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Transient growth mechanisms operating on streaky shear flows are believed important for
sustaining near-wall turbulence. Of the three individual mechanisms present – Orr, lift-
up and ‘push over’ – Lozano-Duran et al. 2021 (J. Fluid Mech. 914, A8) have recently
observed that both Orr and push over need to be present to sustain turbulent fluctuations
given streaky (streamwise-independent) base fields whereas lift-up does not. We show
here, using Kelvin’s model of unbounded constant shear augmented by spanwise-periodic
streaks, that this is because the push-over mechanism can act in concert with a Orr
mechanism based upon the streaks to produce much-enhanced transient growth. The
model clarifies the transient growth mechanism originally found by Schoppa & Hussain
(2002 J. Fluid Mech. 453, 57–108) and finds that this is one half of a linear instability
mechanism centred at the spanwise inflexion points observed originally by Swearingen &
Blackwelder (1987 J. Fluid Mech. 182, 255–290). The instability and even transient growth
acting on its own are found to have the correct nonlinear feedback to generate streamwise
rolls which can then re-energise the assumed streaks through lift-up indicating a sustaining
cycle. Our results therefore support the view that, while lift-up is believed central for the
roll-to-streak regenerative process, it is Orr and push-over mechanisms that are both key
for the streak-to-roll regenerative process in near-wall turbulence.

Key words: turbulent boundary layers, shear-flow instability

1. Introduction
Efforts to understand wall-bounded turbulence have naturally focussed on the wall and
the (coherent) structures which form there (Richardson 1922). The consensus is that there
is (at least) a near-wall sustaining cycle (Hamilton, Kim & Waleffe 1995; Waleffe 1997;
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Jimenez & Pinelli 1999; Farrell & Ioannou 2012) involving predominantly streaks and
streamwise rolls (or vortices) which helps maintain the turbulence (e.g. see the reviews
Robinson 1991; Panton 2001; Smits, McKeon & Marusic 2011; Jimenez 2012, 2018). The
generation of these streaks from the rolls is commonly explained by the (linear) transient
growth ‘lift-up’ mechanism (Ellingsen & Palm 1975; Landahl 1980), but how rolls are
regenerated from the streaks has proven a little less clear due to the need to invoke
nonlinearity at some point.

Just focusing on the initial linear part, Schoppa & Hussain (2002) suggested that
transient growth mechanisms on the streaks were actually more important than (linear)
streak instabilities, and that it was these transiently growing perturbations which fed
back to create streaks through their nonlinear interaction. While this view has been
contested (e.g. Hoepffner, Brandt & Henningson 2005; Cassinelli, De Giovanetti & Hwang
2017; Jimenez 2018), it is supported by recent cause-and-effect numerical experiments by
Lozano-Durán et al. (2021), who looked more closely at all the linear processes present. In
particular, Lozano-Durán et al. (2021) isolated the influence of the three different transient
growth mechanisms: the familiar Orr (Orr 1907) and lift-up (Ellingsen & Palm 1975)
mechanisms present for a one-dimensional flow profile U (y) and a far less-studied ‘push-
over’ mechanism which can only operate when the base profile has spanwise shear i.e.
U (y, z). They found, somewhat unexpectedly, that the Orr and push-over mechanisms are
both essential to maintain near-wall turbulence when streaky base flows were prescribed
but lift-up is not: see their § 6.4 and figure 24(a).

Markeviciute & Kerswell (2024) investigated this further by looking at the transient
growth possible on a wall-normal shear plus monochromatic streak field consistent with
the buffer region at the wall. Over appropriately short times (e.g. one eddy turnover time,
as proposed by Butler & Farrell (1993)), they found a similarly clear signal that lift-up
is unimportant whereas the removal of push over dramatically reduced the growth: see
their figure 7. The necessity to have push over operating with the Orr mechanism indicates
they are working symbiotically. How this happens, however, is puzzling from the time
scale perspective as Orr is considered a ‘fast’ mechanism which operates over inertial
time scales whereas push over looks a ‘slow’ mechanism operating over viscous time
scales. This latter characterisation comes from an analogy with lift-up in which viscously
decaying wall-normal velocities (as present in streamwise rolls) advect the base shear
to produce streaks. Push over (a term coined by Lozano-Durán et al. (2021)) similarly
involves viscously decaying spanwise velocities advecting the spanwise streak shear.
Understanding exactly how these two mechanisms constructively interact is therefore an
interesting issue.

The purpose of this paper is to lay bare this interaction by exploring it in an augmented
version of Kelvin’s famous constant-shear model (Kelvin 1887). This simple model – an
unbounded shear U = y x̂ ( just the red flow in figure 1) – was used by Orr (1907) for
his seminal work and has been important in clarifying the characteristics of both Orr
and lift-up mechanisms subsequently (e.g. Farrell & Ioannou 1993; Jimenez 2013; Jiao
et al. 2021) and as a shear-flow testbed otherwise (e.g. Moffatt 1967; Marcus & Press
1977). The key features of the model are that the base flow is: (i) unbounded and so not
restricted by any boundary conditions; and (ii) a linear function of space. These together
permit plane wave solutions to the perturbation evolution equations where the spatially
varying base advection can be accounted for by time-dependent wavenumbers. This leaves
just 2 ordinary differential equations (ODEs) for the cross-shear velocity and cross-shear
vorticity to be integrated forward in time. These ‘Kelvin’ modes form a complete set but,
unusually, are not individually separable in space and time and so the representation differs
from the usual plane wave approach with constant wavenumbers. Kelvin and Orr used
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Figure 1. The streaky unbounded shear flow studied here: see (2.1). The (green) spanwise streaks extend
Kelvin’s (red) popular constant-shear model.

these modes to study unidirectional shear but they can also be used more generally to
study the stability of time-dependent spatially linear flows (Craik & Criminale 1986; Craik
1989), flows with closed streamlines such as elliptical (Bayly 1986; Landman & Saffman
1987; Waleffe 1990) and precessing flows (Kerswell 1993), or flows with more physics
included such as stratification (Hartman 1975; Miyazaki & Fukumoto 1992), rotation
(Tung 1983; Leblanc & Cambon 1997; Salhi & Cambon 2010), magnetic fields (Craik
1988) or elasticity (Lagnado, Phan-Thien & Leal 1985).

The augmented base flow considered here – shown in figure 1 and (2.1) – builds in
a streak field which introduces spatially periodic spanwise shear. This is now not purely
linear in space and so a Kelvin mode is no longer a solution of the linearised perturbation
equations. Instead, a single sum of Kelvin modes over spanwise wavenumbers is needed,
but, importantly, the wall-normal shear can be handled as usual, removing the unbounded
advective term from the system. This means the model system is still a very accessible
‘sandbox’ in which to study the transient growth mechanisms of Orr, lift-up and now,
crucially, also ‘push over’. The price to be paid for introducing the streak field is an order
of magnitude increase in the number of ODEs to be solved, but, since this is increased
from 2 to O(20), it is trivial by today’s standards.

