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Abstract

An asymptotic estimate is obtained for the number of partitions of the positive integer n into unequal
parts coming from a sequence u, with each part greater than m, under suitable conditions on the sequence
M. The estimate holds uniformly with respect to integers m such that 0 < m < n[~s, as n -*• oo, where &
is a given real number, such that 0 < S < 1.

2000 Mathematics subject classification: primary 11P82.

1. Introduction

Let u = («;)°i, be a given strictly increasing sequence of positive integers and let
m and n be integers such that 0 < m < n/2. Define qu(m, n) to be the number of
partitions of n into unequal parts from u with each part greater than m, that is, qu(m,n)
is the number of ways of writing n in the form

n = uh + uJ2 -\ 1- ujr,

where

with r arbitrary. The classical partition function q(n) = qN(0,n) is the number of
partitions of n into distinct positive integers.

The aim of this paper is to study the asymptotic behaviour of qu(m, n) as n -*• oo
for a reasonably broad class of sequences u. The paper is based on the main result
on general sequences in my Ph.D. thesis [5], to which I shall refer for some further
details. In the paper [4] I give the detailed application to the sequence of km powers.

© 2006 Australian Mathematical Society 1446-7887/06 SA2.00 + 0.00

13
https://doi.org/10.1017/S1446788700011368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011368


14 Kevin John Fergusson [2]

Background history The first major work in asymptotic partition theory was the
important 1918 paper of Hardy and Ramanujan [9] which presented their investigation
of the classical partition functions p(n) (the number of ordinary partitions of n into
positive integers which are not required to be distinct) and q(n) as defined above. In
particular, using the transformation theory of modular functions, they gave the result

and a corresponding asymptotic estimate for p(n) (estimates which had been found
independently by Uspensky [16]). Their main result, however, was a theorem giving
an asymptotic series expansion of pin) in terms of Bessel functions.

Later, in 1942 Hua [10] used a similar method to obtain an asymptotic series
expansion of q(n) in terms of Bessel Functions. In 1941 Ingham [12] developed
a general Tauberian theorem for which he gave some applications, including, in
particular, a simpler derivation of the above estimate of q{n).

In 1954 Roth and Szekeres [14] proved a general theorem giving an asymptotic
expansion for the number of partitions qu(0, n) of n into distinct members of a general
sequence u satisfying appropriate conditions. The hypotheses on the sequence u used
by Roth and Szekeres were as follows:

(RSI)
log/2

(RS2) inf I (logn)"1 ^ \\auj\\2 I -> oo as n ^ oo,
V ; = i /

where the infimum is taken over a e ((2«n)"', 1/2). Roth and Szekeres showed that
Hypotheses (RSI) and (RS2) are satisfied by a wide range of sequences u, including
sequences of the form (P(j)) and (P(pj)), where pj is the jth prime number and P is
a suitable polynomial function in each case, and in particular including the sequences
M = N and (pj), and the sequence of &th powers (_/*).

Asa particular case of the main theorem of Roth and Szekeres we have the following
asymptotic estimate of qu(0, n).

THEOREM A (Roth and Szekeres). Let u = (Uj) be a sequence of positive integers
which is strictly increasing for j > 70 and which satisfies Hypotheses (RS1) and (RS2).
For <7a(0, n) as above and given 8 > 0, we have, as n -*• 00,

where a is determined from n = YlT M;0 + e""')"1-
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[3] Partitions into large unequal parts from a general sequence 15

Their proof relied on writing qu(0, n) as the integral of a generating function and
then splitting the range of integration into two parts—an interval around 0, giving
the main integral, and the remaining part, giving the supplementary integral. Their
second hypothesis ensures that the supplementary integral is dominated by the main
integral and they obtained their main term by estimating the main integral.

In 1960 Cassels [2] established conditions on a sequence u ensuring the existence
of a representation of every sufficiently large number n as a sum of distinct members
of the sequence «.

Freiman developed a method for partition problems which drew on the ideas of local
limit theorems (see, for example, Freiman [6]) and recently Freiman and Pitman [7],
using this method, proved the following result on the special case when u — N, the
sequence of all positive integers.

THEOREM B (Freiman and Pitman). For integers m and n such that 0 < m < n/2,
let a be defined by n = Y.m<j<H j/(\ + e^) and let A2 = £m < ;<n f t"' /(I + e<^)2.
Then as n -*• oo we have

where

E = E(m,n) = 0((logn)9/2max(n-1/4, (

uniformly with respect to m such that 0 < m < K$n/ log9 n, KQ an effective positive
constant.

Their analytical method is very similar to Roth and Szekeres but uses a different
identity which is based on a lemma involving a finite product (see Lemma 1 below)
rather than an infinite product.

Over the past few years Erdos, Nicolas and Szalay [3] have investigated the as-
ymptotic behaviour oiqH(m, n), concentrating on the case when m is relatively small
(less than «1/2).

The investigation of corresponding questions for ordinary partitions has gone ahead
alongside, and sometimes ahead of, the work outlined above. Although the results
obtained for partitions into distinct parts and for ordinary partitions are often parallel,
some methods appear to work more easily for one than the other.

