to be the

twisted wreath product of A and the semi-direct product BC , with B

doing the "twisting" according to the homomorphism 0 . For details we

refer the reader to [41.

We shall make use of the following lemma on minimal normal subgroups

of treble products, in which we combine the results of Lemmas 1 and 2 of

[4]. For the proof we refer the reader to [4].

LEMMA 3. Let T = tr(4, B, C; a, x) . Suppose that N is a minimal

normal subgroup of AB contained in A and that either N ^ ^(A) or the

following condition is satisfied: for every element a + \ in C there

is a two-variable word, p (a, b) and there is an element x in B such

that

(i) p (1, b) = 1 for all b in B ,

(ii) p (a, x ) + 1 for all a t 1 in N , andtel c'

(iii) p \a, ex c = 1 for all a in N .

Then N is a minimal normal subgroup of T .

We also need a result similar to Lemma 3 of [4]. However, the

conditions of that lemma are unfortunately a little too restrictive for our

purposes. We therefore indicate below how the proof may be modified to

yield the same conclusion under slightly weaker hypotheses.

LEMMA 4. Let T = t r U , B, C; a, T ) , and let N be a normal sub-

group of AB contained in A such that N n X f 1 for every normal sub-
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group X of AB with 1 t X 5 A . Suppose also that C (A) = kera

Q

contains no non-trivial normal subgroup of BC . Then N n M t 1 for

every normal subgroup M f 1 of T .

Proof. Let M be a n o n - t r i v i a l normal subgroup of T . By the same

argument used in the proof of Lemma 3 of [41, we see t h a t M = A B n M i s

a n o n - t r i v i a l nornal subgroup of T . Hext suppose, i f p o s s i b l e , t h a t

M = AC n Mx = 1 . Then

Since (A, C~> = A wr C , the c e n t r a l i z e r of A in C is t r i v i a l ; hence

C-Qr^ ) = ^ol^ J ' a n d t h i s i s a normal subgroup of BC contained in

C {A) . Therefore, by our assumptions, C (A ) = 1 , and hence M 5 A

c

Thus '•! = // n A = 1 , contradicting the first part of the proof. This

contradiction shows that M f 1 .

To complete the proof we now argue exactly as in [4], noting that for

the final part of the proof it is only necessary to know that N has non-

trivial intersection with those non-trivial normal subgroups of AB that

lie inside A .

Combining the results of Lemmas 3 and h, we have the following result.

LEMMA 5. Let T = tr(A, B, C; o, x) and let N be a normal sub-

group of AB that is contained in every normal subgroup X of AB with

1 t X 5 A . Suppose further that the conditions of Lemmas 3 and h are

satisfied. Then IT is contained in every non-trivial normal subgroup of

G .

4.

We now deal with the special case of Theorem A where n = 3 . Suppose

that A , A , A are non-trivial locally cyclic groups satisfying the

conditions of Theorem A. By Lemma 1 there are direct powers A , A of
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A , A respectively and homomorphi sms A -* autA and A •* autA such

that the associated semi-direct products H = A A and K = A A~ are

metabelian L*-groups. We identify A. with a direct factor of A and

A with a direct factor of A . Then as in §2 we see that the normal

u v

closures A. and A coincide with A and A respectively, and we

have

H = <A±, A2> , K = <A2, A3> .

To simplify our notation we now denote A , A , A "by A, B, C

respectively, and we write B in place of A , so that

H = AB± = <A1, B )

and

K = BC = < B , C > .

Also we now write p, q, r instead of p , p , p, for the sequence of

primes associated with the groups A, B, C .

Let <}> : B -*• aut-4 "be the action associated with the semi-direct

product H . To define G we first extend (f> to a homomorphism

a : B •* autA by composing it with the natural projection of B onto its

direct factor B . Then, writing T for the homomorphism C •* autB

associated with the semi-direct product K , we set

G = tr(A, B, C; O, T) .

The restriction of a to B agrees with (j) , so the group G has a sub-

group AB isomorphic to H and we shall identify this subgroup with H .

We now want to show that G has the properties claimed in Theorem A.

This will follow from

LEMMA 6. The group G is a soluble L*-group of derived length 3

generated by A , B , C and has the following properties:

(i) <A , C) ̂  A \rr C ;
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(ii) G" = A° and G' = A°B = HG ;

(Hi) if 0 5 i < 3 and R/S is a chief factor of G with

G{i+1) 5 S < R < G{i) then CJR/S) = G{i) .

u

Proof. 5y Lemma 1 the only normal subgroups of H contained in A

are the subgroups M. = A \pl\ , for t = 0, 1, 2, . . . , and U M. = A .