The plan of the paper is as follows. Section 2 introduces the model, the evolution
equations and discusses appropriate parameter values. Section 3 revisits Kelvin’s
unbounded constant-shear model, presenting some new large-Re asymptotic scaling laws
(where Re is the Reynolds number) and discussing the timescales for Orr and lift-up
growth mechanisms. The presence of streaks is introduced in § 4, with the two-dimensional
(2-D) limit of no streamwise variation used in § 4.1 to illustrate how the push-over
mechanism behaves when it acts alone. This is followed by a general analysis of the
transient growth possible for the full 3-D system in § 4.2 which is found to clearly capture
the symbiotic relationship between Orr and push over. Section 4.3 then describes a severely
truncated two-variable system which contains the essence of how Orr and push over help
each other to generate enhanced growth. Sections 4.4 and 4.5 discuss the energy growth
possible in this system which is centred on a linear instability mechanism. Section 4.6
discusses how this linear instability becomes only transient when diffusion is reinstated
and derives some simple estimates for the transient energy growth possible which match
well with what is found in the full 3-D system. Section 4.7 shows that the two-variable
system does not nonlinearly drive any streamwise rolls and so motivates examination of
a more realistic three-variable system in § 4.8 which does. Section 4.9 explains why lift
up hampers the enhanced growth produced by push over and Orr working together and
§ 4.10 relates the results to previous work considering the full Navier–Stokes equations in
a realistic geometry. A final discussion follows in § 5.
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2. Formulation

2.1. Governing equations
We consider a unidirectional base flow velocity in the x-direction which has a constant
shear in y and a spatially periodic ‘streak’ shear varying in the spanwise z-direction

UB = UB(y, z)ex = [y + β cos (kzz)]ex , (2.1)

where β is the dimensionless streak strength: see figure 1. The system has been non-
dimensionalised by the y-shear rate, S, and the initial ky wavenumber (i.e. by a length
scale L := L y/2π where L y is the initial perturbation wavelength in y), so that the streak
wavenumber kz is a parameter of the problem. This allows straightforward access to the
well-studied Kelvin problem of β → 0 while using the spanwise wavenumber as an inverse
length scale does not.

The Navier–Stokes equations linearised around UB for a perturbation u := (u, v, w) and
associated pressure perturbation p are then

∂u
∂t

+ [y + β cos (kzz)]∂u
∂x

+ [v − βwkz sin (kzz)]ex + ∇ p = 1
Re

Δu, (2.2)

∇ · u = 0. (2.3)

Here, the Reynolds number is Re := L2S/ν, where ν is the kinematic viscosity. Taking
ey·∇ × ∇× and ey·∇× of (2.2) leads to a pair of equations for v and the y-shearwise
vorticity η := ∂u/∂z − ∂w/∂x , respectively,

[
∂

∂t
+ [y + β cos (kzz)] ∂

∂x
− 1

Re
Δ

]
Δv + 2βkz sin (kzz)

[
∂2w

∂x∂y
− ∂2v

∂x∂z

]
− βk2

z cos (kzz)
∂v

∂x
= 0, (2.4)[

∂

∂t
+ [y + β cos (kzz)] ∂

∂x
− 1

Re
Δ

]
η + ∂v

∂z
+ βkz sin (kzz)

∂v

∂y
− βwk2

z cos (kzz) = 0.

(2.5)

2.2. Kelvin modes
The well-known trick to handle the y-dependent advection term is to allow the
wavenumbers of the perturbation to be time-dependent (Kelvin 1887) giving a ‘Kelvin’
mode

[u, v, w, p, η](x, y, z, t) = [û, v̂, ŵ, p̂, η̂](t)ei[kx x+(1−kx t)y+kz z], (2.6)

which is actually a full solution to the unlinearised perturbation equations since k · u = 0
by incompressibility (e.g. Craik & Criminale 1986). For β �= 0, the extra streak shear
unavoidably couples different spanwise wavenumbers and the perturbation ansatz has to
be extended to

[u, v, w, p, η](x, y, z, t) =
M∑

m=−M

[ûm, v̂m, ŵm, p̂m, η̂m](t)ei[kx x+(1−kx t)y+mkz z], (2.7)

where, formally, M should be infinite but, practically, is chosen large enough so as
not to influence the results. This ansatz could be extended further by shifting the
spanwise wavenumbers by a fraction of the base wavenumber – so mkz → mkz + μ
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where −(1/2)kz �μ < (1/2)kz is the modulation parameter in Floquet theory – but only
μ = 0 is treated here so the perturbation has the same wavelength as the base field (i.e.
there is no modulation) consistent with numerical observations e.g. Schoppa & Hussain
(2002). Also, since UB is symmetric about z = 0, perturbations which are either symmetric
(‘varicose’) or antisymmetric (‘sinuous’) in u about z = 0 can be pursued separately.
However, the computations are sufficiently low-cost that it was easier to just consider both
cases together.

The continuity equation and definition of η make it possible to express ûm and ŵm in
terms of v̂m and η̂m as follows:

ûm = −kx (1 − kx t)v̂m − imkz η̂m

k2
x + m2k2

z
and ŵm = −mkz(1 − kx t)v̂m + ikx η̂m

k2
x + m2k2

z
, (2.8)

and then (2.4) and (2.5) require for each integer m

˙̂vm +
[
−2kx (1 − kx t)

k2
m

+ k2
m

Re

]
v̂m = iβkx

2k2
m

[
2(m + 1)

k2
z k2

m+1

h2
m+1

− k2
z − k2

m+1

]
v̂m+1

− iβkx

2k2
m

[
2(m − 1)

k2
z k2

m−1

h2
m−1

+ k2
z + k2

m−1

]
v̂m−1

+ βk2
x kz(1 − kx t)

k2
mh2

m+1
η̂m+1 − βk2

x kz(1 − kx t)

k2
mh2

m−1
η̂m−1,

(2.9)

and

˙̂ηm + k2
m

Re
η̂m = − ikxβ

2

(
1 − k2

z

h2
m+1

)
η̂m+1 − ikxβ

2

(
1 − k2

z

h2
m−1

)
η̂m−1

− imkz v̂m − βkz(1 − kx t)

2

(
(m + 1)k2

z

h2
m+1

− 1

)
v̂m+1

− βkz(1 − kx t)

2

(
(m − 1)k2

z

h2
m−1

+ 1

)
v̂m−1, (2.10)

where h2
m := k2

x + m2k2
z and k2

m := k2
x + (1 − kx t)2 + m2k2

z . These 2(2M + 1) coupled
complex ODEs are readily integrated forward in time from given initial conditions using
MATLAB’s ode45.

2.3. Kinetic energy and optimal gain
The volume-averaged kinetic energy is defined as

E(t) := 1
VΩ

∫
Ω

1
2
|u(x, t)|2dΩ = 1

2

M∑
m=−M

1
h2

m

[
k2

m |v̂m |2 + |η̂m |2], (2.11)

where Ω := [0, 2π/kx ] × [0, 2π] × [0, 2π/kz] and VΩ is the volume of Ω . In this paper
we define the ‘optimal gain’ as the largest value of E(T )/E(0) over all possible initial
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conditions

G(T, kx , kz; β, Re) := max
u(0)

E(T, kx , kz; β, Re)
E(0, kx , kz; β, Re)

. (2.12)

The ‘global optimal gain’ will be the result of optimising this quantity over the
wavenumbers

G (T ; β, Re) := max{kx ,kz}
G(T, kx , kz; β, Re), (2.13)

and the ‘overall optimal gain’ will be the result of optimising this over the time T

G(β, Re) := max
T

G (T ; β, Re). (2.14)

2.4. Parameter choices: buffer layer estimates
The focus in this study is to consider values for the five physical parameters – T, kx , kx , β

and Re – appropriate for the buffer layer (e.g. Jimenez 2018; Lozano-Durán et al. 2021).
Given there is no simple characterisation of the mean flow profile here as it adjusts from
the viscous sublayer to the log layer and only order of magnitude estimates are sought, we
adopt the empirical log layer representation

U+(y+) = U/uτ ≈ 1
κ

ln y+ + B, (2.15)

(where y+ = yuτ /ν is the distance from the wall in so-called viscous units, uτ is the
friction velocity at the wall, κ ≈ 0.4 and B ≈ 5) even in the buffer region. Then at a typical
buffer scale of y+ = 20, this gives the local Reynolds number

Relocal ≈ y+
(

1
κ

ln y+ + B

)
≈ 250, (2.16)

which is large but not very large.
A representative T can be found using the time quoted by Lozano-Durán et al. (2021)

for the maximum gain seen in numerical computations, which is t = 0.35h/uτ (h being
the half-channel width) at Reτ := huτ /ν = 180 and comparable to the eddy turnover time
at the appropriate distance from the wall (Markeviciute & Kerswell 2024). The local
shear rate at y+ using the log layer approximation is S = dU/dy = Reτ uτ /h dU+/dy+ =
Reτ uτ /(hκy+) which gives a time in our inverse shear rate units of

T ∼ 0.35
h

uτ

S = 0.35
Reτ

κy+ ≈ 8, (2.17)

for y+ = 20.
In terms of wavenumbers, we take the initial ky (cross-shear) wavenumber used to

non-dimensionalise the model as 2π/y+ (i.e. the wavelength is the distance to the
wall), so the other non-dimensionalised wavenumbers are kz ∼ O(y+/(λ+z ≈ 100)) and
kx ∼ O(y+/(λ+x ≈ 300)). Therefore both wavenumbers are O(0.1–1).

