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A Note upon some Properties of the Curve of Striction.

By Dr H. W. Ricamonp, F.R.S.,, LL.D.
(Received 3rd August 1926. Read 5th November 1926.)

Certain properties of Ruled Surfaces relating to their
Curves of Striction are suggested and immediately proved by
the use of a particular kind of coordinates, known as Dual
Coordinates, for the Generating Lines. These coordinates,
were introduced by Prof. E. Study; the theory of them is
fully explained and many beautiful applications are made in
his treatise, Geometrie der Dynamen, Teubner, 1903, and in his
article, Complexe Griossen in the Encyclopidie der math.
Wissenschaften, Bd. I, pp. 147-183, and specially p. 166. In
applying the method here I have ventured to regard the
fundamental quantity ¢ in a light which, if less rigorous, has
the advantage of being familiar to most of us in other
mathematical work.

1. Dual Coordinates and Dual Numbers. The coordinates
of the straight line which passes through a point (f, g, ) and
has direction-cosines (I, m, n) are commonly taken to be
(4, m, n, p, q, r) where

p=gn - hm,
q = i — ‘fﬁ,
r =_fin -~ gl,

s0 that
P4+ m+n?=1:
Ip + mq + nr = 0,

Hence, if we agree to write

L =1 +ep
M=m+ e
N =n + er,

L2+M2=lv2=1+e‘.‘([)‘.’+q'.!+r?).

Now in many applications of mathematics, for example in
discussing the oscillations of a dynamical system, or in carry-
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ing out an approximation, we are accustomed to deal with
numbers whose squares (and higher powers) are ignored : and
e will here be regarded as such a number. We may say with
Prof. Study that & = 0; or we may treat ¢ as a number whose
square is neglected; or again we may assert that the state-
ments we shall make are correct only to the first power of e.
Whichever plan is adopted we have the fundamental relation
connecting L, M, N.

LD+ M4 N2=1 oo, @)

With this convention as to ¢, (L, M, N) are defined as the
Dual Coordinates of the straight line.

Quantities such as » + er,u + ex . . where », 7, 4, x
. are ordinary numbers will be termed Dual Number..
Powers and roots of a dual number, and the sum and product
and quotient of two dual numbers! are themselves dual
numbers; an algebra of dual numbers may in fact be developed.
If any three dual numbers, # + ex, v + ey, w + ez, are chosen
there is just one line whose dual coordinates L, M, N are
proportional to them: to obtain this line, divide each of the
three numbers by the square root of the sum of their squares.
The ratios of any three dual numbers,

U=u+ex
V=v+ey
W = w + ez,

determine a certain straight line, and may be considered as
“ homogeneous dual coordinates ”’ of the line; it will be seen
that %, v, w are the direction-ratios of the line. But (L, M, N},
defined above and satisfying (i), depend upon the direction-
cosines and so determine not only the line but a positive sense
or direction upon it.

2. Had L, M, N been ordinary numbers satisfying (i),
geometry would interpret them as coordinates of a point on
a sphere of unit radius. A number of results in spherical

1 Except sometimes if the number u + ex has u zero,
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geometry can, as Prof. Study shows, be interpreted in terms
of dual numbers to give theorems upon lines in space. For
example the condition

L L+ MM, + NN, =0,
which expresses the fact that two points (Z,, M,, N,) (L,, M,, N,)
are a quadrant apart, gives when interpreted in terms of the
dual coordinates of two lines the condition that the two lines
meet at right angles. Since the condition is homogeneous in
each set of coordinates any factor may be rejected from each
set and the condition holds equally in terms of the coordinates
UV, w,uvs.,

LU + MV, + W, W, = 0.
This is easily verified if L, M, N are expressed in terms of
I, m, n, p, q, . Again the expression

LL,+ M M, + N\ N,

in general represents in spherical geometry the cosine of the
angle subtended at the centre of the sphere by the two points.
In dual coordinates, if we substitute for L, M, N in terms oi
I, m,n, p,q,r and drop terms in ¢2, we obtain

Ll + mymy, + nymy + e(bpe + Lpy + Mg, + maqy + 0,75 + ny1y)