To prove that G is an L*-group we f i r s t show that if the factor M. /M.

of H is non-trivial then the corresponding factor M. /f-T. :>f G is

contained in every non-trivial normal subgroup of G/M. . We do this by

proving that M is contained in every non-trivial normal subgroup of G

and then dealing with the remaining factors M. In. by passing to
1* T 1 1,

appropriate factor-groups of G .

The main step in the proof is to show that the conditions of Lemma 5

are satisfied. Let us write M = M and L = CAA) . Then M is

contained in every non-trivial normal subgroup of H , and therefore also

in every non-trivial normal subgroup of AB that lies inside A . By the

definition of o , we have

L = kerO = kerTTfj) ,

where TT is the projection of B onto B . But (j> must be a mono-

morphism, otherwise its kernel would be a non-trivial normal subgroup of H

intersecting A trivially. Thus L = kerTT , and from this we see that

B = B x I .

Since the non-trivial normal subgroups of K = BC all contain B[q] it

follows that none of them can lie inside L . Therefore the hypotheses of

Lemma 5 will be satisfied if we can establish the existence of a two-

variable word p (a, b) and an element x £ B with the properties

stipulated in Lemma 3, for every a / 1 in C . We distinguish two cases:

either the vjtomorphism induced on B by a leaves L invariant, or it

does not.
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Suppose first that a is an element such that L ^ L . Then for

some y € L we have y \ L . We take x - y and p (a, b) = [a, £> ]

in this case, and note that conditions (i) and (Hi) of Lemma 3 are

satisfied. By our choice of y we have 1 + x u € B for some u 6 L ,

and since the non-trivial elements of S induce non-trivial automorphisms

on M it follows that C,,[x ) < M . But C,,fa; 1 is normal in AB : for

A is abelian and contains M , and if z € C,,^ ) a n d b $. B then using

the coiumutativity of B we have

so that 3 € ̂ M ^ ) • As W is a minimal normal subgroup of AB , it

follows that C[x ) = 1 , and therefore

for all a t 1 in M . Thus the conditions (i) , (ii) , (Hi) of Lemma 3

are all satisfied for this a .

si

Next suppose that 1 + a € C and L S I . Then a induces an

automorphism on B/L . Mow B/L is isomorphic to B , so it is a non-

trivial locally cyclic c^-group and hence has a characteristic subgroup

( b L > of order q , which must "be invariant under the automorphism induced

by a . Let s be an integer such that

Then since the order of a is a power of the prime r we have

rt
(1) s = 1 (mod q)

for some integer t .

By Lemma 2 the automorphisms induced on M by elements of B

generate a subfield fi of characteristic p in the ring of endomorphisms

S G
of A , and the automorphisms g = b a and 3 = b a will be q-th roots
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of unity in ft . Hence B and B are roots of irreducible factors of

the polynomial x - 1 over GF(p) .

We assume first that 3 and 8 are roots of the same irreducible

factor of x - 1 , and show that this assumption leads to a contradiction.

If 6 and 6 satisfy the same irreducible polynomial over GF(^) then

they are conjugate roots of unity in ft and hence also in the finite sub-

field A of ft that they generate. Thus there is a field automorphism of

A mapping B onto B . As A is finite i t s group of automorphisms is

generated by the automorphism that maps each element to i t s p-th power:

hence, for some integer k , we have

( 2 ) BS = 6 P .

Therefore, using ( l ) , we have

, t t
p E s H I (mod q) .

Consequently ord(p, q) is a divisor of kr . But the primes p, q, v

form an admissible sequence, so

v \ ord(p, q)

and therefore

ord(p, q) | k .

Hence pK = 1 (mod q) , and i t now follows from (2) t h a t 6S = B . Thus

b and b induce the same automorphism on A , and so [fo , a] E i . As

<b > = B[q] , we have

\B[q], a] 5 L < B[q] .