The magnitude of β can be estimated by comparing shear rates. Typical root-mean-
square velocities near the wall are urms ≈ 1 (in units of uτ ) which can be used to estimate
typical streak amplitudes. Comparing the ratio of streak shear to wall-normal shear with
the model (2.1) gives

k+
z urms

1/(κy+)
≈ kzβ/

√
2

1
, (2.18)
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or β ≈ 3.6 at y+ = 20 (the
√

2 factor compensates for the cosine dependence in (2.1)).
Given this, we consider values of β from 1 to 5 in the below (going to higher β causes
problems with numerical overflow in our model: see figure 9).

3. Unbounded constantshear flow (β = 0): Kelvin’s problem
Removing the streaks (β = 0) recovers Kelvin’s classical unbounded constant-shear model
(Kelvin 1887) which ever since has proved a popular testing ground for ideas (e.g. Orr
1907; Moffatt 1967; Craik & Criminale 1986; Farrell & Ioannou 1993; Jimenez 2013; Jiao
et al. 2021). The evolution equations are simply

(k2v̂)t = − k2

Re
(k2v̂), η̂t = − k2

Re
η̂ − ikz v̂, (3.1)

with the solution

v̂(t) = k2(0)

k2(t)
v̂(0)eφ(t), η̂(t) =

{−ikzk2(0)v̂(0)

kx h
[θ(t) − θ(0)] + η̂(0)

}
eφ(t), (3.2)

where

φ(t) := − 1
Re

∫ t

0
k2(τ ) dτ, and θ(t) := tan−1

[
h

1 − kx t

]
; (3.3)

(Farrell & Ioannou 1993; Jiao et al. 2021). It is well known that two growth mechanisms
are present which are revealed by taking the appropriate two-dimensional special case:
kz = 0 possesses the Orr mechanism (Orr 1907) only and kx = 0 possesses the lift-up
mechanism (Ellingsen & Palm 1975) only.

3.1. Orr mechanism
With kz = 0, the shearwise vorticity can only exponentially decay leaving the shrinking
of k2(t) := k2

x + (1 − kx t)2 with time in the expression for v̂(t) – see (3.2) – the sole
growth mechanism. Growth occurs for t � 1/kx with the viscous (exponential) damping
term moderating this. The fact that the growth time does not scale with viscosity means
the Orr mechanism is inertial and so considered ‘fast’.

For large Re and 1 �T = o(Re), the viscous damping can be ignored and then kx =
(1/2)(

√
T 2 + 4 − T ) maximises the global optimal growth at

G Orr = 1/k2
x ∼ T 2, (3.4)

for T 2 � 4. For 1 � T = O(Re), the optimal wavenumber is still related to the time via
kx = 1/T to leading order and it is simple to show that the overall growth maximum over
T (the overall global optimal) is

G
Orr = 9

e2 Re2, T Orr = 3Re, kOrr
x = 1

3Re
, (3.5)

where e = exp(1) = 2.7183. So, somewhat paradoxically, the maximum growth over all
times produced by the ‘fast’ Orr mechanism actually occurs on a ‘slow’ viscous time
scale.

3.2. Lift-up mechanism
With kx = 0, there is no growth possible in v̂ but this velocity component forces the
shearwise vorticity η̂ which grows. This growth ultimately is turned off by the viscous
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Figure 2. A contour plot of optimal growth G in wavenumber space for T = 5 and Re = 200. This figure shows
that the optimal early time gain occurs for a three-dimensional perturbation, at a location in wavenumber space
close to the kx value associated with the maximum gain possible through the Orr mechanism.

decay of v̂ and so lift-up is viewed as a ‘slow’ viscous process. The overall optimal lift-up
growth (kx = 0) is

G
lift-up = 4

27e2 Re2, T lift-up = 2
3

Re, klift-up
z = 1√

2
, (3.6)

which is consistent with this. Here, since 1 � T = O(Re), the initial shearwise vorticity
can be ignored facilitating the derivation of (3.6) while for 1 � T = o(Re), this is no longer
valid.

3.3. Fully 3-D optimals
Figure 2 shows the growth landscape over (kx , kz) plane for T = 5 and Re = 200. The
optimal kx wavenumber is close to the (2-D) Orr optimal value (kz → 0 on the plot) but the
optimal kz is an order of magnitude smaller than the corresponding lift-up value (kx → 0).
This observation is robust over different T as shown in figure 3(b) and becomes more
exaggerated as T increases towards the maximum at T = O(Re). It is also noticeable in
3(a) that this overall optimal gain G (maximised over all kx , kz and T ) occurs at about
the same time as the Orr maximum (this is clearly not true for lift-up). This and the kx
observation suggests using the large Re results in (3.5) for Orr as a starting point for
analysing the full 3-D optimal. Assuming that the initial shearwise vorticity is zero, this
leads to

G
3D = 9π2

e2 Re2, T 3D = 3Re + αRe9/11, k3D
x = 1

3Re
, k3D

z = γ Re−8/11, (3.7)

where α := 36/11/π2/11 ≈ 1.4786 and γ := π3/11/39/11 ≈ 0.5562. These asymptotic
predictions match the numerical computations very well even down to Re = O(30) –
see figure 4, also providing a posteriori justification for assuming the optimal has η̂(0) = 0.
The formulae in (3.7) give optimal wavenumbers at Re = 100 of (kx , kz) = (3.33, 19.53) ×
10−3 which are consistent with figure 1(a) of Jiao et al. (2021).

4. Early time transient growth in streaky flow (β �= 0)
We now shift our focus to streaky unbounded constant-shear flow and the transient growth
possible over O(1) times as discussed in § 2.4. The required optimals will prove to be fully
three-dimensional but we start by looking at the reduced two-dimensional (streamwise-
independent kx = 0) problem which isolates the unfamiliar ‘push-over’ mechanism.
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Figure 3. (a) optimal growth vs T at Re = 1000. The solid line is the full 3-D optimal G (Re) =
max(kx ,kz ) G(kx , kz; Re), the dashed line is maxkx G(kx , 0; Re) (Orr) and the dotted line is maxkz G(0, kz; Re)
(lift-up). (b) the corresponding optimal wavenumbers: solid brown/blue for kx/kz for the full 3-D optimal,
dashed brown for kx in Orr and dotted blue for kz in lift up. These plots show that the 3-D optimal closely
follows the Orr result in terms of both G and kx with assistance from lift-up except near the maximum over T
(the overall optimal gain G).

1010

105

100

10–5

101 102 103

kx

T

G

kz

Re
104 105

Figure 4. This plot shows the overall optimal gain G(β, Re) and associated optimising parameters (kx , kz
and T ) as a function of Re for β = 0 in symbols. The asymptotic predictions of (3.7) are the lines.

