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         Summary 

 Estimating population abundances and patterns of change over time are important in both ecol-
ogy and conservation. Trend assessment typically entails fitting a regression to a time series of 
abundances to estimate population trajectory. However, changes in abundance estimates from 
year-to-year across time are due to both true variation in population size (process variation) and 
variation due to imperfect sampling and model fit. State-space models are a relatively new method 
that can be used to partition the error components and quantify trends based only on process vari-
ation. We compare a state-space modelling approach with a more traditional linear regression 
approach to assess trends in uncorrected raw counts and detection-corrected abundance estimates 
of forest birds at Hakalau Forest National Wildlife Refuge, Hawai‘i. Most species demonstrated 
similar trends using either method. In general, evidence for trends using state-space models was 
less strong than for linear regression, as measured by estimates of precision. However, while the 
state-space models may sacrifice precision, the expectation is that these estimates provide a better 
representation of the real world biological processes of interest because they are partitioning 
process variation (environmental and demographic variation) and observation variation (sam-
pling and model variation). The state-space approach also provides annual estimates of abundance 
which can be used by managers to set conservation strategies, and can be linked to factors that 
vary by year, such as climate, to better understand processes that drive population trends.      

   Introduction 

 Estimating abundances, and monitoring these measures of a population through time, is a funda-
mental component of ecology, conservation and management (Krebs  1989 ). While long-term 
population surveys provide important information on population abundance and trends, inter-
preting this information is often complicated by high year-to-year variability in the number of 
individuals counted (Urquhart and Kincaid  1999 ). Statistical techniques for analysing sampling 
data try to minimise variability due to imperfect detection and unavailability of individuals in a 
surveyed population. For example, analysis of survey data from single visit techniques like dis-
tance sampling can adjust for imperfect detection of individuals (Burnham  1981 ), whereas multi-
ple counts conducted over a short period of time allow an assessment of the availability of 
individuals to be counted (Alldredge  et al.   2007a , Chandler  et al.   2011 ). Nonetheless, population 
abundance estimates over time can be highly variable from both natural fluctuations in popula-
tion size and error associated with the survey methods (Urquhart  et al.   1998 ), and the greater the 
variation in the counts over time, the more difficult it is to detect trends (Thomas  1996 , Thomas 
 et al.   2004 ). One approach is to use linear trends through a time series of counts to assess trajec-
tories of populations, helping to make sense of what is often noisy data. However, a weakness of 
using a linear regression model to assess trend is that linear regression assumes all of the observed 
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deviations from the model are due to observation error and that the slope is constant across the 
time series (Dennis  et al.   2006 ). Alternatively, population trajectories in long time series could be 
assessed using multiple slopes, which are separated by “break-points” to account for significant 
changes in the trajectory of populations at specific times (e.g. Freed and Cann  2013 ). However, 
finding a statistically significant break point in a time series or deriving a well-founded biological 
reason for  a priori  break points can be difficult (Camp  et al.   2014 ). 

 An alternative to conventional linear regression for the analysis of counts is state-space 
models, which decompose variation in long-term census data into components of biologically 
meaningful process variation and observation error (Humbert  et al.   2009 , Knape  et al.   2011 ). 
Decomposing the variation in a time series of counts into these two components of variation 
allows for assessment of trend based only on biologically meaningful variation, process variation, 
which is comprised of demographic and environmental stochastic forces. State-space models are 
specifically autoregressive, because the population in year t is assumed to depend upon the popu-
lation size in year t-1. The approach assumes that year-to-year population changes are realisa-
tions of a long-term growth rate with annual variation due to environmental (e.g. weather events 
such as hurricanes or droughts) and demographic (e.g. variation in clutch size) stochasticity. The 
approach then compares the model of the ‘true state’ to the observed data in order to estimate the 
amount of variation due to sampling error. Explicitly modelling the slope as a stochastic parame-
ter allows for variation in the slope from year-to-year across the time series and can provide 
improved estimates of annual abundances and long-term trends (Dennis  et al.   2006 , Knape  2008 , 
Knape  et al.   2011 ). 

 Accurate estimates of abundance and population trends are essential for the conservation and 
management of threatened and endangered species, and the forest birds of Hawai‘i have been the 
focus of extensive surveys and analysis over the last several decades (Scott  et al.   1986 , Gorresen 
 et al.   2009 ). The forest birds of Hawai‘i are famous both for their spectacular diversity, arising 
from over 4 million years of adaptive radiation, and for the tragic loss of nearly half of this diver-
sity in just the last 200 years (Banko and Banko  2009 , Pratt  2009 ). Forty years ago the Hawaiian 
Forest Bird Survey project was initiated to document the status and trends of extant species, 
and the results of the surveys brought international attention to the conservation needs of the 
Hawaiian avifauna (Scott  et al.   1986 ). These landmark surveys have been resurveyed and 
expanded upon over the decades, resulting in a rich source of biological information from which 
to assess the current status and trends of native forest passerines (Camp  et al.   2009 , Gorresen 
 et al.   2009 ). Importantly, these series of surveys provide information to managers to prioritise 
funds and conservation actions, and there have been many efforts over the years to improve infer-
ence made with them (Ramsey and Scott  1979 , Johnson  et al.   2006 , Camp  et al.   2008 ). However, 
surveying forest birds in Hawai‘i, especially for endangered species with low abundances, can be 
difficult where forests are dense and in which counts frequently consist of acoustic detections and 
associated distance estimates. Understanding the long-term trends in Hawai‘i’s forest birds is an 
example of a system in which state-space modelling may provide stronger inferences about popu-
lation trends by partitioning the error attributable to observation and process error. 

 We applied a state-space approach to assess forest bird trends in Hakalau Forest National 
Wildlife Refuge (Hakalau) on Hawai‘i Island, which is one of Hawai‘i’s longest run continuous 
survey areas (1987–2012). Established in 1985, Hakalau is one of the most important forest bird 
sanctuaries in all of Hawai‘i, supporting all extant species of Hawai‘i Island forest birds, including 
three endangered species, and is recognised as a category IV Habitat/Species Management Area 
by IUCN (Dudley  2008 ). Hakalau has also been at the centre of debates on the proper interpreta-
tion of population trends (Scott  2008 , Tummons  2009 ). Specifically, the debate is whether a single 
linear, versus multiple linear segments, are appropriate to describe a trend when a population 
trajectory changes over time (Camp  et al.   2010 ,  2014 ; Freed and Cann  2010 ,  2013 ). While account-
ing for possible changes in a population trajectory is important, determining a statistically signifi-
cant change in a time series is difficult when year-to-year variation is high, a condition typical of 
Hawaiian bird count data (Camp  et al.   2014 ). 
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 Given the importance of accurate estimates of abundance and population change for manage-
ment and conservation efforts, in this paper we examine how the choice of analytical methods 
can facilitate assessment of population trend and trajectory evaluating two approaches for model-
ling error. The first involved contrasting the use of simple bird survey counts uncorrected for 
detection probability with that of abundance estimates produced by distance sampling that 
account for imperfect detection (Buckland  et al.   2001 ). Using both the uncorrected counts and 
detection-corrected abundances, the second approach consisted of modelling population trends 
with an ordinary log-linear regression model where variation was not partitioned (Camp  et al.  
 2008 ,  2014 ), and comparing that with use of a state-space, log-linear model where variation was 
partitioned into process and observation error (following the method of Kéry and Schaub  2012 ). 
The resulting estimate of trend comprised of only process error was then compared with the 
results from non-partitioned log-linear regression.   

 Methods  

 Study area 

 The 15,390 ha Hakalau Forest NWR (19 o  51’N, 155 o  18’W) on the windward slope of Mauna Kea 
volcano is the largest protected and actively managed area of mid- to high-elevation rain forest in 
Hawai‘i (see Camp  et al.   2010  for detailed map). Mean daily air temperature averages 15°C with 
an annual variation of < 5°C, and annual rainfall averages 2,500 mm with a maximum of about 
6,100 mm (Juvik and Juvik  1998 ). The montane forest has a canopy dominated by old-growth 
‘ ō hi‘a-lehua  Metrosideros polymorpha  and koa  Acacia koa , with ‘ ō lapa  Cheirodendron trigynum , 
k ō lea  Myrsine lessertiana , pilo  Coprosma montana, C. ochracea,  and  C .  rhynchocarpa , tree ferns 
 Cibotium  spp., p ū kiawe  Styphelia tameiameiae , ‘ ō helo  Vaccinium calycinum , and ‘ ā kala  Rubus 
hawaiiensis  the most common sub-canopy trees and shrubs. Vegetation at middle elevations 
(600–1,900 m) is dominated by native ‘ ō hi‘a and koa/‘ ō hi‘a forest, whereas at the highest eleva-
tions (> 1,900 m) it is comprised of open grassland and relict mature koa trees and young stands 
of koa planted to reforest former pasture land. Non-native plant species may be found in native 
forest at all elevations, the most injurious species being various pasture grasses, gorse  Ulex euro-
paeus , blackberry  Rubus argutus , banana poka  Passiflora tarminiana , and holly  Ilex aquifolium . 