Postnikov [13] gives a good introduction to the whole field, including the use of
probabilistic results.

This paper The main content of this paper is a theorem for a general sequence along
the lines of Theorems A and B which is valid for a wide range of values of m such that
0 < m < n/2. The work will draw heavily on the ideas of Roth and Szekeres [14]
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and Freiman and Pitman [7]. However the present problem involves added difficul-
ties associated with replacing qu(0, n) by qu(m, n) in Theorem A (requiring careful
estimation in terms of m) and also replacing N by a general sequence u in Theorem B.

In Section 2, I give a probabilistic motivation for the main theorem based on the
approach of Freiman and Pitman [7]. In Section 3,1 introduce two hypotheses on the
sequence u to play the role of (RSI) and (RS2) and then in Section 4,1 state the main
theorem, outline its proof, and describe the remaining sections of this paper in which
the proof will be given. Results in the paper will be numbered in order of occurrence
(so that, for example, Lemma 1 precedes Theorem 2).

I am grateful for the assistance provided by my PhD supervisor Dr Jane Pitman and
the members of the Number Theory Seminar at the University of Adelaide Department
of Pure Mathematics. The work described here was assisted by a University of
Adelaide Research Scholarship, for the period 16 March 1992 to 15 March 1995
during which most of the work was completed.

2. Probabilistic motivation

We commence with the following lemma.

LEMMA 1. Let u — (Uj)JLt be a strictly increasing sequence of positive integers
and let a be a given real number. With qu(m, n) as above, we have

(2.1) qu{m,n)=e,an f ] (1 + e"17"') / <p{a) cr*""" da,

where

(2.2) <p(a)=

and where
1

(2.3)

PROOF. It is easily seen that qu(m, n) is the coefficient of e2"""1 in the product

Using the fact that

1-1,2 [0 ifk^O

we see the result immediately. D
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[5] Partitions into large unequal parts from a general sequence 17

We now introduce some non-negative integer valued random variables in the context
of the lemma. For such a random variable X, the function defined by cp (a) = E(e27riaX)
will be called the characteristic function of X. (It is simply a rescaling of the classical
characteristic function.)

As before, let u be a strictly increasing sequence of positive integers, and as in the
lemma let a be a given real number. For each positive integer j define

( 2-4 )

We consider a sequence (Xj)f of independent non-negative integer-valued random
variables such that

, (
[p2j

(Such a sequence exists by, for example, Ash [1, Section 5.11].) We note that <Pj(ct)
in (2.3) is the characteristic function of Xj.

Consider the random variable Y = Fm,n defined by

(2.5) Y=

We have E(K) = £ m < H <n p2jUj and because of the independence of the X / s we
also have V(K) = X m̂<« <n PijP2ju] an(^ the characteristic function ^ of the random
variable Y is given by (2.2).

We denote the first and second cumulants of the random variable Y by

(2.6) A, =
m<Uj<n

and

(2.7) A2 =

where

(2.8) fi(x) = —^—^ and f2{x) =

We remark that

x2eax

(2.9) E(K) = A,, V(F) = A2.

Also the third moment of the random variable Y is

(2.10) p 3 =

m <«_/<«
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Using the formula for the nth Fourier coefficient we have

/•1/2

= n) = I (p(a)e(—an)da.
J-l/2

.1/2

\P(Y
'-1/2

If an asymptotic result along the lines of the local limit theorem presented by
Gnedenko and Kolmogorov [8, Section 49, page 233] held in the present situation we
might hope that as n —• oo,

P(Y =n)= ,

If further we had \E(Y) = n, then, using (2.9) we would have

and since A2 —• oo as n —> oo (as will be evident from some lemmas estimating A2

later in this paper), this implies

(2.11) IP(V = n)~ as n -+ oo.
V27T/42

By (2.6) and (2.9) we can ensure that E(K) = n by choosing cr so that

(2.12) n=

We show later on that such a choice of a is possible.
This leads to the conjecture that, under suitable conditions on the sequence u and

on m, the result (2.11) will hold and hence, by (2.1), as n —> oo,

(2.13) qu(m,n)~e°" T]
1 l

with a as in (2.12). This is the basis of the main theorem (Theorem 2 below) which
under appropriate conditions will give an asymptotic estimate of qu{m,n) with the
right hand side of (2.13) as its main term.

3. Discussion of hypotheses

For a given strictly increasing sequence of positive integers M, let the counting
function U with domain [0, oo) be defined by U(x) = card{«; : Uj < x}. We can
now introduce the two hypotheses H and K on the sequence u which turned out to be
appropriate for the purposes of the main theorem. The first of these is as follows.
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[7] Partitions into large unequal parts from a general sequence 19

HYPOTHESIS H. There are real constants s, t, Co satisfying 0 < s < 1, f > 0,
Co > 0 such that,

(3.1) U(x) ~ Co*1 (log*)"' as x -* oo.