4.1. Two dimensional (kx = 0) push-over growth
With kx = 0, the wavenumbers are constant so Orr is absent and it is simpler to work with
the velocity field directly. The v̂ and ŵ momentum equations together with continuity
imply p̂m = 0 for all m, leaving the 3 evolution equations

˙̂um = −k2
m

Re
ûm − v̂m + iβkz

2
(ŵm+1 − ŵm−1), (4.1)

˙̂vm = −k2
m

Re
v̂m, ˙̂wm = −k2

m

Re
ŵm, (4.2)
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where k2
m = 1 + m2k2

z . These indicate that v̂m and ŵm simply viscously decay in time
allowing explicit solutions to be written down as follows:

ûm = e−k2
mt/Re

{
Um − Vmt + iReβ

2kz

[
Wm−1

1 − 2m

(
e−(1−2m)k2

z t/Re − 1
)

− Wm+1

1 + 2m

(
e−(1+2m)k2

z t/Re − 1
)]}

, (4.3)

v̂m = Vme−k2
mt/Re, ŵm = Wme−k2

mt/Re, (4.4)

where Um := ûm(0), Vm := v̂m(0) and Wm := ŵm(0) are the initial conditions which, by
continuity, satisfy Vm + mkzWm = 0. Taking Re → ∞ gives the simple û equation

ûm = Um − Vmt + iβkzt

2
(Wm+1 − Wm−1). (4.5)

The push-over effect is produced by the forcing term proportional to the spanwise streak
shear, βkz , and is very similar to the −Vmt lift-up forcing (normalised to have unit shear)
although push over drives neighbouring spanwise modes while lift-up is direct. Lift-up
can be turned off by setting Vm = 0 for ∀m which, through continuity, forces Wm = 0 for
m �= 0. Setting Um = 0 for all m as well appears an extreme choice for initial conditions
but numerical computations indicate that it is close to optimal for kx = 0 (e.g. at β = 1,
T = 5 and Re = 200, the error using the extreme choice is only ≈ 1% of the global optimal
gain value). When only W0 of the initial conditions is non-zero, the gain is

Ĝpush = e−2T/Re

[
1 + Re2β2

2k2
z

(
1 − e−T k2

z /Re)2]∼ 1 + 1
2
β2k2

z T 2 as Re → ∞, (4.6)

assuming T � Re and k2
z � Re/T for the asymptotic simplification (we use a ˆ to

indicate a quantity not optimised over all initial conditions). This mirrors the result for
lift-up: when β = 0 is used, choosing only (U1, V1, W1) = (0, 1, −1/kz) to be non-zero
gives a gain of

Ĝ lift-up ∼ 1 + k2
z T 2/

(
1 + k2

z

)
, (4.7)

at large Re. Hence push over seems to behave very much like lift-up in both the growth
possible and the time scales, i.e. growth is ultimately limited by the viscous decay of the
spanwise velocities so push over is ‘slow’.

The overall optimal gain in (4.6) can be found by optimising over both kz and T :
∂Ĝpush/∂kz = ∂Ĝpush/∂T = 0 requires

2k2
z T e−k2

z T/Re − Re
(
1 − e−k2

z T/Re)= 0, (4.8)

Re2β2(1 − e−k2
z T/Re)[e−k2

z T/Re(1 + k2
z

)− 1
]= 2k2

z . (4.9)

The first of these is solved by noticing that the equation reduces to 2ζ + 1 − eζ = 0 with
ζ := k2

z T/Re which has the unique positive solution ζ ≈ 1.256. Then, using e−ζ = (1 +
2ζ )−1 in (4.9) gives the optimal wavenumber as k̂ push

z = √
2ζ , and thus the maximising

time and maximal gain for only-non-vanishing-W0 initial conditions as

T̂ push = 1
2 Re and Ĝ

push = ζβ2

e(1 + 2ζ )2 Re2. (4.10)
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Figure 5. Contour plots of the optimal gain over the (kx , kz) wavenumber plane for the parameter set β = 1,
T = 5 and Re = 200. The truncation value is set to M = 20 and the contour levels are the same across all the
plots. Panel (a) shows the full problem (all terms included), while panels (b), (c) and (d) have the lift-up, push-
over and Orr mechanisms removed, respectively. The black line traces the wavenumber ranges used for figure 7.
The point of this figure is to show that the large growth observed is substantially suppressed when either the
push-over or Orr mechanism is removed, but is largely independent of the lift-up mechanism.
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Figure 6. Contour plots of the optimal gain over the (kx , kz) wavenumber plane for β = 1, T = 5 and Re = 200.
Both use M = 20 in the model, but the first plots the optimal ‘sinuous’ disturbances, while the second plots
the optimal ‘varicose’ disturbances (recall that this terminology refers to the symmetry or antisymmetry of u
about z = 0). This plot demonstrates that all of the large growth occurs for sinuous perturbations.

This again shows that the push-over mechanism, in the absence of Orr (kx = 0) and with
initial conditions chosen to eliminate lift-up, possesses the same scalings as the lift-up
mechanism.

4.2. Transient growth of three-dimensional perturbations
Larger energy growth occurs for 3-D disturbances, where all three mechanisms (lift-up,
push over and Orr) can play a role. Figure 5 displays contours of the optimal gain
in wavenumber space for four different scenarios at representative parameter values
(β = 1, T = 5 and Re = 200). The left-most plot shows the gain at T at a given pair of
wavenumbers (kx , kz) maximised over all initial conditions for the full equations. The
other three plots extending to the right have the three growth mechanisms excluded in turn
by artificially removing the terms which drive them: figure 5(b) has lift-up suppressed by
removing ∂UB/∂y from the equations; figure 5(c) has push over suppressed by removing
∂UB/∂z; and figure 5(d) has the streak advection (the β cos(kzz)∂u/∂x term) removed
to suppress the ‘spanwise’ Orr mechanism (removing all of the advection changes the
whole character of the flow). All optimal disturbances here are sinuous with varicose
disturbances always producing less growth in this augmented Kelvin model across the
parameters considered: e.g. see figure 6.

A key feature of the figure 5(a) is the global optimal gain indicated by the yellow region,
which reaches values of G ≈ 104 at kx ≈ 2.7 and kz ≈ 15. A comparison of this peak and
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kz

G
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Figure 7. A plot showing the optimal gain as kz is varied, with kx = kz/5 and parameters β = 1, T = 5 and
Re = 200. The range of kz used here is indicated in figure 5(a) using a black line. The blue line represents the
gain when all terms are included in the equations (corresponding the the contours in figure 5(a)). The red line
shows the gain when the lift-up mechanism is removed, while the yellow line shows gain when the push-over
mechanism is removed and the purple line shows gain when the spanwise Orr mechanism is removed (which
correspond to the contours in figures 5(b), 5(c) and 5(d), respectively). This plot demonstrates that both the
push-over and spanwise Orr mechanisms are crucial for large growth of kinetic energy, even down to some
moderate wavenumbers. It also shows that for smaller wavenumbers, a switch occurs and lift-up becomes the
dominant growth process.

the surrounding region with the same location in the other plots reveals that removing
the lift-up mechanism leaves the optimal gain contours almost completely unaltered,
while removing either the push-over or spanwise Orr mechanism reduces the size of
gain significantly. This importance of push over and lack of importance of lift-up for a
streaky base flow is fully consistent with earlier observations (Lozano-Durán et al. 2021;
Markeviciute & Kerswell 2024).

The optimal wavenumbers for this global optimal are, however, on the large side for
the buffer layer (see § 2.4) but a line drawn along the major axis of the contours –
approximately kz = 5kx – suggests a direction of ‘shallowest’ descent in the wavenumber
plane (shown as a black line in figure 5(a) for 1 < kz < 10). Figure 7 shows how the optimal
gain behaves along this line for 1 < kz < 10 when the various mechanisms are excluded.
At kz = 1, removing lift-up is actually more detrimental to the gain than removing either
spanwise Orr or push over, but for kz � 3, the situation is reversed and mimics that for
the global optimal gain. The figure also shows that the presence of lift-up now actually
hinders growth (the crossing of blue and red lines at kz ≈ 3). This effect is also present
in figure 5(b) and is consistent with the observations of Lozano-Durán et al. (2021) and
figure 7 in Markeviciute & Kerswell (2024).