However [ s t ^ ] , c] i s normal in BC and B[q] i s a minimal normal sub-

group: the re fore [s[<7], c] = 1 . But t h i s implies t ha t <e> i s a non-

t r i v i a l normal subgroup of B[q]C t h a t i n t e r s e c t s B[q] t r i v i a l l y . Since

B[q]C i s an L*-group, t h i s i s a c o n t r a d i c t i o n . Therefore B and 8

cannot be roo ts of the same i r r e d u c i b l e fac to r of x - 1 .
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This means that x" - 1 has an irreducible factor

fix) = aQ + a±x + ... + amx
m

over GF(p) such that /(3) = 0 and f[&8) + 0 . We now define our two-

variable word p {a, b) byp (

, . , ao aib a / " fib)
p ( a , b) = a a ... a = <rp (

Then, substituting b for b , we find that

for al l a € M . On the other hand, as /(B ) is non-zero and hence

invertible in Q we have

for a l l a / 1 in M . Therefore the conditions (i), fiij , (Hi) of Lemma

3 are satisfied if we take x = b
a 1

We have now shown how to define x and p (a, b) for all a f 1 in

C , and i t follows from Lemma 5 that ŝ is contained in every non-trivial

normal subgroup of G .

For each integer i £ 1 the factor-group A/M. is isomorphic to a

direct power of a suitable factor-group of 4, , and the action of B on

A induces an action of B on A/M. . We can therefore repeat the

construction used to define G , but taking A/M., B, C in place of A, B,

C respectively. The resulting group

G = tr[A/M., B, C)

is easily seen to be isomorphic to G/M. , since
1/

7M. ,

iAvrC)/M? ^ [A/M.) wr C .
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In G the role of M is taken "by the subgroup M. /M. ; and the normal

closure in G of this subgroup is mapped onto n. ,1M. under the
'Z'Tj_ ,̂

isomorphism between G and Gin. . Therefore, applying the above argument

to G , we find that M. In. is contained in every non-trivial normal
Is* -L "Z-

/M. .subgroup of G/M

Since A is the union of the subgroups M. , it follows that every

normal subgroup of G either contains A or coincides with n. for some

C
i - 0 . However, G/A is isomorphic to BC = K , which is an L*-group,

Q

so the normal subgroups of G containing A form a well-ordered chain.

As the subgroups M. are also well-ordered, G is an L*-group.

We can now identify the terms of the derived series of G . For by

Lemma 1 (i) we have K' = B , so using the isomorphism between G/A and

c r1 c
K we have A G' = A B . But G i s an L*-group and G' $ A , so

c c c

A £ G' , and therefore G' - A B . Also G/A is metabelian, so we have

G" £ A . If this inclusion were strict then for some j we should have

and consequently

(3)

Now n. is a direct product of the conjugates n.,as o runs over C ,
3 3

and similarly M. is a direct product of the conjugates ^ + 1 • Thus

n°. JtF.*L dr if.llf. ;
^ + 1 ? 3+1 3

and each factor M. In. in this direct product is invariant under the
J 1 t7

action of H . Hence if (3) is to hold then H must centralize each of

these direct factors. However by Lemma 1 (Hi) we have
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^ = H> < H

so this leads to a contradiction. Therefore G" = A and (ii) is proved.

Finally, let B/S be a chief factor of G and suppose that

5 S < R < Gii] ,

where O i i < 3 . I f i = 0 , then obviously CJR/S) = G . I f t = 1 ,

then i?/S corresponds to a chief factor of G/G" , and as this is a group

isomorphic to K it follows from' Lemma 1 (Hi) that CAR/S) = G' .

Suppose next that i = 2 . Then there is an integer Q > 0 such that

R = M. and 5 = It1. . Now hr. In. is isomorphic to a direct product of
3 '1 t7 e7 1 e7

groups W. IM. , as e ranges over C , and each of these groups is

invariant under the action of B . Hence

CB{R/S) 5 CB{M.+1/M.) .

But Cg(R/S) is a normal subgroup of BC , so either it is trivial or else

it contains B[q] and hence has non-trivial intersection with B. .

However,

= Bl ^ ^l n CB

= B1 n H' = 1 ,

and so we conclude that C^(R/S) = 1 . As G1 = A B , it follows that
D

CG,(R/S) =A
C .

Also conjugation by a non-trivial element of C permutes the factors

n. lit. in a non-trivial fashion, so the centralizer of if/5 in C is
J"1"-!- 3

trivial. As C complements G' in G , this shows that

Cc(tf/S) = A
C = ff" .

Thus (•iii) is established in all cases, and the proof of Lemma 6 is

complete.
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5.

We nov describe the construction that will be used for the proof of

Theorem A in the general case. The reader familiar with [4] will recognize

a variant of Heineken and Wilson's "treble product tower".