It can be shown that Hypothesis H is equivalent to

(3.2) u j 1 " l " "

It is clear that any sequence satisfying Hypothesis H must satisfy (RSI) given by Roth
and Szekeres. We note also that Hypothesis H implies the existence of a positive
constant C\ depending only on u such that

(3.3) U(x) < Cix'Oog*)-' for all x > 2.

We note that by the Prime Number Theorem, the sequence of primes u = (pj) satisfies
Hypothesis H with s — t = 1. Also the sequence of positive fcth powers satisfies (3.2)
and hence satisfies Hypothesis H with s = \/k, t = 0.

The second hypothesis, Hypothesis K, is a further condition on sequences which
already satisfy H and will be used only in estimating the supplementary integral 5 in
(4.4).

HYPOTHESIS K. Let 5 be as in Hypothesis H. For every real number k e (1,2),
there are positive constants ^0 and KQ (which depend only on k and the sequence u)
such that for every x > x0.

x<uj<kx

whenever |a| G (l/(2kx), 1/2). (Here || || denotes the distance from the nearest
integer.)

Because of the inequality 2|[JC || < sin nx < n \\x || we observe that Hypothesis K is
equivalent to the condition that for every k e (1,2) and for every x > x0,

S j n
2 -rrr^,. ^ V' ^(2-\)

whenever |a| € (1/(2A.JC), 1/2), for some positive constants x0, K'o depending only
on k and u. It is easily shown that any sequence satisfying Hypothesis K must satsify
(RS2) of Roth and Szekeres.

In my thesis [5], I showed that sequences which satisfy both of the two Hypotheses H
and K include the sequence (jk) of ifcth powers for it > 1, the sequence (/?,) of the
primes, and, more generally, sequences of the form (P(j)) and (P(Pj)) for fairly
general polynomials P(x), as well as certain uniformly distributed sequences. In the
paper [4], I give full details of the proof that the sequence (jk) satisfies both H and K.

https://doi.org/10.1017/S1446788700011368 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011368


20 Kevin John Fergusson [8]

4. The main theorem

Convention on constants For given real valued functions / and g on N such
that g{n) > 0 for large integral n, we shall use f(n) = O(g(n)), f(n) <£ g(n),
f(n) ~ g(n), and / ( « ) = o(g(n)) as n —• oo, in their usual sense. We shall also
sometimes write / ( « ) » g(«) if g(n) <£ / ( « ) and / ( n ) x g(n) if both / ( n ) « g(n)
and f(n)^>g(n) hold, as n ->• oo. Corresponding notation will apply for f(x), g(x)
for real x.

For the purposes of the main theorem, it will be important to identify all parameters
on which the constants implied by the above notations may depend. These constants
will normally depend on the particular sequence u (or on the associated values of Co,
s, t in Hypothesis H and hence on u), and any other parameters on which they may
depend will be shown by subscripts. Thus, for example,

f(n) = Oa(g(n)) a s n ^ oo, and / ( « ) <?C g(n) as n ->• oo,
a

both mean that there exist positive constants C = Ca, n0 = no(a) which depend only
on the sequence u and the parameter a such that | / ( n ) | < C\g(n)\ for every n > n0.
(However the status of the implied constants will be explicitly mentioned in the formal
statements of results.)

Statement of main theorem We are now in a position to state the main theorem of
this paper.

THEOREM 2. Let u be a strictly increasing sequence of positive integers satisfying
Hypotheses H and K. Let 8 be a positive constant such that

(4.1) 0 < 5 < l .

Let qu(m, n) be as in Section 1 and let a and Ai be as in be as in (2.12) and (2.7).
Then as n —*• oo,

x(\ + O («-v/ (2v+2)(logn)-' / (2 (+2)) + Os ((m/n)1 6 '3 3)),

for 0 < m < nl~s, where the implied constants for the O-term depend only on u and
those for the O^-term depend only on u and 8.

Outline of proof of main theorem The proof of Theorem 2 will be based on
Lemma 1. Using the notation e(jc) = e2*'* for real x, we see from (2.1) that we must
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estimate the integral

.1/2

i

-1/2
We write

.1/2
<p(a) e(—an) dot = M + S,

1-1/2

where
/•oo

(4.3) M = I <p(a)e(—an) da
J -ao

is the main integral and

L
/•oo

= I <p(a)e(—
J -ao

S = j <p(a)e(-(4.4) S= j <p(a)e(-an)da

is the supplementary integral, and where a0 is a number in the interval (0, 1 /2) which
is to be chosen appropriately.

After commencing with some preliminary lemmas in Section 5 I give in Section 6
some lemmas on the size of the characteristic function <p and in Section 7 use these to
estimate the main integral M:

with an explicit upper bound for the error E\. In Section 8 I give estimates of
the variance A2 and related quantities and in Section 9 give an upper bound for the
supplementary integral S. The climax of this paper will be reached in Section 10 where
the proof of Theorem 2 will be completed. Finally, in Section 11, a modification of
the main theorem restricted to 'small' m will be presented.

5. Preliminary lemmas

We commence with the following lemma which gives a consequence of Hypothe-
sis H, which will be used in the proof of subsequent lemmas.