So, the conclusion is, in this unbounded streaky shear flow at these parameters,
wavenumber pairings reaching down to those appropriate for buffer-layer dynamics show
the clear symbiosis of Orr and push-over mechanisms and the unimportance of lift-up as
highlighted by the global optimal gain pairing.

4.3. A two-variable model of the push-over and Orr interaction
Remarkably, it is possible to strip the model down to just 2 fields and still retain the
symbiotic interaction between push over and Orr. There are 3 distinct steps which achieve
this. Firstly, the spanwise truncation M is reduced down to 1 decreasing the number of
(complex-valued) fields from 2(2M + 1) (with M = 20 or so) down to 6. Secondly, the
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Figure 8. A sequence of contour plots showing the optimal gain in wavenumber space, close to the optimal
pair, for the parameter set β = 1, T = 5 and Re = 200. The colour bar is shown on the right-hand side and is
the same for all three plots. Panel (a) has truncation value M = 20, (b) has M = 1 with the sinuous symmetry
used and (c) uses the further simplification of having v̂1 removed. This figure demonstrates that the underlying
growth process is present in all three cases with the reduced model harbouring significantly enhanced growth.

symmetry: v̂0 = 0, v̂1 = −v̂−1 and η̂1 = η̂−1 appropriate for the sinuous mode (discussed
in Schoppa & Hussain 2002) is imposed so 6 becomes 3 complex fields. These evolve as
follows:

dv̂1

dt
= − k2

1
Re

v̂1 + 2kx (1 − kx t)

k2
1

v̂1 − βkz(1 − kx t)

k2
1

η̂0, (4.11)

dη̂0

dt
= − k2

0
Re

η̂0 −
Orr︷ ︸︸ ︷

iβkx η̂1 +

Orr︷ ︸︸ ︷
βk2

x kz(1 − kx t)

h2
1

v̂1 +

Orr︷ ︸︸ ︷
iβkx k2

z

h2
1

η̂1, (4.12)

dη̂1

dt
= − k2

1
Re

η̂1 − 1
2

iβkx η̂0︸ ︷︷ ︸
Orr

− ikz v̂1︸︷︷︸
lift up

+ iβk2
z

2kx
η̂0︸ ︷︷ ︸

push over

, (4.13)

where, recall, k2
0 := k2

x + (1 − kx t)2, k2
1 := k2

0 + k2
z and h2

1 := k2
x + k2

z . Here the Orr, lift-up
and push-over terms are labelled in the last two equations and the Orr terms only rely on
the streak flow (indicated by being premultiplied by β). The fact that the term involving
v̂1 in (4.12) is only an Orr term, and that (4.12) contains no push-over contributions is not
obvious; see the Appendix for details.

Finally, v̂1 can be jettisoned meaning (4.11) is ignored and v̂1 set to zero in the η̂

equations, leaving simply

dη̂0

dt
= − k2

0
Re

η̂0 −

Orr︷ ︸︸ ︷
iβk3

x

k2
x + k2

z
η̂1, (4.14)

dη̂1

dt
= − k2

1
Re

η̂1 + 1
2

iβkx

[
k2

z

k2
x︸︷︷︸

push over

−1︸︷︷︸
Orr

]
η̂0. (4.15)
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Figure 9. Contour plots in wavenumber space of the optimal gain for β = 1 (a,b) and β = 5 (c,d), with other
parameters set to T = 2, Re = 100. The first column shows the full model with truncation M = 20 while the
second column shows the reduced two-variable model given by (4.14) and (4.15).

The a posteriori justification for such a drastic reduction is provided by figure 8 which
shows the gain in the full (M = 20) system (the same data as figure 5(a) but replotted over
a smaller wavenumber area and with different contour levels), the gain produced by the
three-variable model (4.11)–(4.13), and the reduced model (4.14)–(4.15). This comparison
clearly shows that: (i) the M = 1 reduction is surprisingly effective in retaining the gain
behaviour and (ii) the reduced model also retains the global optimal gain feature and in
fact, as also observed, experiences significantly enhanced growth with lift-up removed.
Figure 9 shows this picture is repeated for smaller Re = 100 and target time of T = 2 but
a larger β = 5 value (note the increase in contour scale for β = 5 compared with β = 1
which is explained by the scaling in (4.27)).

For T k2
1 � Re, diffusion can be dropped in (4.14)–(4.15) and then setting η̂0 = η0 and

η̂1 = iη1 for convenience gives just

d
dt

(
η0
η1

)
=
(

0 βk3
x/
(
k2

x + k2
z

)
1
2β
(
k2

z − k2
x

)
/kx 0

)(
η0
η1

)
. (4.16)

To arrange for the Euclidean norm to correspond to the energy, the vorticities need to
be rescaled – η̃0 := η0/h0 and η̃1 := √

2η1/h1 – so that

E := 1
2

(|η̂0/h0|2 + 2|η̂1/h1|2
)= 1

2

(|η̃0|2 + |η̃1|2
)
, (4.17)

and the system becomes

d
dt

(
η̃0
η̃1

)
=L

(
η̃0
η̃1

)
:=
(

0 a
b 0

)(
η̃0
η̃1

)
, (4.18)

where

a := βk3
x

k2
x + k2

z

h1

h0
√

2
= βk2

x√
2
(
k2

x + k2
z

) , b := β
(
k2

z − k2
x

)
2kx

h0
√

2
h1

= β
(
k2

z − k2
x

)√
2
(
k2

x + k2
z

) .
(4.19)

This system can produce energy growth in 2 distinct and independent ways.
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(i) Algebraic growth due to the non-normality of L. This occurs when the magnitudes
of the off diagonal elements of L do not match i.e.

a2

b2 =
(

k2
x

k2
z − k2

x

)2

�= 1 ⇒ kz �= √
2kx , (4.20)

which ensures LLT �=L
T
L - the defining property that L is a non-normal matrix.

(ii) Exponential growth due to a linear instability with growth rate σ where

σ 2 := ab = 1
2
β2k2

x

(
k2

z − k2
x

k2
z + k2

x

)
. (4.21)

This needs kz > kx and so push over dominates streak Orr in (4.15). Since only streak
Orr operates in (4.14), this clearly shows that push over and streak Orr are needed for
this linear instability.

4.4. Two-variable energy growth
Either mechanism can act in isolation or together depending on the wavenumber pair
(kx , kz). In the model studied here, the wavenumbers kx and kz are naturally chosen so
that both mechanisms are operative as this creates the largest growth. In particular, in
the example plotted in figure 8 – (Re, T, β) = (200, 5, 1) – the optimal wavenumbers
are (kx , kz) ≈ (2.7, 15) for the M = 20 and M = 1 models so that a ≈ 0.34 and b ≈ 10.1.
Hence, kz > kx and there is actually a significant difference in magnitude between the
off-diagonal elements. To characterise how much energy growth this produces, the 2
differential equations in (4.18) can be straightforwardly integrated to give(

η̃0(t)
η̃1(t)

)
=A

(
η̃0(0)

η̃1(0)

)
:=
(

cosh σ t
√

a/b sinh σ t√
b/a sinh σ t cosh σ t

)(
η̃0(0)

η̃1(0)

)
, (4.22)

where A= eLt . The maximum growth possible, G(T ), at t = T for given wavenumbers
(kx , kz) is then the largest eigenvalue of the real symmetric matrix A

T (T )A(T ) (here, AT

indicates the transpose of A rather than anything to do with the target time T ). This is just
the larger of the two real positive eigenvalues of the quadratic