 For purposes of analysis, the study area was divided into two strata following Camp  et al.  (2010; 
 Figure 1 ). Open forest, the middle section of the refuge, includes once intensively grazed forest at 
an elevation range of 1,400–1,920 m (area = 3,373 ha) with large trees that are widely spaced such 
that they form an open canopy forest. This area has been surveyed since 1987 with 204 stations 
(i.e. the sampling points). At lower elevations is the closed forest (1,400–1,700 m) with a dense, 
closed canopy forest relatively unmodified by grazing, which has been surveyed since 1999 with 
197 stations (area = 1,998 ha). The uppermost areas of the refuge (1,650–2,000 m) are former 
open pasture lands that have seen extensive reforestation efforts since 1987. These pasture lands 
have been surveyed intermittently since 1987 with 35 stations (area = 1,314 ha), but because of 
inconsistent sampling and because the numbers of native birds using the habitat were very low 
until recent years, this habitat is not considered further.       

 Bird surveys 

 Annual bird sampling at Hakalau followed standard point-transect sampling methodology, a form 
of distance sampling used in Hawai‘i to estimate forest bird populations over large areas (Scott 
 et al.   1981a ,  1986 , Camp  et al.   2009 ). Surveys began in 1987 at stations spaced from 150 to 250 m 
apart, to assure station independence, along transects that were spaced 500 to 1,000 m apart 
(Camp  et al.   2010 ). In the open forest stratum an average of 184 stations (± 21) and in the closed 
forest stratum an average of 81 stations (± 19) were surveyed annually (Table S1 in the online 
supplementary materials). Observers received pre-survey training to calibrate for distance 
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estimation and their ability to identify bird vocalisations, thereby reducing variability among 
observers and standardising for local conditions (Kepler and Scott  1981 ). Observers recorded the 
detection type (heard, seen, or heard then seen; 80% of all records are auditory only, while 20% 
are seen or heard then seen) and horizontal distance (exact distance in m) from the station centre 
point to individual birds detected during an 8-min count. Aurally detected birds were placed in the 
environment and the horizontal distance estimated to the reference point recorded; a method that 
improves distance measurements and yields reliable distance estimates (Scott  et al.   1981b ; but see 
Alldredge  et al.   2007b , c ;  2008 ). Observers also recorded cloud cover, rain, wind and gust speed, and 
time of day at each station. Sampling was typically conducted between dawn and 11h00 and 
halted when rain, wind, or gust strength exceeded prescribed levels (light rain and wind and gust 
strength level 3 on the Beaufort scale).   

 Abundance estimation 

 We produced abundance estimates using two methods. First, simple counts (hereafter, uncorrected 
counts) were adjusted for sampling effort (detections per station visit) as an index of abundance 
without accounting for imperfect detection. The uncorrected counts were multiplied by 1,000 so 
the values were approximately on the same scale as the detection-corrected abundance estimates 
and both responses could be fitted with the same model priors (see below). We used the uncorrected 
counts in our analysis because they are commonly used as an indicator of abundance for trend 
assessment, especially in state-space models. 

 The second method used point-transect sampling procedures to correct density estimates for 
the birds that were present but not detected, and to account for changing detection probabilities 
from year to year and among sampling covariates (hereafter referred to as detection-corrected 
abundances; Buckland  et al.   2001 ). Densities were estimated for each species in both the open and 

  

 Figure 1.      Survey route and study areas of Hakalau Forest Unit of the Hakalau Forest National 
Wildlife Refuge (HFNWR), Hawai‘i.    
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closed forest types, and multiplied by the respective areas of each stratum to produce abundance 
estimates. This is a standard procedure to convert from density to abundance estimates, and was 
conducted so that log-linear and state-space model regression trends were evaluated on the same 
scale. 

 Distance sampling uses a species-specific detection function to estimate the probability of 
detection as a function of distance to produce annual estimates of density and abundance that 
account for imperfect detection (Buckland  et al.   2001 ). Much of the early development of point-
transect distance sampling, including testing the model assumptions, was developed on Hawaiian 
forest bird surveys (Ramsey and Scott  1979 , Scott  et al.   1981b ; see Camp  et al.   2009 ), and Buckland 
 et al.  (2001, and references therein) provide evidence that distance sampling procedures, including 
point-transect sampling, provide unbiased estimates of population size when certain critical 
model assumptions are met: all birds are detected with certainty at the station centre point, birds 
are detected prior to any responsive movement, and distances are measured without error. 
Although there is likely some violation of these assumptions for a given observer or species, we 
believe these assumptions are largely met. Specifically, Hawaiian forest birds are very vocal and 
detections of birds at the station centre are high even if the birds are not visible. Second, our 
experience indicates that there is little responsive movement by Hawaiian forest birds to observ-
ers, especially in the tall stature forests at Hakalau (this is supported by visual inspection of the 
detection function and distance histogram graphics), and therefore are not likely responding to 
the observer. Third, all counters take part in a long-term training programme where they serve as 
apprentices before becoming primary counters, and prior to each count calibration exercises are 
conducted for observers to practice estimating distance measurements; calibration is continued 
until deviations from the true distance are < 10%, a level shown to produce unbiased density 
estimates (Scott  et al.   1981b ). To further ensure that our estimates were reliable we  a priori  elimi-
nated the species for which insufficient numbers of birds were detected and those species that 
violate distance sampling assumptions. 

 We produced abundance estimates for 10 forest bird species (eight native, two alien) with 
sufficient detections to adequately characterise detectability (Buckland  et al.   2001 : 241). These 
species included the Hawai‘i ‘Elepaio  Chasiempis s. sandwichensis , a monarch flycatcher 
(Monarchidae), ‘ Ō ma‘o  Myadestes obscurus , a thrush (Turdidae), and six Hawaiian honeycreep-
ers (Fringillidae: Drepanidinae): Hawai‘i ‘Amakihi  Hemignathus virens , ‘Akiap ō l ā ‘au  Hemignathus 
munroi , Hawai‘i Creeper  Oreomystis mana , Hawai‘i ‘ Ā kepa  Loxops c. coccineus , ‘I‘iwi  Vestiaria 
coccinea , and ‘Apapane  Himatione sanguinea . The ‘Akiap ō l ā ‘au, Hawai‘i Creeper, and Hawai‘i 
‘ Ā kepa are globally, federally and state listed endangered species. Only two of the 16 non-native 
birds that occur in Hakalau had sufficient detections to reliably model: Red-billed Leiothrix 
 Leiothrix lutea  (Timaliidae) and Japanese White-eye  Zosterops japonicas  (Zosteropidae). 

 Species-specific abundance estimates were calculated from point-transect data using program 
Distance, version 6.0, release 2 (Thomas  et al.   2010 ). Stations were usually counted only once 
during an annual survey; but when counted more than once, estimates were adjusted by the num-
ber of times the station was counted. Candidate detection function models were limited to half 
normal and hazard-rate detection functions with expansion series of order two (Buckland  et al.  
 2001 : 361, 365; half normal was paired with cosine and Hermite polynomial adjustments, and 
hazard rate was paired with cosine and simple polynomial adjustments). 

 To improve model precision, we incorporated sampling covariates in the multiple covariate 
distance sampling (MCDS) engine of Distance (Thomas  et al.   2010 ). Potential covariates included 
cloud cover, rain, wind, gust strength, observer, detection type, time of detection, elevation, veg-
etation type (open and closed forest study areas), and year of survey. All covariates were treated 
as a factor, except elevation and time of detection which were treated as continuous covariates. 
Assessing a continuous covariate allowed for determining if the detection rate varied with time of 
day or elevation. Each detectability model in the candidate set with and without covariates was fit 
to data pooled across strata and time (year) for each species, and the model selected was that 
with the lowest 2nd-order Akaike’s Information Criterion corrected for small sample sizes (AIC  c  ) 
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(Buckland  et al.   2001 , Burnham and Anderson  2002 ; Tables S2, S3, Figure S1). Data were trun-
cated at a distance where detection probability was < 10%. Species-specific annual and strata 
abundances were estimated from the most parsimonious model, referred to as the global detection 
function model in Buckland  et al.  ( 2001 ), and variances and confidence intervals were derived by 
bootstrap methods in Distance from 999 iterations (Thomas  et al.   2010 ).   

 Trend assessment 

 We assessed change in population abundance by two methods — ordinary log-linear regression 
and a log-linear state-space model. We defined trend as the long-term, overall directional change 
in abundance following Urquhart and Kincaid (1999: 405) who state that population abundances 
“may deviate substantially from strict linearity” yet “we can detect trend by seeking linear trend 
without ever asserting that detected trend is linear”. Under this definition, a time series of counts 
may experience annual perturbations and appear non-linear, but systematic changes would still 
be detectable with linear models. Populations differ from year-to-year, vary over short periods, 
and go through cycles. Therefore, trends of both the log-linear regression and state-space models 
were assessed in an equivalency test framework to distinguish between ecologically and statisti-
cally significant changes, and to differentiate between negligible and insignificant trends (Camp 
 et al.   2008 ).  