Let n be a positive integer and let p , p , ..., p be a sequence

of primes such that p. t p. , for i = 1, 2, ..., w-1 . Given a

sequence of non-trivial locally cyclic groups A. , A , ..., A , with A.

a p —group for each i , we shall define a group L (i4 , A , .. ., A ) ,

which is generated by isomorphic copies of A , A , ..., A (as usual,

these copies will be identified with the originals) and which has the

following properties:

(l) if 1 2 i < i + 2j £ n , then the subgroup of

L(AV A2, ..-,An) generated by

is isomorphic to

A. w r 4 . _wr ... wr A.
t t+2 1

(2) if 1 £ m < n , then the subgroup of L{A , A , ..., A )

generated by A , A A is equal to

L[A , A , ..., A) , and its normal closure is complemented

by <A
m+1>

A
m+2> ••" V •

(3) the subgroups <A^, ^ + 1 > of L ^ , A^ A^ , for

i = 1, 2, ..., M-1 , are metabelian L*-groups of the type

described in Lemma 1.

The groups L[A , A , ... , A ) are defined inductively. We use a

generalization of the method of §4, replacing the three groups A , A , A

used in §4 by the three groups L[A , A , ..., A ) , A , A . To start

the induction we set '•(A-,) = A and take '-(̂•i > ^p) ^° ^ e o n e °^ *^e

metabelian L*-groups described in Lemma 1. Suppose now that n > 2 and

assume inductively that the groups L[A , A , ..., A ) have been defined
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for a l l m < n . We write H = L{A , A , . . . , A ) and denote the normal

closure of L[A , A , . . . , A ) in H by K . 3y our inductive

assumptions, (2) above i s satisfied when n i s replaced by n - 1 and m

by n - 2 . Hence H is a semi-direct product of K and A . Let

<|> : 4 ->• autX be the homomorphism associated with this semi-direct

product. By Lemma 1, there is a direct power A ., of A n and a
w - 1 M - l

homomorphism T : A -*• axxtA such that the semi-direct product A ^A
n w-1 n-1 n

i s a metabelian L*-group. Composing the natural projection of A onto

A with <(> , we obtain a homomorphism O : A -*• ax&K . With the

actions a and T defined in this way, we now set

G = tr(>, Jn_1, An; a, x)

and verify that G has the properties listed above. Observe that when

n = 3 this construction coincides with that used in §4.

If we identify A with a direct factor of A not contained in
n-1 n-1

kercr then G contains a subgroup KA isomorphic to H . We shall

suppose that this subgroup has been identified with H . Then, writing

for m = 1, 2, . . . , n , we see by induction that the groups G form a

chain

••• <Gn-l<Gn=G •

Suppose i and j are positive integers with i + 2j 5 n . To

establish property ( l ) , we note first that (K, A > = K wr A , by the

definition of the treble product. If i + 2j = n , then

so that

A., Ai+2, . . . . Ai+2.2 wr

By induction we may assume that the left-hand factor of this wreath
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product is itself an iterated wreath product of the required type, so (l)

holds in this case. On the other hand, if i + 2j < n , then

and (l) is a consequence of our inductive assumptions about H . Thus (l)

holds in all cases.

Let us now write D = <A ., , A .„, , A > , for

m w+l /71+2 n

m = 1, 2, , n-1 • To es tab l i sh property (2) i t w i l l be suf f ic ien t t o

verify tha t

(*) GG n D = 1
W 771

f o r a l l rn < n • As G „ = K we h a v e

GG . n 0 = / n Z ..4 = 1 ;
n - 2 n - 2 w-1 n

so (*) holds for m = w - 2 . Also, as 4 is the normal closure of
n—1

A . in < A , , A > , we have
tt-1 n-1 n

and therefore

G , n D = #"4 , n A = 1 ,
n-1 n-1 n-1 n

showing that (*) also holds for m = n - 1 • Next suppose that

m < n - 2 . Then

D

m m+1 ' ' n-2 n-1 n '

and since

the modular law shows that
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D
\ m

D

m m m m+1 n-;

expressed as a direct product of conjugates

Hence (P^ n Vm = Gm n (Amj_^ , . . . , A^ o> m . This l a s t group can be

A .,
\ n-1

where a ranges over 4 , and by induction

m m+1' ' ' * ' n-2 ~ m m+1' ' " ' ' n-1

Therefore

mm

and (2) is established in a l l cases.