λ2 −
[

2 cosh2 σ T +
(

a

b
+ b

a

)
sinh2 σ T

]
λ+ 1 = 0. (4.23)

If λmax > 1 then λmin = 1/λmax < 1, that is, there is only one growth mechanism for a given
(kx , kz) pairing and no growth implies λmax = λmin = 1. Assuming either large σ T when
σ 2 = ab > 0 or |a/b| �= O(1) for 0 > σ 2 = −ω2

G(T, kx , kz; β) := λmax ≈ 2 cosh2 σ T +
(

a

b
+ b

a

)
sinh2 σ T . (4.24)

This shows either linear instability enhanced by initial transient growth as a/b + b/a �
2 or only transient growth in a linearly stable system (ignoring the singular case of
sin ωT = 0). The corresponding optimal condition, which is the associated left eigenvector
of A

T (T )A(T ), depends crucially on whether a/b � 1 or � 1. Taking the former and
setting ε := √

a/b � 1 (kz/kx � 1), the optimal initial condition is(
η̃0(0)

η̃1(0)

)
=
(

1
ε coth σ T

)
⇒

(
η̃0(T )

η̃1(T )

)
=
(

cosh σ T
1
ε

sinh σ T

)
, (4.25)
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Figure 10. The various transient growth (TG) and stability regimes over 0 � kz/kx . They are (a) 0 � kz/kx <

1 – linearly stable and η̂1 → η̂0 transient growth; (b) kz/kx = 1 – linearly stable but unlimited algebraic growth
in η̂0; (c) 1 < kz/kx <

√
2 – linearly unstable and η̂1 → η̂0 transient growth; (d) kz/kx = √

2 – linearly unstable
with no transient growth; and (e)

√
2 < kz/kx – linearly unstable and η̂0 → η̂1 transient growth. Sample

evolutions are shown for kz/kx = 5.6 in figure 13 and kz/kx = 0.95 in figure 14 for (Re, T, β) = (200, 5, 1).

along with what it evolves into a time T later (all to leading order in ε). This indicates that
energy growth through the non-normality of L is produced by initial η̂0 generating η̂1 as
described by (4.15). This is consistent with what Schoppa & Hussain (2002) found – the
initial condition they chose was purely η̂0 – but they focussed on the streamwise vorticity
as a measure of the growth rather than the shearwise vorticity.

If instead, a/b � 1 so now ε := √
b/a � 1 (or k2

z /k2
x − 1 � 1), the optimal initial

condition is (
η̃0(0)

η̃1(0)

)
=
(

ε coth σ T
1

)
⇒

(
η̃0(T )

η̃1(T )

)
=
(

1
ε

sinh σ T
cosh σ T

)
. (4.26)

This indicates that energy growth through the non-normality of L is now produced by
initial η̂1 generating η̂0 as described by equation (4.14).

Given instability exists for ab > 0 or kz > kx , there are 5 different scenarios as kz/kx
varies: see figure 10. Optimising energy growth over all wavenumbers should select
either 1 < kz/kx <

√
2 or

√
2 < kz/kx since both are linearly unstable but have different

transient growth mechanisms. Computations here suggest it is the latter which contains the
optimum which is consistent with where the instability growth rate is larger for fixed kx .
In this case, the transient growth which occurs is described by (4.15) and push over is
the dominant process. This transient growth situation is illustrated in figure 11(a). Here,
the spanwise velocity perturbation ŵ0 := iη̂0/kx ‘pushes over’ (advects) the base streak
velocity β cos(kzz) x̂ to create wavy streaks û1 (and so η̂1) via the projection of the term
ŵ0∂/∂zUB onto the û1 equation. The (streak) Orr achieves the same effect of generating
streamwise- and spanwise-dependent flow from only streamwise-dependent flow – albeit
with the opposite and wrong phase for subsequent instability.

4.5. Two-variable linear instability
The instability looks to be exactly the 2-D linear instability of a streak field as modelled
by 2-D Kolmogorov flow (Arnold & Meshalkin 1960; Meshalkin & Sinai 1961). In
its simplest form, Kolmogorov flow consists of a steady forcing, sin �y x̂ for some
integer �, applied to a flow over a two-torus [0, 2π/α̂] × [0, 2π]. The corresponding one-
dimensional base flow is exactly the streak flow studied here with the base shear removed
and is linearly unstable at high enough Re provided α̂ < � which is exactly the condition
kx < kz for instability found in (4.16) (e.g. Marchioro (1986) and figure 2 in Chandler &
Kerswell (2013)).
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0
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0

(∂w1/∂x) < 0
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w1

u1

w0
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(∂w1/∂x) > 0

(a) (b)

Figure 11. (a) η̂0 corresponds to a spanwise velocity w0 ∝ sin kx x which ‘pushes over’ the streak velocity field
β cos kz z x̂ to produce wavy streaks as shown created by the streamwise velocity anomalies u1 ∝ sin kx x sin kz z
(black arrows). (b) the spatial gradients in the u1 field imply a doubly periodic pressure field which drives a
concomitant spanwise velocity w1 ∝ cos kx x cos kz z field (green arrows). The advection of this w1 field by
the streak velocity – the streak-Orr effect – generates further spanwise velocity (purple arrows) via the term
−β cos kz z∂w1/∂x which feeds back positively on η̂0 completing the loop.

The instability is produced by a further mechanism represented by (4.14) which
generates η̂0 from η̂1 to complement the transient growth mechanism. As discussed above,
the latter produces wavy streaks which drive a concomitant spanwise field ŵ1 through
continuity (kx �= 0): see figure 11(b). This spanwise field ŵ1 then drives ŵ0 to close the
loop by the streak-Orr mechanism. that is, streak advection of ŵ1 given by the projection
of the β cos(kzz)ikx ŵ1 term onto the ŵ0 equation: again see figure 11(b). In this process,
the streamwise flow component of the instability, û1, is largest at the inflexion points of
the streak field where the spanwise shear is maximal, while the spanwise flow component
is largest when the streak is largest.

4.6. Two-variable transient growth with dissipation present
Before studying the nonlinear consequences of the linear instability, we estimate the
energy growth possible in the two-variable system with dissipation present. Because of the
unlimited growth of the cross-stream wavenumber in the model, dissipation always even-
tually overpowers the instability to formally give only transient growth. For a general kx ,
the time for the cessation of linear instability growth is given by the balance βkx ∼
k2

x T 2/Re so T = O(
√

βRe/kx ) and then a prediction for the optimal growth for a given
kx � O(Re) is

G ∼ e
√

αβ3kx Re, (4.27)

where α = 1/2(k2
z − k2

x )/(k
2
z + k2

x ) is O(1). Formally, if T � O(1), this is maximised for
kx = O(Re) beyond which diffusion dominates giving a massive gain of O(eα1Re) (α1
being a Re-independent number). This prediction is confirmed in the two-variable model
and for the full system: see figure 12. This also shows good correspondence between
the optimal wavenumbers in each system which all scale linearly with Re. Figure 12
also confirms that a push-over-less system has no such exponential growth. However, this
overall optimal gain is not the one of practical interest as kz = O(Re) (figure 12 actually
has kz ∼ 0.075Re and kx ∼ 0.012Re) represents unrealistically large streak shear. If, instead
kz = O(1) (and hence kx = O(1)), the gain is reduced but still substantial at O(eα2

√
Re)
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Figure 12. (a) plot shows the global optimal gain G as a function of Re for β = 1, T = 5 using the full
(M = 20) system (purple triangles), the reduced two-variable model (dark blue squares) and the full system
with push over removed (dull blue circles). The lines drawn through the data are the straight lines between the
extreme points of each data set indicating that the full system has the same G ∼ eαRe behaviour as the two-
variable model albeit with a smaller α. The push-over-less system does not have this exponential dependence.
(b) plot compares the optimal wavenumbers between the full system and the reduced two-variable model (the
symbols). Lines through the data (drawn as in the Left plot) indicate that all wavenumbers scale linearly
with Re.

generated over O(
√

Re) ‘intermediate’ times (α2 being another constant). This exponential
dependence of gain on

√
Re is surprising given that the Orr and push-over mechanisms in

isolation only give gains which scale like Re2 and then only over ‘slow’ times of O(Re)
(e.g. see §§ 3 and 4.1).