  Model diagnostics 

 Model diagnostics were conducted to assess the validity of using linear models. The detection-
corrected abundance estimates were fitted with a traditional least-squares model using simple 
linear regression in R version 3.0.3; 2014-03-06 (R Core Team  2014 ). The R language ‘LearnBayes’ 
library (Albert  2012 ) was used to sample from the joint posterior distribution of the slope and 
variance following model diagnostics procedures in Maindonald and Braun ( 2006 ). Histograms of 
the simulated posterior draws of the regression coefficients and error standard deviation were 
plotted and inspected visually to ascertain for deviations from a normal distribution. 

 Outliers were also identified using Bayesian residuals and visually inspected. Few densities 
were identified as outliers nor did the outliers occur at either the first or last time points. Because 
of the relatively small sample size ( n  = 25) the outlier values were retained. Because autocorrela-
tion in a time series results in the error terms being dependent upon each other and thereby 
underestimated, temporal autocorrelation in annual abundances was assessed with the ‘acf’ func-
tion in R, and AIC procedures were used to select the lag autocorrelation that removed serial 
correlation where present. 

 Diagnostic plots indicated little to no evidence of unequal variances or non-normality in the 
residuals from the linear model of annual abundance for the 10 forest birds in either forest strata. 
The posterior medians of the slope and variance were similar in value to the ordinary regression 
estimates, and the histograms of simulated draws from the marginal posterior distributions 
appeared approximately normally distributed. AIC statistics indicate that an independence model 
was appropriate for all species and strata; except for Japanese White-eye in the open forest stra-
tum, where a first-order autoregressive error model was more appropriate. The autoregressive 
model had a lower AIC for Red-billed Leiothrix in the open forest stratum, and Japanese White-
eye in the closed forest stratum, but were within two AIC units so the independent model was 
used. Trends for species and stratum for which the independence model was appropriate were 
assessed with a log-linear model. For species that were autocorrelated, trend was estimated with a 
modified log-linear regression model to account for temporal autocorrelation using an autore-
gressive moving average (ARMA) model (Ives  et al.   2010 ). Species- and strata-specific models 
were fitted using the ‘arma’ function in R, their performance compared using AIC, and estimated 
slope was determined using an autoregressive adjusted log-linear model. In this model the total 
error term (residual) for each year was modelled as a proportion ( φ ) of the previous year’s residual 
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plus a random normal error term.  φ  was modelled with a diffuse uniform prior (commonly 
referred to as a non-informative prior) between 0 and 1. The posterior distribution of the slope of 
the autoregressive adjusted log-linear regression model was then interpreted as described below.   

 Ordinary log-linear regression 

 We used log-linear regression in a Bayesian framework to assess population trends in uncorrected 
counts and detection-corrected abundances for the 10 species of forest birds in each of the two 
forest types. The posterior distribution of the regression slope ( β   ) was estimated in Stan (a proba-
bilistic programming language implementing Bayesian statistical inference) run from an R envi-
ronment using the ‘rstan’ package (Stan Development Team  2014 ). We modelled the index count 
or the Distance-adjusted abundance estimate (generically  N ) as

 log = + + N( , )t obsN tβ β σ⋅ 2
0 0  

   The intercept and the estimated annual rate of change (slope)  β    were modelled with diffuse nor-
mal priors for the log-transformed abundances (mean = 0; SD = 25). The response variables were 
modelled with normal instead of Poisson priors because the actual counts were adjusted to account 
for survey effort. We tried a range of scale parameters on the priors, which had not effect on the 
inference, but did not assess different functional forms of priors. The log-transformation line-
arizes an exponential growth model and stabilizes the error variances. The log-linear regression 
error term was modelled as normal with standard deviation  σ  obs , which itself was modelled with 
a diffuse uniform prior ranging from 0 to 20. Where there was autocorrelation, an AR1 regression 
was used to account for it. In the following model:

 ( )log = + + ( + ) + N( , )t t obsN t logN tβ β ρ β β σ⋅ ⋅ − ⋅ 2
0 0 0  

  ρ  represents the serial autocorrelation between successive years, and to which was applied the 
same diffuse prior (Normal, mean = 0; SD = 25) as the slope. The model parameters were esti-
mated from 2,000 iterations for each of four chains (i.e. model runs) after discarding a “warm-up” 
period of an initial 2,000 iterations. Gelman-Rubin convergence statistics ( R̂  , Gelman  et al.   2004 ) 
were calculated for all model parameters. Any model with an  R̂   value greater than 1.1 (due to 
the failure of a chain to converge with the others) was re-run. Maximum  R̂   in the final models 
was 1.04, indicating convergence. The four chains were pooled (8,000 total samples) to calculate 
the posterior distribution. The posterior distribution of the slope was then interpreted as described 
below in trend interpretation.   

 State-space model 

 Following the methods in Kéry and Schaub ( 2012 ) we fitted a log-linear state-space model of each 
species in both the open and closed forest, using both uncorrected counts and detection-corrected 
abundance estimates as the response. Models were run in Stan from an R environment as 
described above. We ran each model with four chains for 2,000 iterations following a burn-in of 
2,000 iterations. Maximum  R̂   in the final models was < 1.1, indicating convergence. The posterior 
distribution of the slope was then interpreted as described below in trend interpretation. 

 The mean slope ( β   ) of the log-transformed response was modelled with a normal prior of mean 
0 and standard deviation 25, which is uninformative on the log-scale of population abundances. 
Standard deviation of the mean ( βσ   ) was modelled with a uniform prior between 0 and 20. 
Beginning with the second year of the time series, the index count or Distance-adjusted abun-
dance at time  t +1 ( +tlogY 1  ) was modelled as the abundance at time  t  plus a random slope drawn 
from a normal distribution with a mean and variance of the generated priors.
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 + = + ( , )t tlogY logY N ββ σ 2
1  

   We dealt with the missing year (2009) by estimating the 2010 value as 2008 plus two draws 
(one for the step from 2008 to 2009, and the second for the step from 2009 to 2010) from the 
random slope distribution. Observation error standard deviation ( obsσ   ) was drawn from a uniform 
prior ranging from 0 to 20, also uninformative on the log-scale abundances. We did not use 
informed priors as this information was not available for the raw count data and the Distance-
derived error estimates would require a multivariate prior based on the variance-covariance 
matrix, which was not available. Each year’s observed abundance or index ( N  ) was then modeled 
as a normal distribution.

 ~ ( , )t t obslogN N logY σ 2  

   Process error ( σ proc
2   ) was measured on the same scale as observation error by calculating the 

variance of the deviation between each year’s actual  logY    and the previous year’s  logY    plus the 
mean slope (i.e., the variance of  β−+ ( + )t tlogY logY1   ), omitting the first year and missing year. 
We recorded means and 95% credible intervals of  σ obs

2   , the percent of total observation error 

 
+

obs

procobs

σ
σ σ

2

2 2   ,  β   , and  logY  . The posterior distribution of  β    was then interpreted as described below 

in trend interpretation.   

 Trend interpretation 

 For both the ordinary log-linear regression and state-space models we interpreted the posterior 
distribution of the slopes using equivalency testing to establish relevant threshold levels that dif-
ferentiated between inconclusive and biologically meaningful trends (Camp  et al.   2008 ). Applied 
in a Bayesian framework, the posterior distribution of the slope provides the probability of each 
of the three trend outcomes (increasing, decreasing, or stable population trend) as well as a meas-
ure of uncertainty in the estimated slope. We applied those analyses for both the uncorrected 
counts and detection-corrected abundances, and compared the results of the log-linear model 
against a state-space model. 

 Meaningful trends were differentiated from ecologically negligible or statistically non-
significant trends by applying a rate of change of 25% over 25 years to define threshold levels of 
change: declining (< −0.0119); negligible (−0.0119 to 0.0093); or increasing (> 0.0093) (Camp  et al.  
 2010 ). We categorised the strength of evidence for a trend based on the posterior odds (also called 
Bayes factors) as weak, moderate, strong, or very strong. Based on the posterior probabilities ( P ) 
evidence was weak if  P  < 0.5; moderate if 0.5  ≤   P  < 0.7; strong if 0.7  ≤   P  < 0.9; and very strong if 
 P   ≥  0.9. In cases where the posterior odds provided weak evidence among all three trend categories 
(i.e. decreasing, negligible, and increasing trends), we interpreted the trend to be inconclusive. We 
concluded that a population was stable given moderate to very strong evidence of a negligible trend.    