If 6 is the angle between the positive directions of two lines
in space, and D is the length of their shortest distance (with
a convention as to its sign), this formula represents
cos@ — eD sin 6 = cos(@ + eD)

to the first power of ¢, Prof. Study calls 6 + eD the dual
anglc between the two lines. The vertices of a spherical
triangle ABC may be any three points of a sphere; the poles
A’, B’, ¢’ of the sides BC, CA, AB are points such that
A'B, A'C, etc., are quadrants. Extending this by the use
of dual coordinates, so that A, B, C represent three arbitrary
lines in space, and A’, B’, C’ represent the shortest dis-
tances of each two, he derives from the common formulae of
spherical trigonometry relations connecting the dual angles
(i.e., connecting both the angles and the shortest distances)
between these lines. See Geometrie der Dynamen, pp.
209-213.
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3. The object of this paper is to obtain in a precisely
similar manner certain properties of Ruled Surfaces: the first
and most fundamental of these properties is noted by Study.
They are derived from properties of curves on a sphere; the
coordinates of points are replaced by dual numbers and are
interpreted by means of lines in space.

With any spherical curve is associated a second curve, the
polar curve of the first. If X, ¥, Z are points of a given
curve and lengths XX’, YY’, ZZ’, each equal to a quadrant
are measured along the normals at X, V, Z, then X’, Y’ Z’
are the corresponding points of the polar curve. FEach of
the curves is the polar of the other, and the arcs XX’
YV, ZZ' are normal to both. If the great circles which
touch the two curves at X and X’ meet in T, and those
which touch them at ¥ and Y’ meet in U, T and U are the
poles of the arcs XX’ and Y'Y’ respectively, and the two
spherical triangles XX’T and YY’U have all their sides quad-
rants.  Further, if the arcs XX’ and YY’” meet in C, C 1is
the pole of TU; and as X and Y approach coincidence the
curve which is the locus of the ultimate position of C is polar
to the curve which is the locus of 7 and U.
The ultimate position of C is the common centre of curvature
of the given curve and the polar curve, and its locus is their
evolute.

Next imagine a Ruled Surface formed by a simple infinity
of generating lines; each has dual coordinates L, M, N. We
have a simple infinity of values of L, M, NV, all satisfying (i),
and the fact that they are dual numbers does not prevent us
from deriving a second set of values in the same way that
the coordinates of X', Y’ Z’ were derived from those of X,
Y, Z. They represent the generators of a second ruled
surface; and, since XX’, YY’ ZZ’ are quadrants, correspond-
ing generators of the two surfaces intersect at right angles.
But, further, since X! is the pole of the great circle tangent
at X, and X the pole of that at X’, the generator of each
ruled surface is the shortest distance of two generators of
the other, when they move up to coincidence. The plane
containing corresponding generators of the two ruled surfaces

7 Vol. 44
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touches both the surfaces. In fact not only do corresponding
generators of the given and the derived ruled surfaces intersect
at right angles,. but the locus of their point of intersection is
the curve of striction on both surfaces, and the two surfaces
touch at each point of the curve. This is the surface noticed
by Study and called by him the Strictionsband ; there is how-
ever something to be said for adopting here and elsewhere
as far as possible the names used in spherical geometry with
the word dual prefixed ; we may term the second ruled surface
the dual poler of the first.

To the points such as T, the pole of the common normal
XX’ of the given spherical curve and its polar, correspond
lines which intersect both the two corresponding generators
of the given ruled surface and its dual polar surface perpen-
dicularly, ie., normals to the two ruled surfaces at points
of their line of striction. These normals form a third ruled
surface—the ““surface of striction-normals” will serve to
des¢ribe it—corresponding to the locus of points such as T
and U of the spherical curves.