4.7. Nonlinear feedback of the two-variable system
The linear instability in 2-D Kolmogorov flow is known to be supercritical (Sivashinsky
1985) and hence the first nonlinear feedback of the instability on the streak is to reduce its
amplitude. As confirmation, the instability here is

u =
⎡
⎢⎣

2kz

h2
1
η̂1(t) sin kzz

0
2ikx

h2
1

η̂1(t) cos kzz + i
kx

η̂0(t)

⎤
⎥⎦ ei(kx x+(1−kx t)y) + c.c.; (4.28)

(c.c. indicating complex conjugate) which, indeed, has the negative feedback on the streak

kx kz

2π2

∫ 2π/kz

0

∫ 2π/kx

0
(−u · ∇u) cos kzz dxdz = − 4k2

z

kx h2
1

Re
(
i η̂0η̂

∗
1
)
< 0, (4.29)

as η̂1 = i η̂0

√
k4

z /k4−1
x /

√
2 from (4.15) ignoring diffusion (∗ indicates complex conjugate

and Re( ) is the real part). So this two-variable system does not re-energise the imposed
streaks and moreover has no feedback on any streamwise rolls. To generate the latter, v̂1
needs to be reinstated – i.e. we need to examine the full three-variable M = 1 system – but
at a cost of expecting less growth.

4.8. Three-variable feedback onto rolls
The M = 1 linear system, (4.11)–(4.13) has a symmetry that if (η̂0, η̂1, v̂1) is a solution
then so is (η̂∗

0, −η̂∗
1, v̂∗

1). This symmetry is adopted by optimal initial conditions so that
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Figure 13. (a) modal energy Em := (1/2h2
m)(k2

m |v̂m |2 + |η̂m |2) plotted over m � 0 (E−m = Em due to
symmetry) for the initial optimal (blue circled crosses) and final state (red filled circles) for (Re, T, β) =
(200, 5, 1) and M = 20. This indicates why the M = 1 truncation works so well: the initial optimal has its
energy dominantly in the m = 0 mode which shifts to m = 1 by the final state. (b), the time evolution of the
optimal for M = 1 system and (Re, T, β) = (200, 5, 1): solid dark blue uppermost line is η1/10; dashed purple
line is η0 and the dash-dot pale blue line is v1. The green solid line indicating negative values is F/100 where
F is defined in (4.31). The dotted vertical line at t ≈ 0.37 indicates where 1 − kx t = 0 for kx ≈ 2.7 and kz ≈ 15.

the flow subsequently can then be assumed of the form (η̂0, η̂1, v̂1) = (η0(t), iη1(t), v1(t))
where η0(t), η1(t) and v1(t) are all real variables subsequently (this observation has
already been used to produce equation (4.16)). The evolution of these 3 optimal real
variables is shown in figure 13(b) for (Re, T, β) = (200, 5, 1). The three-variable flow
field takes the form

u =
⎡
⎣ 2i {−kx (1 − kx t)v1(t) + kzη1(t)} sin kzz/h2

1
2iv1(t) sin kzz

2 {−kz(1 − kx t)v1(t) − kxη1(t)} cos kzz/h2
1 + iη0(t)/kx

⎤
⎦ ei(kx x+(1−kx t)y) + c.c.,

(4.30)
and the nonlinear driving of the cross-stream flow component V (z, y) ŷ with the same
spanwise structure relevant for lift up is

F := kx kz

2π2

∫ 2π/kz

0

∫ 2π/kx

0
(−u · ∇v) cos kzz dxdz = −4kz

kx
η0(t)v1(t). (4.31)

For the representative parameters used in figure 13(b), η0 > 0 and v1 > 0 and so the feed-
back F is large and negative (note that F/100 is actually plotted). This drives secondary
cross-stream velocities anti-correlated (∝ − cos kzz) to the imposed streak field which,
through the lift up term −Uy V x̂ reinforces the existing streak field. Specifically, where
the instability generates V > 0, slower moving fluid from the basic shear is ‘lifted up’
to reinforce the slow streaks (where β cos kzz < 0) and where V < 0, corresponding faster-
moving fluid is ‘pushed down’ to reinforce the fast streaks (where β cos kzz > 0). Since the
driven flow V (y, z) ŷ is synonymous with streamwise rolls, this demonstrates the potential
for this streak instability to produce a sustaining cycle of rolls and streaks (Hamilton et al.
1995; Waleffe 1997; Jimenez & Pinelli 1999; Farrell & Ioannou 2012).
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Figure 14. The time evolution of the optimal for M = 1 system and (Re, T, β) = (200, 5, 1) with non-optimal
kx = 1 and kz = 0.95 so a linear stable situation: solid dark blue line is η1; dashed purple line is η0 and the
dash-dot pale blue line is v1. The green solid line indicating largely negative values is F/10 where F is defined
in (4.31). The dotted vertical line indicates when 1 − kx t = 0.

Figure 14 confirms for non-optimal wavenumbers – kx = 1 and kz = 0.95 – with no
instability present that even the transient growth acting alone provides good nonlinear
feedback onto streamwise rolls.

4.9. Why lift up weakens growth
Figure 8 shows that removing v̂1 from the M = 1 system considerably enhances the
optimal growth. This is because both the v̂1-Orr term in (4.12) and the lift-up term in (4.13)
weaken the instability mechanism which dominates the growth found here. Starting with
figure 11(a) or (4.13), the presence of the lift-up term works against the push-over effect
of η̂0. The x- and z-phases of v̂1 are the same as that for û1 created by η̂0 (see (4.30)) so
v̂1 is either lifting up or pushing down the base shear flow to reduce the magnitude of û1.
By this same reasoning, lift up can enhance the transient growth process if Orr dominates
push over – i.e. there is no instability – but this scenario is never selected when maximising
growth over wavenumber space.

In figure 11(b), the possibility of motion into or out of the x-z plane of the streaks
reduces the spanwise flow field ŵ1 generated by the û1 field through continuity (the
pressure field associated with the spatial gradients of û1 now can drive both v̂1 and ŵ1
fields rather than just ŵ1). This reduced ŵ1 then has weakened spatial gradients and so
diminishes the streak-Orr effect. In terms of (4.12), this manifests itself as the v̂1-Orr term
acting against the η̂1-Orr terms once (1 − kx t) < 0 which happens early in the evolution
(e.g. see figure 13(b)).

4.10. Previous work
The linear instability isolated here in (4.16) is inviscid in nature and, at least in terms of
the streamwise and cross-stream velocity components, is centred at the spanwise inflexion
points of the streaks where the streak shear is maximal. This suggests it is related to the
linear instability originally observed by Swearingen & Blackwelder (1987). Against this,
the spanwise flow components are maximal at the streak flow extrema, but there are no
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cross-stream inflexion points in this model and so no Kelvin–Helmholtz type instability
(e.g. see figure 19b of Kline et al. 1967).