 Results 

 The four different approaches we evaluated to understand abundance and trends in the long-term 
survey data from Hakalau largely agreed in terms of general trend patterns, but produced very 
different annual abundance estimates. Indices of relative abundance from the uncorrected counts 
varied among species, over years and between the open and closed forest strata (sum of birds 
detected across all counts divided by effort; Appendices S1 and S3). ‘I‘iwi had the greatest num-
bers of birds detected per count with an average of 6.12 (± 0.71, minimum 4.59, maximum 7.25) 
birds in open forest and 5.37 (± 0.78, minimum 3.99, maximum 6.41) birds in closed forest. 
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‘Apapane and Hawai‘i ‘Amakihi each had abundances similar to that of ‘I‘iwi. In contrast to these 
relatively abundant species, the endangered birds had very low indices of abundance. ‘Akiap ō l ā ‘au 
occurred at the lowest values in both open and closed forest (0.08 ± 0.03, minimum 0.05, maxi-
mum 0.18, and 0.08 ± 0.06, minimum 0.01, maximum 0.23, respectively). 

 Detection-corrected abundances were equally variable among species, years and forest strata 
(Table S4), and followed the same order rank as observed in the count data. ‘I‘iwi was the most 
abundant bird at 70,634 and 45,015 birds during 2012 in the open and closed forest strata, respec-
tively. The 2012 point estimates of Hawai‘i ‘ Ā kepa and Hawai‘i Creeper were much lower at 4,779 
and 6,999, and 5,112 and 6,348 birds in open and closed forest strata, respectively, whereas 
‘Akiap ō l ā ‘au numbered only 307 and 105 birds in these respective habitats.  

 Log-linear regression results 

 Log-linear trends of the uncorrected counts were predominantly stable or increasing (16 out of 
20, or 80% of the species;  Table 1 ; Appendices S3 and S4). The remaining trends were all decreas-
ing, and were only observed in the closed forest stratum for Hawai‘i ‘Elepaio, ‘ Ō ma‘o, ‘Akiap ō l ā ‘au, 
and Red-billed Leiothrix. Log-linear trends of the detection-corrected abundances yielded similar 
results to those from uncorrected counts ( Table 2 ; Figure S2). A majority of the trends were stable 
or increasing (16 out of 20, or 80%), but downward trends were noted for Hawai‘i ‘Elepaio, 
‘Akiap ō l ā ‘au, and Red-billed Leiothrix in closed forest. One model yielded an inconclusive result 
due to a relatively flat trend with fluctuating abundances and uncertain estimates (‘ Ō ma‘o in 
closed forest;  Table 2 , Table S4).           

 State-space model results 

 We reassessed the trends of the 10 species in the two forest strata using state-space models for 
both the uncorrected counts and detection-corrected abundances (20 models each stratum; 
Table S2). Fully one-half of the models resulted in inconclusive trends for the uncorrected 
counts ( Table 3 ). Of the models with conclusive results, six showed evidence of increasing and 
four demonstrated decreasing trends. Similar to the log-linear results, the declining trends all 
occurred in the closed forest and for the same species — Hawai‘i ‘Elepaio, ‘ Ō ma‘o, ‘Akiap ō l ā ‘au, 
and Red-billed Leiothrix.     

 Of the 20 models for the detection-corrected abundances, nine showed evidence of a population 
increase over the time series, two showed evidence of a decline, and one (Hawai‘i ‘Elepaio in open 
forest) showed evidence of a stable population trend ( Table 4 ; Figure S2). The remaining eight 
models were inconclusive. Declining trends were observed for Hawai‘i ‘Elepaio and ‘Akiap ō l ā ‘au 
in closed forest.     

 In general, the evidence of conclusive trends using state-space models was less strong than for 
ordinary log-linear regression ( Figure 2 ). For example, models using the uncorrected counts and 
detection-corrected abundances of Hawai‘i ‘ Ā kepa in the open forest were both classified as hav-
ing strong evidence of a negligible trend in the linear regression model, whereas they were both 
inconclusive with the state-space approach ( Tables 1  vs.  3 , and  Tables 2  vs.  4 ;  Figure 2 ). The shifts 
in the evidence for a trend were largely a result of reduced precision arising from the incorpora-
tion of process error in the state-space models.     

 The amount of observation error varied widely among species but was estimated at 40% to 
90% of uncertainty in uncorrected counts and detection-corrected abundances ( Tables 3  and  4 ). 
Comparison of population size changes from one year to the next (population growth rates,  λ ) for 
both the uncorrected counts and detection-corrected abundances and their respective state-space 
estimates indicate that average geometric means of the entire time-series are very similar (Table S5), 
but the non-state-space estimates encompass far more extreme changes in some years. Minimum 
and maximum annual population changes for the three endangered species (Table S5) are large, such 
as over 300% increases in one year, and biologically unlikely given a generally stable population. 
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The high variability is presumably due to their low densities, which lead to more sampling issues. 
However, even the more common species had high year-to-year abundance changes, and this may 
indicate the Hawai‘i forest birds are spatially dynamic.    

 Discussion 

 An inherent problem with bird surveys used to assess trends over time is that year-to-year abun-
dance estimates fluctuate for a number of reasons. One source of variation is process variation, 
which is actual change in abundance that is biologically meaningful. For example, environmental 
variation can lead to reduced productivity across a population, which might reduce the population 
size in the subsequent year. A second source is observation error, which is caused by changes in 
sampling conditions between years, availability of birds to be counted in the sampled area, and 
stochastic measurement error. Traditional methods for evaluating trends have not been able to 
consider dual sources of variation, as simple linear regression models assume all variability is 
observation error, while time series models assume all the variability is due to process variation. 
State-space models are a relatively recent technique that attempts to solve the problem of both 
identifying unbiased abundances and robust trend assessment by partitioning the error into pro-
cess and observation components (Dennis  et al.   2006 ). 

 Our results indicate that observation error for the Hakalau bird surveys are high ( Table 4 ), 
ranging from 40% to 90% of total variation. Not surprisingly, sampling issues are very impor-
tant considerations for estimating abundance in endangered species, due to their low densities and 
heterogeneous distribution across the landscape. The highest estimates of observation error were 
for two of the endangered species, ‘Akiap ō l ā ‘au and Hawai‘i Creeper, both in open forest habitat. 
However, we also found high levels of observation error in the more common species, which may 
reflect high degrees of movement across the landscape in response to heterogeneous resource 

 Table 1.      Log-linear regression based trends ( β   , lower and upper 95% credible intervals) were calculated for 
forest bird uncorrected counts at Hakalau in open and closed forest strata. The ecological relevance of a trend 
was based on a 25% change in relative abundance over 25 years. Trend was interpreted as increasing = ↑, 
stable = ↔, decreasing = ↓, or inconclusive = Inc.  

  Posterior probability  

Species Stratum Trend ( β   ) L 95% CI U 95% CI Declining Negligible Increasing Trend  

Hawai‘i ‘Elepaio  Open −0.0103 −0.0210 0.0002 0.384 0.616 0.000 ↔ 
 Closed −0.0220 −0.0448 0.0007 0.823 0.169 0.008 ↓ 
‘ Ō ma‘o Open −0.0077 −0.0179 0.0021 0.197 0.803 0.000 ↔ 
 Closed −0.0168 −0.0499 0.0158 0.633 0.311 0.056 ↓ 
Hawai‘i ‘Amakihi Open 0.0015 −0.0079 0.0106 0.003 0.947 0.050 ↔ 
 Closed −0.0062 −0.0382 0.0258 0.342 0.503 0.156 ↔ 
‘Akiap ō l ā ‘au Open 0.0003 −0.0203 0.0214 0.117 0.690 0.193 ↔ 
 Closed −0.0855 −0.1961 0.0277 0.911 0.044 0.045 ↓ 
Hawai‘i Creeper Open 0.0153 0.0000 0.0304 0.000 0.201 0.800 ↑ 
 Closed −0.0032 −0.0311 0.0229 0.244 0.586 0.171 ↔ 
Hawai‘i ‘ Ā kepa Open −0.0053 −0.0232 0.0126 0.235 0.706 0.059 ↔ 
 Closed 0.0135 −0.0260 0.0507 0.088 0.292 0.621 ↑ 
‘I‘iwi Open −0.0050 −0.0112 0.0015 0.017 0.983 0.000 ↔ 
 Closed 0.0002 −0.0247 0.0245 0.159 0.613 0.229 ↔ 
‘Apapane Open 0.0115 −0.0002 0.0236 0.001 0.330 0.670 ↑ 
 Closed 0.0253 0.0033 0.0467 0.002 0.067 0.931 ↑ 
Red-billed Leiothrix Open 0.0103 −0.0013 0.0219 0.001 0.407 0.592 ↑ 
 Closed −0.0215 −0.0598 0.0193 0.711 0.231 0.058 ↓ 
Japanese White-eye Open 0.0248 0.0014 0.0483 0.003 0.080 0.917 ↑ 
 Closed 0.0491 0.0168 0.0820 0.001 0.009 0.990 ↑  

https://doi.org/10.1017/S0959270915000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0959270915000088


State-space analysis of Hawaiian bird community 235

distribution (Simon  et al.   2002 ). Many of Hawai‘i’s forest birds depend on nectar and fruit, and 
the variable nature of where flowering and fruiting trees occur at any one time may result in 
shifts from year-to-year on exactly where birds are concentrated. Thus, while using abundance 
estimates corrected for imperfect detection (via Distance) helps reduce observation variation, they 
cannot account for other sources of observation error due to sampling low density species, highly 
dispersed or clustered spatial distributions, and high rates of temporary emigration. 