When three straight lines are taken in space and a positive
direction is assigned to each, there is a unique line which is
equally inclined to the three and is equidistant from the three.
If the three lines are chosen from among the generators of
the given ruled surface and approach coincidence, the line
whose inclination and shortest distance from each is the same
takes a definite limiting position. Spherical geometry enables
us to determine it. The line in question, whose dual distances
from three neighbouring generators are equal, corresponds to
a point on the sphere whose distances from three points of
the curve are equal; the limiting position of this point is C,
the pole of TU and the centre of curvature of the curve at
X. We infer that if we take the normals to the given ruled
surface at two neighbouring points of its line of striction and
construct their common perpendicular or shortest distance, the
ultimate position of this line when the two neighbouring points
move up to coincidence is the required line of equal inclination
and equal distance from three generators,
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4. It is clear from the geometry of the sphere that the
same line is also the line of equal inclination and distance
from three-generators of the Strictionsband or dual polar sur-
face. But it is also clear that the Strictionsband is merely
one of an infinity of surfaces having similar properties. For,
on the sphere, an infinity of curves (as well as the polar curve)
have the same evolute as a given curve: we may measure
any constant angular distance along the normals of the given
curve and we shall obtain such a curve. Hence in space, given
a ruled surface and its curve of striction, if we rotate each
generator through a right angle round the normal at the point
where the generator meets the curve of striction, we arrive
at the Strictionsband of Prof. Study, which has the same curve
of striction and touches the given surface at each point of
that curve: but if we had rotated each generator about the
same normal through eny constant angle, we should have
obtained a different ruled surface having the same properties.
There are in fact an infinity of ruled surfaces having a common
curve of striction and having the same tangent plane at each
point of that curve. Further for the constant angle of rotation
we may substitute a constant dual angle; in place of a simple
rotation about the normal we may impose upon each genera-
tor a rotation through a constant angle about the normal
plus a translation through a constant distance along that
normal. We arrive at a new ruled surface having—not of
course the same curve of striction—but the same surface of
striction-normals as the given surface. In this doubly infinite
system of ruled surfaces the original surface is not distinct
from the rest. The foundation of the figure is the surface
of striction-normals. The generators of the other surfaces
form the totality of lines which meet the striction-normals
perpendicularly, and they are grouped into surfaces in a
manner suggested by the system of curves on a sphere.

But on the sphere the curves are derived more simply
from the locus of C than from that of T; the former is the
evolute and is the polar of the latter. It may be imagined
that an inextensible thread lying on the surface of the sphere
and kept always taut is unwrapped from the evolute; or that,
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if the evolute is replaced by a polygon formed of a number
of small arcs of great circles, and 4B, BC, CD, DE

are the sides of polygon starting from a point A of the
evolute, first AB is turned about B until it becomes the con-
tinuation of CB, then AB and BC together are turned about
C until they become the continuation of DC, and so on. The
curve described by A ultimately becomes an involute, one of
the curves desired. The other involutes, described by other
points than A, can be obtained by lengthening or shortening
the arc of the great circle which is normal to the locus of
A by a constant amount. It is possible to imagine a some-
what similar method of obtaining the ruled surfaces.

5. In place of the surface of striction-normals (which
corresponds to the locus of T), we prefer to use its dual polar
surface (which corresponds to the evolute, or locus of C)
and which we describe as the dual evolute; we have seen
that it is the locus of lines of equal inclination and distance
from three generators of any of the system of ruled surfaces,
when the generators approach coincidence. In discussing the
sphere we took a series of points on the evolute and so sub-
stituted a polygon for the continuous curve; here we will
select a series of generators of the dual evolute at small
distances apart and disregard the intermediate generators.
The developing or unwrapping of the locus on the sphere
transformed it step by step into a great circle without altering
the length of its elements. Now to points on a great circle
correspond in space (when dual numbers are introduced as
coordinates) lines which meet a certain line at right angles,
and a surface formed by such lines is known as a right
conoid. We have to imaginc a method by which the serics
of generators of the dual evolute arc transformed into
generators of a right conoid without alteration of the dual
angle (i.e., of the angle and shortest distance) between each
successive two. This is not difficult. Call the successive
generators a, b, ¢, d, ¢ and the shortest distances
(ab), (bc), (¢d) . . . Imagine a and (ab) translated
parallel to b until the ends of (eb) and (bc) which lie on b
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coincide; then imagine a and (ab) rotated about b until (ab)
comes into line with (b¢): a, b, (ab), (bc) may now be sup-
posed to be fixed together and to move together like a rigid
body. Translate them parallel to ¢ until the point where
(bc) meets ¢ is brought into coincidence with the point where
(¢d) meets ¢ and rotate them about ¢ until the line made up
of (ab) and (bc) comes into line with (cd): a, b, ¢ (ab),
(bc), (cd) may now be supposed fixed together, (ab), (bc),
(¢d) being in a straight line and q, b, ¢ meeting at right angles.
In the same way a translation parallel to d and a rotation
about d enables us to combine another generator d and another
shortest distance (de). This gives an idea how the line a
traces out one of the ruled surfaces; lines rigidly connected
with a and (ab), meeting (ab) at a fixed distance from a and
inclined to o at a fixed angle, trace out other ruled surfaces
of the system.

The methods here used will obviously lead to other results,
if it is thought desirable to pursue them. It will however be
recognised that the properties of the curve of striction which
have been given can be obtained without putting pen to paper,
when once the principle of Professor Study’s dual coordinates
is understood.
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