The model has revealed two transient growth mechanisms that can be in play for
different wavenumber pairings. The one which is selected by optimising over the
wavenumbers corresponds to that found originally by Schoppa & Hussain (2002) (e.g. their
initial condition is very similar to the optimal conditions found here dominated by η̂0).
There, the authors concentrated on the growth of the streamwise vorticity (e.g. see their
figure 11(b) and § 4.2) identifying what they called a ‘shearing’ generation of vorticity due
to the right hand side term in their (14a) and illustrated in their figure 16. This is a purely
Orr term as there are no lift-up or push-over terms in the streamwise vorticity equation and
those authors attributed it predominantly to the base cross-stream shear (see just below (13)
in Schoppa & Hussain (2002)). Here, we instead find that push over is the more important
mechanism which has to dominate (streak) Orr to see this growth. When this happens,
the two-variable inviscid model is also linear unstable, that is, there are no wavenumber
pairs for which this transient growth occurs with the flow stable (see figure 10). Plausibly,
introducing diffusion which stays bounded rather than growing steadily as here would
introduce a threshold for instability so recreating the possibility of a stable, transient
growth scenario studied by Schoppa & Hussain (2002).

Finally, it is worth remarking that, for reasons of simplicity, we have identified the
Orr mechanism only with advection terms and these don’t contribute to the perturbation
energy equation. This means that there must be either lift up or push over operating as well
to actually get energy growth. The model studied here strongly suggests that push over is
the key mechanism which is consistent with the findings of Hoepffner et al. (2005): their
figure 6(a) shows that energy input from the streak field dominates that from the base shear.

5. Discussion
In this paper, motivated by recent numerical experiments on near-wall turbulence by
Lozano-Durán et al. (2021), we have considered Kelvin’s unbounded, constant-shear mod-
el augmented by a spatially periodic spanwise shear to include streaks. This addition allows
a little-studied transient growth mechanism – push over – to be explored along with its
interactions with the more familiar Orr and lift-up mechanisms. Consistent with the find-
ings of Lozano-Durán et al. (2021) and subsequent analysis by Markeviciute & Kerswell
(2024), this model clearly shows that the Orr and push-over mechanisms can combine to
produce considerably enhanced transient growth for streaky base flows over that produced
individually, and that lift-up is unimportant, actually tending to reduce peak growth
(although, of course, lift-up is believed central for the roll-to-streak regenerative process).

The heart of this symbiotic interaction is laid bare in (4.16) which describes the evolution
of a stripped down two-variable version of the model. This shows that for the optimal set
of perturbation wavenumbers, there are actually two distinct mechanisms for growth: (i) a
transient growth mechanism by which the spanwise-independent but streamwise-periodic
cross-stream vorticity η̂0 generates spanwise-dependent streamwise-periodic cross-stream
vorticity η̂1 involving push-over and Orr processes, and (ii) a linear instability mechanism
where η̂1 reciprocates by generating η̂0 via an Orr process in such a way as to give
sustained asymptotic growth. Only when push over dominates Orr does the output of the
growth – η̂1 – have the right spanwise phase to feedback on the input of the growth – η̂0 –
to produce sustained asymptotic growth. In the model, wavenumbers invariably exist to
achieve this and so very large growth occurs.

Reinstating diffusion always eventually overpowers this growth due to the unlimited
increase of the cross-shear wavenumber (an unfortunate feature of the model) but, in the
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meantime, huge growth, scaling like eα1Re, can occur over ‘fast’ T = O(1) times. Even
restricting the wavenumbers considered to be O(1) appropriate for a turbulent boundary
layer can produce growths scaling like eα2

√
Re over ‘intermediate’ T = O(

√
Re) times

(with α1 and α2 constants). This is in marked contrast to the algebraic growth factors
associated with Orr and lift-up, and now also shown here for push over in isolation
(see (4.10)), of gain ∼ Re2 over ‘slow’ T = O(Re) times.

Reinstating the presence of a cross-shear velocity v̂1 is found to weaken the instability
mechanism in two ways. Firstly, the reinstalled lift-up mechanism hampers the action of
push over in the transient growth mechanism. Secondly, there is an antagonistic v̂1-Orr
term – third term on the right-hand side of (4.12) – which hinders the generation of η̂0.
This term grows with the cross-shear wavenumber and eventually curtails the instability
completely (and, for the parameters studied, actually before diffusion). The presence of v̂1,
however, is crucial in setting up the correct nonlinear feedback to generate the right type of
streamwise rolls to re-energise the imposed streaks via lift up. Hence this model indicates
the presence of the sustaining cycle in a simple shear flow.

With regards time scales, even just considering Kelvin’s original model (no streaks)
exposes the oversimplification of labelling mechanisms with one timescale based on what
turns it off. Orr is considered ‘fast’ and lift-up ’slow’ yet both give the same levels of
growth at T = O(1) – see (3.4) and (4.7) – and their overall optimal gains are both achieved
at T = O(Re) and scale similarly with Re2 – see (3.5) and (3.6). Just to complicate matters,
the push-over mechanism behaves exactly equivalently – see (4.6) and (4.10) – so there is
no time scale puzzle: they all operate across inertial and viscous times. What perhaps is
a surprise is that the relevant Orr mechanism revealed here is based on streak advection
rather than the usual basic shear advection.

Of course, the model treated here has its limitations. The streaks have no cross-shear
structure (as there are no boundaries although Schoppa & Hussain (2002) comment that
this is unimportant for the important sinuous modes – see their p67) so there are no cross-
shear inflexion points. There is also the unlimited growth of the shearwise wavenumber
so that diffusion eventually overpowers any apparent linear instability. Nevertheless, the
model manages to clarify the transient growth mechanism originally found by Schoppa &
Hussain (2002) (which is push over dominated), and also indicates how this transient
growth is related to the streak instability centred on the spanwise inflexion points observed
by Swearingen & Blackwelder (1987) (it forms one half of the loop). Using it, we have also
been able to verify that the correct nonlinear feedback occurs onto the right streamwise
rolls to re-energise the assumed streaks. Finally, a connection has also been made to the
well-known linear instability in 2-D Kolmogorov flow.
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Appendix. The Absence of Push Over in the Evolution of z-independent Vorticity
This appendix explains the reason for the absence of any push-over contributions in the
evolution equation (4.12) for η̂0. This is not a trivial fact when using (2.5) as a starting
point as an Orr and a push-over term must be combined using continuity to arrive at the
term involving ∂v/∂y. The source of all the terms can be identified more clearly by starting
with the original momentum equation given by (2.2) (where the terms associated with each
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physical mechanism are clear), and advancing towards equations (2.4) and (2.5) without
making any simplifications or cancellations. The final two terms in (2.5) are broken
down as

−
Orr︷ ︸︸ ︷

βkz sin (kzz)
∂u

∂x
−

Push︷ ︸︸ ︷
βkz sin (kzz)

∂w

∂z
−

Push︷ ︸︸ ︷
βwk2

z cos (kzz), (A1)

where the push-over contributions shown here are, in fact, the only push-over terms present
in the evolution equation for η (the advection term in (2.5) is associated with Orr while
the ∂v/∂z term is associated with lift-up).

To proceed towards equation (4.12), the Kelvin modes in (2.7) are used with M = 1
along with the sinuous symmetry property discussed in § 4.3. The variables can be written
in a reduced manner, in particular w = [ŵ0 + 2 cos (kzz)ŵ1]ei[kx x+(1−kx t)y]. The terms
labelled as push over in (A1) are then simplified to

2βk2
z sin2 (kzz)ŵ1 − 2βk2

z cos2 (kzz)ŵ1 − βk2
z cos (kzz)ŵ0, (A2)

where the exponential multiplication factor is removed for clarity. The first two terms
are merged to produce a quantity involving cos (2kzz), which shows that there are no
z-independent contributions found from the push-over mechanism; it will not contribute
in the evolution equation for the z-independent component of vorticity, η̂0. This makes it
clear that the v̂1 term in (4.12) (that is subsequently ignored) is only of Orr origin, as is the
η̂1 term that is retained.

The last term in (A2) also produces the full push-over contribution to the η̂1 evolution
equation given by (4.13). The identification of Orr and lift-up is then made more simple as
any remaining terms will be an Orr contribution if and only if they contain a factor of β.
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