 By partitioning observation error from a time series of counts, state-space models provide an 
estimate that more accurately reflects the actual abundance in a given year. For the Hakalau sur-
veys, the state-space model’s estimates of annual abundance showed less year-to-year variation 
than the annual estimates of abundance derived from the uncorrected counts or the detection-
corrected abundances. State-space models use the entire time series to model the year-to-year 
growth rates, with an underlying process (in this case exponential / log-linear growth) governing 
the population dynamics (Kéry and Schaub  2012 ). They are inherently autoregressive, with every 
year’s estimate informed by the previous year, and thus dampen year-to-year population esti-
mates by considering the population size in the previous year. Biological populations function in 
this manner, with population size in one year linked to the population size of the previous year, 
and such an approach produces far more biologically plausible estimates of abundance over time. 
For example, year-to-year changes in the state-space model estimated growth rates (change in 
population size from one year to the next) were typically between 0.85 and 1.15, which are con-
sistent with the generally stable to gradually changing population trends observed at Hakalau. On 
the other hand, extreme growth rate estimates from the corrected/uncorrected abundance esti-
mates result in annual growth rates that are biologically unlikely for a small forest bird. This is 
especially true with the three endangered species that had estimated growth rates generally 
greater than 3.0 in some years. Species that are more common had less extreme yearly changes, 
but maximum and minimum growth rates of 2.2 and 0.4 were also biologically implausible for 

 Table 2.      Log-linear regression based trends ( β   , lower and upper 95% credible intervals) were calculated for 
forest bird detection-corrected abundance at Hakalau in open and closed forest strata. An ‘arma’ model 
accounting for serial autocorrelation was used to estimate Japanese White-eye trend in the open stratum. See 
 Table 1  for description of trends.  

  Posterior probability  

Species Stratum Trend ( β   ) L 95% CI U 95% CI Declining Negligible Increasing Trend  

Hawai‘i ‘Elepaio  Open −0.0005 −0.0092 0.0083 0.007 0.974 0.019 ↔ 
 Closed −0.0186 −0.0420 0.0055 0.734 0.252 0.014 ↓ 
‘ Ō ma‘o Open 0.0080 −0.0011 0.0172 0.001 0.583 0.416 ↔ 
 Closed −0.0112 −0.0419 0.0187 0.475 0.442 0.083 Inc 
Hawai‘i ‘Amakihi Open 0.0067 −0.0025 0.0165 0.001 0.698 0.302 ↔ 
 Closed −0.0041 −0.0342 0.0268 0.295 0.521 0.184 ↔ 
‘Akiap ō l ā ‘au Open 0.0114 −0.0109 0.0338 0.021 0.385 0.594 ↑ 
 Closed −0.0793 −0.2017 0.0411 0.887 0.051 0.062 ↓ 
Hawai‘i Creeper Open 0.0244 0.0066 0.0419 0.000 0.042 0.958 ↑ 
 Closed −0.0027 −0.0313 0.0242 0.238 0.564 0.199 ↔ 
Hawai‘i ‘ Ā kepa Open 0.0016 −0.0176 0.0206 0.076 0.706 0.218 ↔ 
 Closed 0.0155 −0.0223 0.0515 0.059 0.290 0.652 ↑ 
‘I‘iwi Open 0.0022 −0.0051 0.0096 0.001 0.964 0.035 ↔ 
 Closed −0.0001 −0.0213 0.0206 0.117 0.699 0.184 ↔ 
‘Apapane Open 0.0155 0.0026 0.0282 0.000 0.146 0.854 ↑ 
 Closed 0.0280 0.0004 0.0546 0.003 0.078 0.919 ↑ 
Red-billed Leiothrix Open 0.0151 0.0033 0.0266 0.000 0.135 0.865 ↑ 
 Closed −0.0145 −0.0481 0.0197 0.567 0.362 0.071 ↓ 
Japanese White-eye Open 0.0303 0.0046 0.0546 0.001 0.047 0.952 ↑ 
 Closed 0.0497 0.0174 0.0826 0.001 0.010 0.990 ↑  
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generally stable populations. However, the geometric means of the annual growth rates were very 
similar between all four approaches (0.91 to 1.06), and at levels that are reasonable for populations 
not undergoing dramatic changes. This suggests the high year-to-year changes in the abundance 
estimates were just variation around stable populations. 

 Accurate estimates of abundance are important for detecting changes in populations over time, 
which can help managers identify problems before they become insurmountable and help assess 
progress toward meeting conservation goals by evaluating the effectiveness of ongoing manage-
ment actions. The abundance estimates from the state-space models are more dependable because 
they are linked to the previous years’ population sizes, which more closely match the true biologi-
cal process. We found a wide range of estimated abundances in Hakalau bird species, from 112,000 
‘I‘iwi to 16,000 ‘ Ō ma‘o for the common species (2012 estimates), and 11,000, 13,000, and 500 for 
Hawai‘i ‘ Ā kepa, Hawai‘i Creeper, and ‘Akiap ō l ā ‘au, respectively (open and closed forest combined; 
state-space model derived estimates). The improved abundance estimates, with observation error 
removed, are critical for management activities that require abundance estimates to gauge effec-
tiveness, and for incorporating into models that assume abundance estimates that are free of error 
(e.g. Integrated Population Models; Besbeas  et al.   2002 ). 

 Twelve of the 20 population trends were stable to increasing at Hakalau. These stable to increas-
ing long-term trends at Hakalau are in stark contrast to those observed elsewhere in Hawai‘i 
where the general trends indicate declining populations (Gorresen  et al.   2009 , Paxton  et al.   2013 ). 
Populations of the endangered birds have declined in both the central windward and Ka‘ ū  regions, 
and where extant on the Kona coast have also declined. The only exceptions to the declining 
trends in the common birds were stable to increasing trends in Hawai‘i ‘Amakihi and ‘Apapane. 

 The trends estimated by the two approaches (state-space and log-linear regression) are not 
contradictory, and the slopes of the regressions are similar in most cases ( Tables 2  and  4 ), but there 
is less certainty of trend direction in the state-space approach. The ternary plots ( Figure 2 ) 

 Table 3.      Mean overall population trend in uncorrected counts from state-space models (expressed as the log-
linear slope) across the time series for all species. See  Table 1  for description of trends. Percentage of observa-
tion error (Obs Error) estimated by the state-space model by strata.  

  Posterior probability  

Species Stratum Mean 
Trend

L 95% CI U 95% CI Declining Negligible Increasing Trend Obs 
Error  

Hawai‘i ‘Elepaio  Open −0.0113 −0.0525 0.0308 0.472 0.439 0.090 Inc 81% 
 Closed −0.0246 −0.1158 0.1228 0.662 0.162 0.177 ↓ 51% 
‘ Ō ma‘o Open −0.0087 −0.0593 0.0446 0.436 0.378 0.187 Inc 63% 
 Closed −0.0185 −0.1499 0.1100 0.557 0.161 0.282 ↓ 49% 
Hawai‘i ‘Amakihi Open 0.0074 −0.0330 0.0523 0.120 0.457 0.423 Inc 73% 
 Closed 0.0001 −0.1121 0.1698 0.408 0.243 0.349 Inc 66% 
‘Akiap ō l ā ‘au Open −0.0014 −0.0774 0.0606 0.281 0.345 0.374 Inc 89% 
 Closed −0.1013 −0.4693 0.2547 0.768 0.046 0.187 ↓ 75% 
Hawai‘i Creeper Open 0.0130 −0.0320 0.0569 0.096 0.295 0.610 ↑ 90% 
 Closed −0.0003 −0.0866 0.0881 0.328 0.319 0.353 Inc 72% 
Hawai‘i ‘ Ā kepa Open −0.0074 −0.1061 0.0862 0.422 0.287 0.292 Inc 70% 
 Closed 0.0173 −0.1205 0.1567 0.244 0.191 0.566 ↑ 70% 
‘I‘iwi Open 0.0051 −0.0324 0.0452 0.155 0.461 0.385 Inc 45% 
 Closed −0.0084 −0.1116 0.0855 0.435 0.225 0.340 Inc 48% 
‘Apapane Open 0.0164 −0.0309 0.0665 0.087 0.259 0.654 ↑ 77% 
 Closed 0.0270 −0.0469 0.1051 0.112 0.150 0.739 ↑ 51% 
Red-billed Leiothrix Open 0.0074 −0.0520 0.0679 0.209 0.305 0.486 Inc 64% 
 Closed −0.0192 −0.1618 0.0991 0.546 0.150 0.304 ↓ 47% 
Japanese White-eye Open 0.0203 −0.0718 0.1032 0.183 0.167 0.650 ↑ 54% 
 Closed 0.0448 −0.0768 0.1594 0.106 0.076 0.818 ↑ 66%  
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illustrate that with the log-linear trend assessment most species portrayed either stable or increas-
ing trends. In the ordinary log-linear method, process error is assumed to be zero and the slope is 
constrained to be constant, so only very “noisy” time series in which both increasing and declin-
ing slopes could be fitted yield an inconclusive result. In the state-space models the overall trend 
is indicated by the posterior distribution of the mean of the slope (Kéry and Schaub  2012 ). Because 
the slope is allowed to vary among years, both positive and negative (and neutral) mean overall 
slopes are better able to fit the observed abundances, but inconclusive results on mean slopes are 
more likely. If, as is biologically likely, the slope does change over the course of the time series (e.g. 
populations fluctuate over time), then interpreting the ordinary log-linear slopes leads us to be 
overly confident in our assessment of long-term trends. 