Finally, property (3) is an immediate consequence of the definition of

G , since (A , A > = A A , and this is a metabelian L*-group of the

required type.

Thus by induction the groups L[A , A , . . . , A } are defined and have

properties ( l ) , (2), (3) for a l l n - 1 . We now show that by choosing our

prime sequences appropriately we obtain groups satisfying the conclusions

of Theorem A.

LEMMA 7. Let n - 2 and suppose the sequence of primes

&1' ^ 2 ' ' " ' P ^s admissible. Then G = L[A , A , , A ) is an

L*-group and, for each integer i with 0 < i < n , we have

(i) GU) = L[Al, A2, . . . , An_.)G
 3

(ii) G% IG is isomorphic to a direct power of A . ,

(Hi) if RlS is a chief factor of G with

R 5 G" then C^R/S) =
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Proof. If n = 2 then the result follows from Lemma 1.

If n = 3 then the construction described above is essentially a

repetition of that used in §4, and in this case the result is a consequence

of Lemma 6.

Suppose now that n i l ) , We define H and K as above and set

L=U1'^2 An-/ •

Since property (2) holds with n - 1 in place of n , we see that L is

complemented in H by (A , A > = A A . Now LA 5 K , so we

have

K = K, LAn2An^

= LA „ .
n-2

Therefore A is a. complement to L in K which admits the action of

A , and hence also that of A . Consequently K/L and A are

isomorphic as operator groups under the action of A . Now G/L is

isomorphic to the treble product

tr[K/L, An x, Aj

formed using this action of A , and therefore also to

t r^n-2' An-V Ar) '

But this last treble product is precisely the group that results from

applying the construction of §4 to the sequence of groups A , A , A .

Since the sequence p , p ., p is admissible, Lemma 6 shows that G/L

is an £*-group. Hence the normal subgroups of G containing L form a

well-ordered chain.

Now suppose that M is a minimal normal subgroup of H . By

induction we may assume that H is an L*-group and that the assertions of

the Lemma are true with H in place of G and n - 1 in place of n .
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Thus M is contained in every non-trivial normal subgroup of H , and

hence also in every non-trivial normal subgroup of KA that lies inside

K . In particular M - L = H" < K , so our inductive assumptions show that

CAM) < K ; in other words, M is not central in K . Furthermore kera

contains no normal subgroup of A A , by the argument used in the proof

of Lemma 6. Therefore the conditions of Lemma 5 are satisfied, and we

conclude from that lemma that ra is contained in every non-trivial normal

subgroup of G .

As H is an L*-group there is a unique ascending chief series

1 = MQ < M1 < . . . < M = L

of H between 1 and L , where p is some ordinal number. If a < p

then, by passing, to the factor-group

and using the above argument, we see that ^\,.-, /̂ ™ i-s contained in every

non-trivial normal subgroup of G/̂ C • Therefore the series

l = w j < ^ < ... < tf = LG

is a unique ascending chief series of G between 1 and L , and every

c c
normal subgroup of G either contains L or coincides with n for some

a < p . As we have already shown that the normal subgroups containing L

form a well-ordered chain, it now follows that G is an £*-group.

To identify the terms of the derived series of G we first use the

isomorphism

G/LG ^ tr(J o , A n , A )*• n-2 n-1 n'

and Lemma 6 (ii) to deduce that

G'LG = H° , G"LG = KG .

si

Now G i s an £*-group and G/L i s not metabelian, so we must have
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L S G" . Hence the above equations show that G' = H and G" = K

Thus assertion (i) of the lenma is true if i - 2 . Suppose next that

i > 2 . In this case we can write

Now K is a direct product of conjugates of K , so

Moreover, by induction we have

and i t follows that

G { i ) = L U , A , . . . , A . ) G ,K 1 2 n-v'

as claimed. Hence (i) is true in all cases.

As G' = HG = lfj and G" = KG , we see from the definition of G

as a treble product of K , A , and A that G/G' = A and

G'/G" ̂  A . Thus G^VG + 1 is isomorphic to a direct power of A .

when i = 0 or t = 1 . Suppose now that i - 2 : then, using again the

fact that G" = JC is a direct product of conjugates of K , we find that

G^'/G is isomorphic to a direct power of K^~2'/K^'l~1' . However,

K{v-2)/K{v-l) = H(l-1)/H(i) ^ a n d b y i n d u c t i o n //(i-l)/ff(t) is isomorphic

to a direct power of A . . Hence G /G is isomorphic to a direct

power of A . , and (ii) is proved.