LEMMA 3. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H. Then there is a positive integer n0 = no(u) depending only on u such
that for r > n0.

2(1 - 2-v)C«rv(logr)-' > U(r) - U(r/2) > (1/2)(1 - 2~s)Cor
x(logr)"'.
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PROOF. By Hypothesis H, as r -*• oo,

U(r) ~ Cor'(logr)-', U(r/2) ~ 2~s Cor
s {\ogr)".

SowehaveU(r)-U(r/2) ~ (1 -2-s)C0r'(logr)-' and the result follows easily. •

The following lemma guarantees the existence of the parameter o defined in (2.12).

LEMMA 4. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H. For integers m and n such that 0 < m < n/2, let

A l i x ) =

^ 1
m<Uj<n

• Then there is a positive number no depending only on the sequence u such that for every
number n > no a unique real number a = a{m, n, u) exists such that 0 < o < 1/4
and A i (a) = n.

PROOF. Let At(x) = J2m<Uj<nuj/(l + QXU')-
 T n e n A\ i s continuous and strictly

decreasing on R. Note that applying some elementary inequalities, Lemma 3 and
Hypothesis H gives

Also

£ U]>\ £ Uj>-
m<Uj<n n/2<Uj<n n/2<Uj<n

k=l

It follows that there exists «(), depending only on Co, s and t and hence only on u, such
that for n > n0 we have A,(0) > n > At(1/4). By the Intermediate Value Theorem,
there is a unique a in the interval (0, 1/4) such that A\(a) = n. •

Thus we confirm our definition of a as the unique real number which satisfies
(2.12). We now state a lemma which gives bounds on a.

LEMMA 5. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H, with the constants Co, s and t as in Hypothesis H. Let m and n be
integers such thatO < m < n/2 and let o be the unique number given by (2.12). Then
there is a positive number n() depending only on the sequence u such that for n > n0

the following statements hold:

(i) We have 0 < a « n'
l/(1+'K
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(ii) There is a positive constant K\ = K\ (s, t, Co) depending only on s, t and Co

such that

-' ( 2 ' - l ) C0 \
n 4

for r € Z satisfying max (m, tf,nl/(1+I)(logn)'/(1+i)) < r < n/2.

PROOF, (i) We have that a > 0 from Lemma 4. We now prove the second inequality
of (i). We have

n =
m<Uj<n j=\

where the series converges since a > 0. We note that by (3.3), since t > 0, we
have {/(AT) < Ci** for all x > 2. We use partial summation as in [11, Theorem A,
page 18] on the sum on the right above. Noting that for f(x) = xe~ax we have
- / ' ( * ) < ax t-ax and also that by (3.1) and also that by (3.1) U(x)f(x) = o(l), we
obtain

n < Vii.e"™' = - / U(x)f'(x)dx + lim f(x)U(x)

f U(x)axe-"x dx « f axs+{ e~nx dx.< f () «
Using the change of variables ax = y on the last integral we see that

and hence a « w

(ii) Let r 6 Z and m < r < n/2. Using (2.12) together with the facts that a > 0
(by Lemma 4) and hence tax > 1 for x > 0, we obtain

"̂  E
j <2r

Using the lower bound for U(2r) — U(r) obtained from Lemma 3, taking logarithms
and rearranging, we see that there is an n0 = no(u) such that if r > n0 then

1 . / , „ ,,Cor
1+'(log r)-'\

=- loS (2 - D-: •
2r V 4 n /
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This inequality for a will improve upon a > 0 provided that

(5.,, (2- - 1 ) 3 ' " « " > 1.
4 n

Using the fact that r ' + v( logr)~ ' is strictly increasing for large enough r, it can be
shown that (5.1) holds provided that r > AT,nl/(1+j)(logn)'/(1+i), where Kx = Kx{u)
is a positive constant depending only on the sequence u. •

As an immediate consequence we obtain the following lemma.

LEMMA 6. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H. Let m and n be integers such that 0 < m < n/2. Let a be the unique
number given by (2.12). Then as n —*• oo, on -*• oo and \/a —• oo, where the
implied constants may depend on s, t, Co {and hence u) but not on m.

PROOF. Taking the reciprocal of the expressions in the inequality of Lemma 5 (i)
gives 1 /a —*• oo. In part (ii) Lemma 5, taking r = [n/2] gives an -*• oo. •

6. Estimation of characteristic function

The purpose of this section is to estimate the behaviour of the characteristic function
defined in (2.2). We proceed to estimate <p(a) by examining its logarithm.

LEMMA 7. Let u be a strictly increasing sequence of positive integers. Let m and n
be integers such that 0 < m < n/2 and let a and A2 be as in (2.12) and (2.7). Let a
be a real number in the interval (—1/2, 1 /2) and let cp(a) be as in (2.2). Suppose that

(6.1) either \a\ < o/(2n Iog3) or am > Iog3.

Then we have <p(a) = e(aii)e~2"2a2A2+R(a\ where

(6.2) \R(a)\ < ^|27ra|3p3

and p^ is in (2.10).