 As an example Hawai‘i ‘ Ā kepa in the open forest appears to deviate from a linear model by 
gradually increasing, then gradually declining across the 26-year time series (Table S2) with an 
overall non-significant increase. In the log-linear regression model the posterior distribution of 
the slope showed strong evidence of a neutral trend, with some slight evidence for an increase and 
negligible evidence of a decrease. In the state-space model there was weak evidence for all three 
trends, placing the distribution in the centre of the ternary diagram, indicating the data are incon-
clusive of an overall trend or stability for the entire time series. Therefore, inconclusive results 
may indicate that the time series duration or the magnitude of change were insufficient to deter-
mine a definitive trend. An alternative to long-term trend assessment, the time series may benefit 
from being broken up into smaller components reflecting different population trajectories, 
although there is only weak evidence that the time series possesses break points (Camp  et al.  
 2014 ). However, breaking up a time series to evaluate multiple trends should be done carefully, 
with objective or justifiable break points used to evaluate changing trajectories. 

 Another consideration for long-term surveys of bird species is how their detectability may 
change over time through changes in habitat, bird density, and interactions with other species. 

 Table 4.      Mean overall population trend in detection-corrected abundance from state-space models (expressed 
as the log-linear slope) across the time series for all species. See  Table 1  for description of trends. Percentage 
of observation error (Obs Error) estimated by the state-space model by strata.  

  Posterior probability  

Species Stratum Mean 
trend

L 95% CI U 95% CI Declining Negligible Increasing Trend Obs 
Error  

Hawai‘i ‘Elepaio  Open −0.0025 −0.0407 0.0350 0.209 0.622 0.170 ↔ 78% 
 Closed −0.0167 −0.1106 0.0779 0.572 0.217 0.211 ↓ 62% 
‘ Ō ma‘o Open 0.0057 −0.0374 0.0526 0.148 0.455 0.398 Inc 76% 
 Closed −0.0040 −0.1080 0.1035 0.445 0.192 0.364 Inc 52% 
Hawai‘i ‘Amakihi Open 0.0134 −0.0318 0.0656 0.095 0.342 0.564 ↑ 70% 
 Closed −0.0016 −0.1001 0.1051 0.386 0.238 0.377 Inc 64% 
‘Akiap ō l ā ‘au Open 0.0080 −0.0679 0.0723 0.197 0.290 0.513 ↑ 89% 
 Closed −0.1013 −0.6050 0.3299 0.715 0.048 0.237 ↓ 67% 
Hawai‘i Creeper Open 0.0212 −0.0356 0.0704 0.077 0.167 0.757 ↑ 90% 
 Closed 0.0030 −0.0872 0.1040 0.320 0.281 0.399 Inc 72% 
Hawai‘i ‘ Ā kepa Open −0.0012 −0.1131 0.0894 0.325 0.294 0.382 Inc 71% 
 Closed 0.0152 −0.1182 0.1477 0.226 0.239 0.535 ↑ 73% 
‘I‘iwi Open 0.0088 −0.0274 0.0480 0.096 0.440 0.464 Inc 60% 
 Closed 0.0034 −0.0794 0.0832 0.310 0.278 0.412 Inc 46% 
‘Apapane Open 0.0178 −0.0303 0.0672 0.067 0.224 0.709 ↑ 81% 
 Closed 0.0312 −0.0789 0.1351 0.143 0.134 0.723 ↑ 40% 
Red-billed Leiothrix Open 0.0118 −0.0351 0.0608 0.110 0.300 0.590 ↑ 78% 
 Closed −0.0052 −0.1068 0.1012 0.440 0.217 0.343 Inc 55% 
Japanese White-eye Open 0.0238 −0.0624 0.1057 0.146 0.151 0.703 ↑ 61% 
 Closed 0.0440 −0.0640 0.1543 0.119 0.064 0.818 ↑ 66%  
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 Figure 2.      Differences in assessed trends between ordinary log-linear and state-space models for 
uncorrected counts (top panel) and detection-corrected abundances (middle panel). Differences in 
trends between uncorrected counts and detection-corrected abundances using state-space models 
(bottom panel). Posterior probabilities of a meaningful trend in open and closed forest. Lines origi-
nate at log-linear model probabilities and dots indicate state-space partitioned probabilities. Vertices 
represent 100% of posterior probability with that trend; shade gradations represent the thresholds of 
moderate (0.5  ≤   P   ≤  0.7; light gray), strong (0.7  ≤   P   ≤  0.9; medium gray), and very strong ( P   ≥  0.9; dark 
gray) evidence of trends. Species codes are HAEL = Hawai‘i ‘Elepaio, OMAO = ‘ Ō ma‘o, HAAM = 
Hawai‘i ‘Amakihi, AKIP = ‘Akiap ō l ā ‘au, HCRE = Hawai‘i Creeper, HAAK = Hawai‘i ‘ Ā kepa, IIWI = 
‘I‘iwi, APAP = ‘Apapane, RBLE = Red-billed Leiothrix, and JAWE = Japanese White-eye.    
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Hakalau Forest NWR has been the focus of intensive restoration work, including fencing and 
removal of non-native ungulates (U.S. Fish and Wildlife Service  1996 , Maxfield  1998 , Hess  et al.  
 2006 ,  2010 ), controlling invasive plants, and developing a native plant propagation programme to 
accelerate forest bird habitat recovery in open pastures (Hakalau Forest NWR, unpubl. data). This 
multi-faceted approach to restoring degraded forest habitat has increased the extent and density 
of forest and appears to have benefitted all birds given the stable to increasing trends in the once 
degraded, open forest. However, the increased vegetation density has changed the structure of the 
forest in ways that have implications for long-term surveys. For example, trends in the detection-
corrected abundances were more conclusive than those for uncorrected counts ( Figure 2 , bottom 
panel). One reason for this may be that as the forest recovers and the understorey develops it has 
become more difficult to count birds. The differences in the trends of the state-space model 
between uncorrected counts and detection-corrected abundances were small in the closed forest 
where the thick undergrowth may not have changed much over the past 13 years, and the uncor-
rected count index and detection-corrected abundances appear to track each other reasonably well. 
Much greater change in the difference in population trends was observed in the once open forest 
(which had been more impacted by ungulates) where there appeared to be a shift in how detect-
able a species was through time. For example, ‘ Ō ma‘o detection probabilities have decreased since 
1987, although the ratio of birds seen to those heard was inconsistent (Camp  et al.   2010 ). We 
included trends analyses of the uncorrected counts as an index because many monitoring pro-
grammes rely on simple counts to track changes in populations over time. However, index-based 
methods should be avoided (Anderson  2001 , Skalski  et al.   2005 ) as counts of birds are an unreli-
able measure of the actual number of birds present if the index and true abundance do not track 
each other (see Burnham  1981 , Barker and Sauer  1995 ). Although trends in the uncorrected 
counts and detection-corrected abundances were generally similar, the uncorrected count index 
assumed that detection probabilities were invariant over time and space (Skalski  et al.   2005 ). 
Thus, while abundances estimated with distance sampling methods are robust to marginal differ-
ences in detection probabilities when applying a globally fit detection function (Burnham  1981 ), 
even minor differences may adversely affect the uncorrected count index (Skalski  et al.   2005 ).  

 Implications for incorporating state-space analyses 

 Hawaiian forest birds have been monitored using archipelago-wide standardised surveys for 
almost 40 years, 1976 to present (Camp  et al.   2009 ). This long time series has been useful in 
understanding status and population trends of individual species and communities, but it is 
important to continually evaluate new techniques for improving surveys and their inference. 
Accurate estimates of population size are needed for reliable trend assessment, gauging conserva-
tion goals, and are critical for other modelling efforts that require accurate abundance numbers 
(e.g. integrated population modelling). State-space models can improve assessment of bird count 
time series because they partition year-to-year changes in population estimates into process vari-
ation and observation error (Humbert  et al.   2009 , Knape  et al.   2011 ), and thus are trying to esti-
mate “true” population abundances. Partitioning the observed variation can be difficult as the 
process is data demanding and is reliant on the assumption that observation errors will be inde-
pendent from one time point to the next (Kéry and Schaub  2012 ). If this assumption fails then the 
model is unable to partition variance correctly, which may result in inconclusive or incorrect 
results. When variance is portioned correctly, applications of state-space models provide more 
biologically reasonable abundance estimates (Kéry and Schaub  2012 ), and provide a more detailed 
evaluation of long-term trends by accounting for short-term increases or decreases (Humbert 
 et al.   2009 ). A formal comparison of performance among modelling approaches of independent 
and serial autocorrelated linear regression and state-space models would clarify which circum-
stances justify a particular modeling approach. This could be accomplished either through a 
multi-model information theoretic approach, simulation study, an assessment of out-of-sample 
predictive performance, or a hypothesis test as to whether the process variance is zero. It is worth 

https://doi.org/10.1017/S0959270915000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0959270915000088


R. J. Camp et al. 240

 References 

    Albert  ,   J.   ( 2012 )  LearnBayes: Functions for 
learning Bayesian inference .  R package 
version 2.12.   http://CRAN.R-project.org/
package=LearnBayes .  