Finally, let R/S be a chief factor of G , and .suppose that

Gii+1) 5 5 <RS GU) ,

where 0 £ £ < n . If i £ 2 then R/S is effectively a chief factor of

(3) G
G/G = G/L , and, using again the isomorphism
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and Lemma 6 (Hi) , we have

CG(R/S) = GU) .

On the other hand, if i > 2 then R 2 G = L , and so for some a < p

we have R = « and 5 = AT . Now Af /AT is isomorphic to a direct

product of the groups AT /AT , as a ranges over A , and the direct

factors are all invariant under the action of H . Furthermore M , lU

is a chief factor of H and

so "by induct ion

M <M
a. ct+1

CV{M IU ) = H{

HK a + l aJ

Using an argument like that given in the last paragraph of the proof of

Lemma 6, we deduce from this that

CG(R/S) = [H<*t-1))G = G( t ) .

Thus (Hi) i s established and the proof of Lemma 7 is complete.

Theorem A now follows immediately from Lemma 7. For

G = L{A1, A~, . . . , A ) i s generated by A^, A , . . . , A , and by the

properties established in the course of construction of L [A , , A , . . . , A )

we see that the subgroups

and

<V V V •••' A
n-e}

are expressible as wreath products of the required type. Hence G is

generated by these wreath products, and the other properties are

established in Lemma 7.
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6.

Proof of Theorem B. Given a prime p and an integer n > 1 , we want

to construct a p£-group G satisfying min-n with a p-subgroup P of

nilpotent length n , such that C(P) = 1 .

We choose a prime q > p such that p \ ord(p, q) : th is is

possible, for if p t 2 we can use any prime q > p with q = 1 (mod p) ,

and if p = 2 we can take q = 7 , for example. Let PT> P?» •••> P?
 b e

the sequence of primes defined by

P2i~l = P » P 2 i = * '

for £ = 1, 2, ..., n . Our choice of q ensures that this sequence is

admissible. Now take A. to be a quasicyclic p.-group for each i 5 2n .
If If

Then by Theorem A there is a soluble L*-group G of derived length 2n

generated by

P = A wr A vr . . . wr A

and

Q = A2 wr A^ wr . . . wr A^

such that G /G i s isomorphic to a direct power of A . , for

i = 0, 1, 2, . . . , n-1 . As the groups A. are radicable, so are a l l the

factors G IG : hence G is a p£-group.

Now P is a p-subgroup of G , and we have £(P) = 1 , for i t is

known (see, for example, Corollary 3.U of [4]) that the wreath product of a

non-trivial group and an inf ini te group always has t r i v i a l centre. Further

P is evidently a pQ-group of derived length n , so Theorem U.5 of [6]

shows that the nilpotent length of P is also equal to n . Finally, G

is an L*-group, and a fortiori sa t isf ies min-n , so the proof of Theorem

C is complete.

The group G constructed above shows also that there is no upper

bound on the derived lengths of p£-groups satisfying min-n , for G was

a p^-group of derived length 2n , and n was an arbitrary integer with

n > 1 . Thus we have a new proof of Lemma 3.^ of [3] .
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We conclude by remarking that i f we drop the requirement that our

sequences of primes be admissible, then the constructions of §4 and §5 do

not in general produce L*-groups. This may be shovn by the following

example. Let < a > and ( o) be cyclic groups of order 2 and l e t < b)

be a cyclic group of order 3 . The construction of §4, applied to the

three groups <a>,<£>>,<<3> , gives us a group

G = t r U , B, C; a, T) ,

where A and B are direct powers of (a) and <fc> respectively, and

C = (a) . The direct powers A and B are chosen so that the semi-direct

products H = A (by and K = B(o) are metabelian £''-groups, and i t is not

hard to verify that the only poss ib i l i t i e s for H and K are groups

isomorphic to the a l ternat ing group A* and the symmetric group 5

respectively. Thus we may assume that A = (a, a > and B = <b> , and

that the following re la t ions hold in G :

r h b2 b , e , -1
[ a , a \ = l , a = aa , b b

Now A = A = A x A , and we can express this subgroup also as a direct

product

,G , bo a b > / a b bcsA = (aa , a a ' x ( a a , a a a >

in which each of the direct factors is a normal subgroup of G . Thus the

normal subgroups of G are not well-ordered, and consequently G is not

an L*-group.
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