PROOF. We know from (2.2) and (2.3) that

(6.3) log(p(a)=
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where pljt p2j are as in (2.4). Let Fj(x) = log(p, ; + p2je(xuj)) so that (6.3)
becomes \og<p(a) — YLm<Uj<n Fj(a)- Taylor's Theorem with the integral form of the
remainder (Spivak [15, page 346]) gives

a2 a3 /"'
(6.4) Fj(a) = Fj(0) + aF'(O) + — F"(0) + — / (1 - v)2F'"(va)dv.

2 6 Jo '

Now Fj(0) = \og(pij + p2j) = log 1 = 0. Also it is easily checked that

(6.5) F'j(O) = 2niujp2j = 2nif\(Uj),

(6.6) F/(0) = (27Tiuj)2(p2j - p2
2j) = (2jti)2f2(Uj),

and

(6.7) Fj'(x) = (2niuj)3 [l+^e{_ux) ~ Z ^ 2

3 / '
(1 + €"> e(-ujx))

We shall estimate the integral in (6.4), namely / 0 ( l — v)2F'"{va)dv, by first
estimating an integral of the form

r (\-v)2

•dv,

where / e N (we will be taking only / = 1, 2, 3). We observe that

2i sm{navuj) e(avuj/2)

1 + e""<
1 + e""< e(-UjVa) = eau> e(-ujva)(l + e-CT"0 I 1 +

Further, for j such that m < Uj < n, we observe the following.

(a) If auj > log 3, then 2/(1 + e"u0 < 1/2.
(b) If auj < log 3, then am < log 3 and hence by (6.1),

| sin(7rau«;)| < n\a\Uj < n— auj < - .

By virtue of the two preceding observations,

2i si ;) e(avuj/2)

and so

\l+e"Uje(-UjVa)\ > (1 + e"">

1 + e"">

2i sir

<2

j) e(auw7/2)

1 + e"">
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Consequently for a positive integer /,

[14]

Jo
f

Jo
and using (6.7^ we deduce that

(6.8)

5 (27TU,)3

3 1 + eau'

It follows from (6.4M6.6) and (6.8) that

(6.9) Fj(a) = 2niaf{{uj) + (2jiia)2f2(Uj)/2 + /?,(a),

where \Rj(a)\ < (5/3)\27ta\3u]/(l + &""') and where /,(*) and f2(x) are defined
as in (2.8). Summing both sides of (6.9) over Uj e (m, n] and using (2.6), (2.7) and
(2.12) gives the result. •

LEMMA 8. Let u be a strictly increasing sequence of positive integers. Let m and
n be integers such that 0 < m < n/2 and let a be as in (2.12). Let cp(a) be the
characteristic function as in (2.2). There is a positive number «o depending only on u
such that for n > nQ and for all real numbers a,

(
\(p(a)\ < exp I —2

PROOF. It is easily shown (see Freiman and Pitman [7, Lemma 3 (i)]) that

\(Pj(a)\2 = 1 — 4pijp2j sin2(7TotUj) < exp (—l

Now from (2.4) and positivity of CT by Lemma 4, we have

Using (2.2) and | sin7rx| > 2||JC|| we obtain

and the result follows. •
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7. Estimation of the main integral

Let ct0 be a number in the interval (0, 1/2) which will be chosen appropriately
later on. Lemma 7 suggests that the integrand of the main integral M, as in (4.3), is
approximated by the probability density function of a normal random variable with
variance A2. By using a suitable choice of a0 together with Lemma 8 and Hypothesis K
it will be possible to show that the supplementary integral is dominated by the main
integral. We show that the main integral M is approximated fairly accurately by the
integral / ^ e~2"2^a2 da.

LEMMA 9. For a given strictly increasing sequence u of positive integers and for
given integers m and n such that 0 < m < n/2, let a, A2, p-i be as in (2.12), (2.7),
(2.10). Suppose that a given real number a0 in the interval (0, 1/2) satisfies the
conditions

(7.1) either a0 < a/(2n Iog3) or am > log3,

(7.2) (5/3)(27rao)3p3 < 1/2 and

(7.3) a0 > i/(2nJX~2).

Then there is a positive number «o depending only on u such that for n > n0 the main
integral M = f""a <p(ct) e ( - a n ) da satisfies

where E\ (a0) <£ (p?,/A2 ) + Q-2n'A^a"o and the implied constants depend only on u.