    Alldredge  ,   M. W.  ,   Pacifici  ,   K.  ,   Simons  ,   T. R.   
and   Pollock  ,   K. H.   ( 2008 )  A novel field eval-
uation of the effectiveness of distance and 
independent observer sampling to estimate 
aural avian detection probabilities .  J. Appl. 
Ecol.   45 :  1349 – 1356 .  

    Alldredge  ,   M. W.  ,   Pollock  ,   K. H.  ,   Simons  ,   T. R.  , 
  Collazo  ,   J. A.   and   Shriner  ,   S. A.   ( 2007 a) 
 Time-of-detection methods for estimating 
abundance from point-count surveys .  Auk  
 124 :  653 – 664 .  

    Alldredge  ,   M. W.  ,   Simons  ,   T. R.   and   Pollock  ,   
K. H.   ( 2007 b)  Factors affecting aural detec-
tions of songbirds .  Ecol. Applic.   17 :  948 – 955 .  

    Alldredge  ,   M. W.  ,   Simons  ,   T. R.   and   Pollock  , 
  K. H.   ( 2007 c)  A field evaluation of distance 
measurement error in auditory avian 
point count surveys .  J. Wildl. Manage.   71 : 
 2759 – 2766 .  

    Anderson  ,   D. R.   ( 2001 )  The need to get the 
basics right in wildlife field studies .  Wildl. 
Soc. Bull.   29 :  1294 – 1297 .  

    Banko  ,   W. E.   and   Banko  ,   P. C.   ( 2009 )  Historic 
decline and extinction. Pp. 25–58 in T. K. Pratt, 
C. T. Atkinson, P. C. Banko, J. D. Jacobi and 

B. L. Woodworth, eds.  Conservation biology 
of Hawaiian forest birds: Implications for 
island avifauna . New Haven, CT, USA: 
Yale University Press .  

    Barker  ,   R. J.   and   Sauer  ,   J. R.   ( 1995 )  Statistical 
aspects of point count sampling. Pp. 125–130 
in C. J. Ralph, J. R. Sauer and S. Droege, 
eds.  Monitoring bird populations by point 
counts . Albany, CA: U.S. Forest Service, 
Pacific Southwest Research Station. General 
Technical Report PSW-149 .  

    Besbeas  ,   P.  ,   Freeman  ,   S. N.  ,   Morgan  ,   B. J. T.   and 
  Catchpole  ,   E. A.   ( 2002 )  Integrating mark-
recapture-recovery and census data to esti-
mate animal abundance and demographic 
parameters .  Biometrics   58 :  540 – 547 .  

    Buckland  ,   S. T.  ,   Anderson  ,   D. R.  ,   Burnham  ,   K. P.  , 
  Laake  ,   J. L.  ,   Borchers  ,   D. L.   and   Thomas  ,   L.   
( 2001 )  Introduction to distance sampling: 
Estimating abundance of biological popula-
tions.   Oxford, UK :  Oxford University Press .  

    Burnham  ,   K. P.   ( 1981 )  Summarizing remarks: 
Environmental influences .  Stud. Avian Biol.  
 6 :  324 – 325 .  

    Burnham  ,   K. P.   and   Anderson  ,   D. R.   ( 2002 ) 
 Model selection and multimodel inference: 
A practical information-theoretic approach, 
second edition.   New York, NY, USA : 
 Springer-Verlag .  

noting that both of the trend assessment methods we have used (log-linear regression or state-
space regression) assume that the abundance estimates produced by program Distance are without 
error. This is not the case since the detection-corrected estimates have uncertainties of their own 
due to lack-of-fit in the detection functions relative to natural variation in the raw count data. 
Incorporating the error estimates from fitting a detection function as priors for a Bayesian state-
space model may provide additional improvement to the techniques we have described here.    

 Supplementary Material 

 The supplementary materials for this article can be found at journals.cambridge.org/bci     

 Acknowledgements 

 We thank the Refuge managers and field biologists who collected the bird survey data, and the interns 
that assisted with data preparation. This manuscript was improved by comments from Jeff Hatfield, 
Steffen Oppel, Nat Seavy, and an anonymous referee. Any use of trade, product, or firm names in this 
publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 
This study was funded by the U.S. Fish and Wildlife Service Inventory and Monitoring Program, 
Fort Collins and the U.S. Geological Survey-Pacific Island Ecosystems Research Center.  

https://doi.org/10.1017/S0959270915000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0959270915000088


State-space analysis of Hawaiian bird community 241

    Camp  ,   R. J.  ,   Pratt  ,   T. K.  ,   Gorresen  ,   P. M.  , 
  Jeffrey  ,   J. J.   and   Woodworth  ,   B. L.   ( 2010 ) 
 Population trends of forest birds at Hakalau 
Forest National Wildlife Refuge, Hawai`i . 
 Condor   112 :  196 – 212 .  

    Camp  ,   R. J.  ,   Pratt  ,   T. K.  ,   Gorresen  ,   P. M.  , 
  Woodworth  ,   B. L.   and   Jeffrey  ,   J. J.   ( 2014 ) 
 Hawaiian forest bird trends: Using log-linear 
models to assess long-term trends is supported 
by model diagnostics and assumptions (reply 
to Freed and Cann 2013) .  Condor   116 :  97 – 101 .  

    Camp  ,   R. J.  ,   Reynolds  ,   M. H.  ,   Gorresen  ,   P. M.  , 
  Pratt  ,   T. K.   and   Woodworth  ,   B. L.   ( 2009 ) 
  Monitoring Hawaiian forest birds . Pp. 
83–107 in T. K. Pratt, C. T. Atkinson, P. C. 
Banko, J. D. Jacobi, and B. L. Woodworth, eds. 
 Conservation biology of Hawaiian forest 
birds: Implications for island avifauna . 
New Haven, CT, USA: Yale University Press .  

    Camp  ,   R. J.  ,   Seavy  ,   N. E.  ,   Gorresen  ,   P. M.   and 
  Reynolds  ,   M. H.   ( 2008 )  A statistical test to 
show negligible trend: Comment .  Ecology  
 89 :  1469 – 1472 .  

    Chandler  ,   R. B.  ,   Royle  ,   J. A.   and   King  ,   D. I.   
( 2011 )  Inference about density and tempo-
rary emigration in unmarked populations . 
 Ecology   92 :  1429 – 1435 .  

    Dennis  ,   B.  ,   Ponciano  ,   J. M.  ,   Lele  ,   S. R.  ,   Taper  , 
  M. L.   and   Staples  ,   D. F.   ( 2006 )  Estimating den-
sity dependence, process noise, and observa-
tion error .  Ecol. Monogr.   76 :  323 – 341 .  

    Dudley  ,   N.   ( 2008 )  Guidelines for applying 
protected area management categories . 
 Gland, Switzerland :  International Union for 
Conservation of Nature .  

    Freed  ,   L. A.   and   Cann  ,   R. L.   ( 2010 )  Misleading 
trend analysis and decline of Hawaiian forest 
birds .  Condor   112 :  213 – 221 .  

    Freed  ,   L. A.   and   Cann  ,   R. L.   ( 2013 )  More mis-
leading trend analysis of Hawaiian forest 
birds .  Condor   115 :  442 – 447 .  

    Gelman  ,   A.  ,   Carlin  ,   J. B.  ,   Stern  ,   H. S.   and   Rubin  , 
  D. B.   ( 2004 )  Bayesian data analysis, second 
edition .  New York, USA :  Chapman & Hall .  

    Gorresen  ,   P. M.  ,   Camp  ,   R. J.  ,   Reynolds  ,   M. H.  , 
  Woodworth  ,   B. L.   and   Pratt  ,   T. K.   ( 2009 ) 
 Status and trends of native Hawaiian song-
birds. Pp. 108–136 in T. K. Pratt, C. T. Atkinson, 
P. C. Banko, J. D. Jacobi and B. L. Woodworth, 
eds.  Conservation biology of Hawaiian forest 
birds: Implications for island avifauna . New 
Haven, CT, USA: Yale University Press .  

    Hess  ,   S. C.  ,   Jeffrey  ,   J. J.  ,   Ball  ,   D. L.   and   Babich  ,   L.   
( 2006 )  Efficacy of feral pig removals at Hakalau 
Forest National Wildlife Refuge, Hawai‘i . 
 Trans. West. Sec. The Wildl. Soc.   42 :  53 – 67 .  

    Hess  ,   S. C.  ,   Jeffrey  ,   J. J.  ,   Pratt  ,   L. W.   and   Ball  , 
  D. L.   ( 2010 )  Effects of ungulate management 
on vegetation at Hakalau Forest National 
Wildlife Refuge, Hawai‘i Island .  Pac. Conserv. 
Biol.   16 :  144 – 150 .  

    Humbert  ,   J-Y  ,   Mills  ,   L. S.  ,   Horne  ,   J. S.   and 
  Dennis  ,   B.   ( 2009 )  A better way to estimate 
population trends .  Oikos   118 :  1940 – 1946 .  

    Ives  ,   A. R.  ,   Abbott  ,   K. C.   and   Ziebarth  ,   N. L.   
( 2010 )  Analysis of ecological time series with 
ARMA(p,q) models .  Ecology   91 :  858 – 871 .  

    Johnson  ,   L.  ,   Camp  ,   R. J.  ,   Brinck  ,   K. W.   and 
  Banko  ,   P. C.   ( 2006 )  Long-term population 
monitoring: Lessons learned from an endan-
gered passerine in Hawai`i .  Wildl. Soc. Bull.  
 34 :  1055 – 1063 .  

    Juvik  ,   S. P.   and   Juvik  ,   J. O.  , eds. ( 1998 )  Atlas of 
Hawai‘i .  Third edition .  Honolulu, HI, USA : 
 University of Hawai‘i Press .  

    Kepler  ,   C. B.   and   Scott  ,   J. M.   ( 1981 )  Reducing 
bird count variability by training observers . 
 Stud. Avian Biol.   6 :  366 – 371 .  

    Kéry  ,   M.   and   Schaub  ,   M.   ( 2012 )  Bayesian pop-
ulation analysis using WinBUGS .  Waltham, 
USA :  Academic Press .  

    Knape  ,   J.   ( 2008 )  Estimability of density depend-
ence in models of time series data .  Ecology  
 89 :  2994 – 3000 .  

    Knape  ,   J.  ,   Jonzén  ,   N.   and   Sköld  ,   M.   ( 2011 ) 
 On observation distributions for state space 
models of population survey data .  J. Anim. 
Ecol.   80 :  1269 – 1277 .  

    Krebs  ,   C. K.   ( 1989 )  Ecological methodology . 
 New York, NY, USA :  HarperCollins 
Publishers, Inc .  

    Maindonald  ,   J.   and   Braun  ,   J.   ( 2006 )  Data anal-
ysis and graphics using R – an example-
based approach.   Cambridge, UK :  Cambridge 
University Press .  

    Maxfield  ,   B.   ( 1998 )  Hakalau Forest National 
Wildlife Refuge .  Endang. Sp. Bull.   23 :  26 – 27 .  

    Paxton  ,   E. H.  ,   Gorresen  ,   P. M.   and   Camp  ,   
R. J.   ( 2013 )  Abundance, distribution, and 
population trends of the iconic Hawaiian 
Honeycreeper, the Iiwi (Vestiaria coccinea) 
throughout the Hawaiian Islands. U.S. 
Geological Survey Open-File Report 2013-
1150 . [ http://pubs.usgs.gov/of/2013/1150/ ].  

https://doi.org/10.1017/S0959270915000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0959270915000088


R. J. Camp et al. 242

     RICHARD J.     CAMP   *    ,     KEVIN W.     BRINCK     ,     P. MARCOS     GORRESEN    
  Hawaii Cooperative Studies Unit, University of Hawaii at Hilo, PO Box 44, Hawaii National 

Park, Hawaii 96718, USA. 

   EBEN H.     PAXTON    
  U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawaii National 

Park, Hawaii 96718, USA. 

   * Author for correspondence; email:  rick_camp@usgs.gov   

    Pratt  ,   T. K.   ( 2009 )  Origins and evolution. 
Pp. 3–24 in T. K. Pratt, C. T. Atkinson, 
P. C. Banko, J. D. Jacobi and B. L. Woodworth, 
eds.  Conservation biology of Hawaiian forest 
birds: Implications for island avifauna . New 
Haven, CT, USA: Yale University Press .  

   R Core Team  ( 2014 )  R: A language and envi-
ronment for statistical computing .  Vienna, 
Austria :  R Foundation for Statistical Com-
puting .  ISBN 3-900051-07-0, URL   http://
www.R-project.org/ .  

    Ramsey  ,   F. L.   and   Scott  ,   J. M.   ( 1979 )  Estimating 
population densities from variable circular plot 
surveys. Pp. 155–181 in R. M. Cormack, G. P. 
Patil and D. S. Robson, eds.  Sampling biological 
populations . Fairland, MD, USA: Co-op. 
Publishing House. (Stat. Ecol. Ser., vol. 5) .  

    Scott  ,   J. M.  ,   Jacobi  ,   J. D.   and   Ramsey  ,   F. L.   ( 1981 a) 
 Avian surveys of large geographical areas: 
A systematic approach .  Wildl. Soc. Bull.   9 : 
 190 – 200 .  

    Scott  ,   J. M.  ,   Ramsey  ,   F. L.   and   Kepler  ,   C. B.   
( 1981 b)  Distance estimation as a variable in 
estimating bird numbers from vocalizations . 
 Stud. Avian Biol.   6 :  334 – 340 .  

    Scott  ,   J. M.  ,   Mountainspring  ,   S.  ,   Ramsey  ,   F. L.   
and   Kepler  ,   C. B.   ( 1986 )  Forest bird com-
munities of the Hawaiian Islands: Their 
dynamics, ecology, and conservation .  Stud. 
Avian Biol.   9 :  1 – 431 .  

    Scott  ,   M. J.   ( 2008 )  Report on U.S. Fish and 
Wildlife Service’s implementing recovery for 
endangered forest bird species in Hawai‘i 
workshop. Summary of workshop held in 
Hilo, Hawai‘i, 8–9 October 2008. Summary 
submitted to U.S. Fish and Wildlife Service, 
14 November 2008 .  

    Simon  ,   J. C.  ,   Pratt  ,   T. K.  ,   Berlin  ,   K. E.  ,   Kowalsky  , 
  J. R.  ,   Fancy  ,   S. G.   and   Hatfield  ,   J. S.   ( 2002 ) 
 Temporal variation in bird counts within a 
Hawaiian rainforest .  Condor   104 :  469 – 481 .  

    Skalski  ,   J. R.  ,   Ryding  ,   K. E.   and   Millspaugh  ,   J. J.   
( 2005 )  Wildlife demography: Analysis of sex, 
age, and count data .  Oxford, UK :  Elsevier 
Academic Press .  

   Stan Development Team  ( 2014 )  Stan: A C++ 
Library for probability and sampling, version 
2.2.0. URL   http://mc-stan.org/ .  

    Thomas  ,   L.   ( 1996 )  Monitoring long-term pop-
ulation change: Why are there so many anal-
ysis methods?   Ecology   77 :  49 – 58 .  

    Thomas  ,   L  ,   Buckland  ,   S. T.  ,   Rexstad  ,   E. A.  , 
  Laake  ,   J. L.  ,   Strindberg  ,   S.  ,   Hadley  ,   S. L.  , 
  Bishop  ,   J. R. B.  ,   Marques  ,   T. A.   and   Burnham  , 
  K. P.   ( 2010 )  Distance software: Design and 
analysis of distance sampling surveys for 
estimating population size .  J. Appl. Ecol.   47 : 
 5 – 14 .  

    Thomas  ,   L.  ,   Burnham  ,   K. P.   and   Buckland  ,   S. T.   
( 2004 )  Temporal inferences from distance 
sampling surveys. Pp. 71–105 in S. T. 
Buckland, D. R. Anderson, K. P. Burnham, 
J. L. Laake, D. L. Borchers and L. Thomas, eds. 
 Advanced distance sampling: Estimating 
abundance of biological populations . Oxford, 
UK: Oxford University Press .  

    Tummons  ,   P.   ( 2009 )  UH professor takes long-
running feud with Feds into court of public 
opinion.  Environment Hawaii  volume 19, 
number 10 April ( http://www.environment-
hawaii.org ).  

   U.S. Fish and Wildlife Service  ( 1996 )   Feral 
ungulate management plan . Region 1, 
Portland, OR .  

    Urquhart  ,   N. S.   and   Kincaid  ,   T. M.   ( 1999 ) 
 Designs for detecting trend from repeated 
surveys of ecological resources .  J. Ag. Biol. 
Environ. Stat.   4 :  404 – 414 .  

    Urquhart  ,   N. S.  ,   Paulsen  ,   S. G.   and   Larsen  ,   D. P.   
( 1998 )  Monitoring for policy-relevant 
regional trends over time .  Ecol. Applic.   8 : 
 246 – 257 .  

https://doi.org/10.1017/S0959270915000088 Published online by Cambridge University Press

https://doi.org/10.1017/S0959270915000088