PROOF. We first show

(7.4) M = I ° &-2"2A^2 da+O (-^1 )
J-ao V A2 )

where the implied constants depend only on u. Substituting the expression for the
characteristic function cp(a) given in Lemma 7 into the expression for the main
integral M in (4.3) gives

M = / exp(-2jr2a2A2 +R(a))da.
J -ao

Combining (6.2) with our assumption (7.2) ensures that \R(a)\ < 1/2 and hence
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Using (6.2) again gives |exp(/?(a)) - 1| < 2(5/3)\2na\3p3. Hence

[16]

M - j e-2-^ da = \
J — ao I J —cto

J — Ctn

Using the change of variable /S = 27Z^rA2~a, writing p0 = 2nJ~A~la0, and noting that
p0 > 1 by (7.3), we see that the integral on the right is

This completes the proof of (7.4).
We now show that

(7.5) / e-2*2^-"2 da = / e"2*2'42'"2 da + O [ —= exp(-27r2a2-42) I ,
J-ao J-oo \y/A2 )

where the implied constants depend only on u.
We have

I V2*2^2 da = I I
J ao

*2^"2 da+ 2 I exp(-2n2a2A2)da.
J

Writing f)0 = 27T^/A~^ao, noting that /So > 1 by (7.3) and using the change of variable
fi = 2n^/A~2~a, we see that the integral on the right is

1 f°°

ny/A2 yA
dp <

1
dp -

and this proves (7.5).
From (7.4) and (7.5) we have

M (-^ )= f e-2"2^"2 da + O (-^ ) 0 ( - L = exp(-27r2a2A2)

which gives the required result. a

It will turn out that there is a choice of a0 which is compatible with the conditions
(7.1H7.3).
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8. Estimation of cumulants

In view of the above lemma, we require an estimate of the second cumulant A2

and the quantity p3. In this section we estimate the cumulants A\, A2 and the related
quantities a and p3. We start with some general estimates of integrals and sums.

LEMMA 10. Let m and n be integers such that 0 < m < n /land let a be as in (2.12).
Let a, b be positive real numbers and let r e N such that (I/a) max(l, 2a) < r < n.
Then

/

°° 1 / 1 \ ~*

xa{\ozxYbt-°x dx«.-\ log - ) rae-ar

a a V a)

•where the implied constants depend only on the real number a.

PROOF. By using the change of variables y = ax we obtain

xa(\ogx)-be-"x dx = a"-1 / / ( l o g - ) tTy dy

Jar ^ a/
f00 1

= CT-°-' / ya 1— &~y dy.
Jar "" (logy + logi)6

Since ar > 1, the right-hand side is

/

oo / \\~b

/(log-J e-y dy~b

The result now follows since for ar > 2a the integral on the right is at most
K(or)aQ~ar. D

LEMMA 11. Let a, b, z be positive real numbers such that z > 1. Then

/•OO

J = J(z\a,b) = / xa(logx)-be-*/z dx « z'^'dogz)"*.
h a-b

PROOF. Using the change of variables y = xjz and the fact that z is positive we
have

(8.1) J = z
a+l y"(\ogyzybt~> dy.

J2/z
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Case 1: Suppose z > 2. We write

J = z
a+1 (j + p \ y°(\ogyzybt-> dy.

Now since log _ > 0 for y e (1, oo) and since log z > 0,

/ ( log >• + log zr"t-y dy < (logz)~* / /

Jo

The integral over the interval (2/z, 1) is

(8.3) f ya(log yzrbe-y dy = (logz)"* /" / f 1 - l o f ( 1 / y ) ) e"> dy.
J2/z Jl/z \ logZ /

In order to estimate the integrand on the right, we use the easily checked result that
for positive c, r, w, the inequality w < c — r implies that

)
c' r

For 2/z < y < 1, we have 0 < log( 1 /y) < log z — log 2 and so by the above inequality

l o g ( l / y ) \ - ' < j log(l/y)

logz / log 2

Using this bound on the right hand side of (8.3) we obtain

'e"' dy < {logz)-» f y° (\ - ^ ^ ) e~' dy « (log*)-*
2/z JO \ l o g 2 / "•*

since the integrand on the right is bounded as y —> 0.
By (8.1), this inequality together with (8.2) gives the result.
Case 2: Suppose 1 < z < 2. Then J < za+l /,°° y" (log yz)~be'y dy and the result

follows from (8.2). •

The following lemma will enable us to give upper bounds for pu p2, and p3 for all
m in the range 0 < m < n/2 and to find bounds on these quantities for large m, that
is for m > I /a .

LEMMA 12. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H with Co, s and t being as in Hypothesis H. Let m and n be integers such
that 0 < m < n/2 and let a be as in (2.12). Let k be a fixed positive integer and k a
fixed real number such that 1 < k < 2. Then the following estimates hold, with the
implied constants depending only on u and the parameters shown.
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(i) As n —> oo,

s+k

0<u;<n

(ii) Let r be a positive integer such that 2(k + s)/a < r < n/k. Then as n —> oo,

r*+'(log r ) " ' e~ark « J^ u) t"">' « r"+sQ°g r)~' e'"r •
r<Uj<n

PROOF, (i) We have that

(8.4) ^ uke-ai" < 0(1) +
0<Uj <n 2<Uj <co

Let 0(;c) = A;* e " ^ , hence (p'(x) = (kxk-1 - axk) e'"". Then, since U(x)<p(x) ^ 0
as x ->• oo, partial summation as in [11, Theorem A, page 18], gives

<>oo

J2 <p(uj) = - U(x)<p'(x)dx-U(2)(p(2).
2<Uj«x 2

We immediately have the inequality

(8.5) - I U(x)4>'(x)dx-U{2)4>{2)

= - / U(x)(kxk~] - axk) eTax dx - U(2)<p(2)

/•OO

< Jl
Since Hypothesis H holds, it follows from (3.3) and the comments preceding it that

/ U(x)xke-"x dx « / x^Qogxr'e-01 dx.

By Lemma 11 (with z = I / a , this is, > 1 by Lemma 4)

r°° / 1 y+*+1 / l V
/ jc '+ t ( logx)- ' e"1" rfx « - log - ,

C°° I' \ Y+k / IV '
/ £/(JC)O-JC* e - " rfjc <C f — 1 ( l o g - ) ,
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where the implied constant depends only on k and the sequence u. The result follows
immediately from (8.4)-(8.6).

(ii) By partial summation again,

/»O0

«*e-"> = - / U(x)<P'(x)dx-(P(r)U(r),
r<Uj«x r

where <j>(x) = xk &-ax. Thus

t/(jc)*jc*-' e " " </JC + / U(x)axk z~°x dx - (p(r)U(r)

< / U(x)axke—X dx.

Now as n —• oo, we have that r —> oo because r > 2(/t + 5)/CT and Lemma 6 gives
us that I / a —*• oo. Using Hypothesis H it is easily seen that as n —*• oo

/

OO /iOO

LrU)aA:': e " " djc ~ / C0CTJC*+I(log^)-' e"1" rfjc,
which in view of Lemma 10 gives

/

oo / 1 \ " '

U{x)oxk t"7" dx « (log - j rk+s e-"r.
Since 2(k + s)/a < r, this completes the proof of the second inequality of (ii).

We know that kr < n because r < n/k so that we may write

Now for r < Uj < kr we have that «* > rk and e ""> > e °rX and so the right-hand
side above is

> r* e"„, E , .

Also by Hypothesis H we have that as r -» oo

Y 1 = U(kr) - U(r) ~ C0(k
s - l)rv(logr)-'.

Thus we have that

M*e-""'»e-7rXrVv(logr)- ' ,

which gives the first inequality in (ii). •
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The following lemma gives upper bounds for A\, A2 and p3 in terms of a which
are valid for all m, together with estimates of these quantities which are valid when m
is 'large'.

COROLLARY 13. Let u be a strictly increasing sequence of positive integers satis-
fying Hypothesis H and let s and t be as in Hypothesis H. Let m and n be integers
such that 0 < m < n/2 and let a be as in (2.12). Let A\, A2 and p3 be defined as in
(2.6), (2.7), and (2.10). Then we have the following estimates.

(i) As n -*• oo,

a"3"* Aog i ) ,

where the implied constants depend on u only.
(ii) Let k be a given real number in the interval (1,2). Then as n —> oo,

ml+i '(logm)-'c-°mX « A, <& ml+s(\ogm)'1 e""",

w2+v(logm)"'e"ormA- « A2 « m2 + I(logm)"' e"am,

m3 + I(logm)' le"(""x <£ p3 <3C m3+v(logm)~' e"CTm,

for 2(3 + 5)/o- < m < n/2.

PROOF, (i) Since

H , e \ A2< 2_ Uje ', Pi < 2 ^ " j ^ " '
m<Uj<n m<Uj<n m<uj<n

we immediately have the required inequalities upon application of Lemma 12 (i).
(ii) Combining Lemma 12 (ii) with the observations that as n ->• oo,

E —(T« T~'"> 2 — au X—^ 3 —a

/ z Z—/ y ^ J z—i J
tn<Uj<n m<Uj<n m<uj <n

for 1/CT <JC m < n/2 , where the implied constants depend only on u, gives the
inequalities for 2(3 + s)/o < m < n/2. •

The following lemma gives lower bounds for the quantities A\, A2 and p3 in terms
of the quantity a when m is 'small'.

LEMMA 14. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H and let s and t be as in Hypothesis H. Let m and n be integers such
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that 0 < m < n/2 and let a be as in (2.12). Let A\, A2 and p3 be defined as in (2.6),
(2.7), and (2.10). Let K > I be a constant. Then as n -> oo,

n = A, » (l/ff)*+1(log I /a) - ' , A2 » (l/a)J+2(log I/a)-,
K K

/

for 0 < m < K/a, where the implied constants depend only on K and the sequence u.

PROOF. We prove the first inequality and note that the proof of the remaining two
inequalities follow a similar line of reasoning. Using (2.6) and noting that m < K/a
and (1 + e""'-)-1 > Q-""' /2 gives

Ai= r i
m <Uj <n K/a <Uj <n

By Lemma 12 (ii) with k = 3/2 and r = \K/a~\, this is,

» (K/a)s+](log K/a)-' c-a{Kla)

/
AT

where the implied constant depends only on K and the sequence u. •

With the following lemma, we are well on the way to obtaining explicit estimates
of the quantities A2 and p3.

LEMMA 15. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H and let s and t be as in Hypothesis H. Let m and n be integers such
that 0 < m < n/2 and let a be as in (2.12). Let Ax, A2 and p3 be defined as in (2.6),
(2.7), and (2.10). Let k be a real number in the interval (1,2). Then as n -*• oo,

" ' « T « 7 «
Ax A2 x

for (6 + 2s)/a < m < n/2, where the first and second implied constants are absolute
and the third implied constant depends only on k and the sequence u.

PROOF. For a positive integer k, let pk = £ m < u <n «*/(l + e""'). s o t n a t Pi is given
by (2.10) and from (2.6) and (2.7) we have

(8.7) pi = A,, p2 /2 < A2 < p2.
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We now show that

(8.8) m < ^<^« m e
< j m a - | ) ,

P\ Pi A

where the implied constant depends only on X and the sequence u. In view of (8.7) it
is sufficient to show (8.8) in order to prove the lemma.

Firstly,

x—v mil; v—* « ,

(8.9) mpi = Y '— < Y - '-— = 02.
^^ l+eau) —̂' l+e a "

Secondly, by applying the Cauchy-Schwarz inequality to the sum p2 and writing
u2j = ulj/2u3j/2 it is easily seen that

(8.10) p\ < p,p3.

Finally, to show the third inequality in (8.8) we appeal to Corollary 13 (ii) to give as
n -*• o o ,

Pi A2 k

for (6 + 2s)/a <m and this completes the proof of the lemma. •

The following lemma provides an estimate of the quantity eCTm which in tandem
with Lemma 15 is of use in the estimation of the cumulant A2 and the quantity p3.

LEMMA 16. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H and let s and t be as in Hypothesis H. Let m and n be integers such
that 0 < m < n/2 and let a be as in (2.12). Let A\, A2 and p3 be defined as in (2.6),
(2.7), and (2.10) respectively. Let k be a real number in the interval (1,2). Then as

n —> oo ,

/ml+s(logm) ' \ '

n

for (6 + 2s)/o~ < m < n/2, where the implied constants depend only on X and the
sequence u.

PROOF. Corollary 13 (ii) gives us that as n —• oo for m > (6 + 2s)/a,

By our choice of a in (2.12) we have A\ = n and so we have immediately that

ml + I ( logm)- 'e-°m X « n « ml+s{\ogmY'eT°m .

Rearranging the inequalities give the result. •
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Finally, we present the following explicit estimates of the quantities A2 and p3

which combine to cover all m in the range 0 < m < n/2.

LEMMA 17. Let u be a strictly increasing sequence of positive integers satisfying
Hypothesis H and let s and t be as in Hypothesis H. Let m and n be integers such
that 0 < m < n/2 and let a be as in (2.12). Let Ab A2 and p3 be defined as in (2.6),
(2.7), and (2.10). Let X be a real number in the interval (1, 2).

(i) Let K > 1 be a constant. For 0 < m < K/a, we have that as n —> oo,

a'1 x (n(\ogn)')l/(s+l\ A2 x n<s+2m+s)(\ogn)'/(l+s),
K K

where the implied constants depend only on K and u.
(ii) For (6 + 2s)/o <m< n/2, as n —• oo, we have

—mn < A 2 <5C m * n , p 3 <§C
2 A. A.

where the implied constants depend only on u and X.

PROOF, (i) For 0 < m < K/o, we appeal to Corollary 13(i) and Lemma 14 to give

n = A, x (l/a)v+1(log I / a ) " ' , A2 x (l/a)v+2(log I /a )" ' ,
A A

p3x(l/ar+3(logl/a)-',
K

where the implied constants depend only on K and u. Using the fact that I /a —• oo
as n —> oo we can invert the expression for the magnitude of A | giving

from which we have

A2 x n (log ^) and p3 x /̂
/f A:

where the implied constants depend only on K and u.
(ii) Combining (2.12), (8.7) and (8.8) gives the inequalities

_ A £ . }_P2 [
Al~Ax A, > A l 2 p , >2mH-

Also Lemma 15 gives

A2 = A, — <$; nm e"""*"" and p3 = A( « n (mi
A| x A, A2 x
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Lemma 16 gives

m l + ! ( logm)- ' mi+s

e <5C <5C ,
n n

so that A2«n2">-ml+(1+I ) (X-1) and p 3 « : n3-2xrn2(1+(1+v)(X-|)), from which the result
follows. k •

9. Estimation of supplementary integral

We estimate the supplementary integral as given in (4.4).

LEMMA 18. Let k be a real number in the interval (1,2). Let u be a strictly
increasing sequence of positive integers satisfying Hypothesis H and Hypothesis K.
Let m and n be integers such that 0 < m < n/2 and let a be as in (2.12) and let
A\, A2 and p3 be defined as in (2.6), (2.7), and (2.10). Let a0 be some number in the
interval (0, 1/2) and let S = /{a:ao<|a|<1/2) <p(ct) e(-an) da, as in (4.4).

(i) Let K > 1 be a constant. There is a constant n0 > 0 depending only on u, k
and K and there is a constant R\ > 0 depending only on K, X and u such that for
n > n0, ifO < m < K/a, then \S\ < exp(-f l , m i n c e r " 2 , \)n°Q-vn»+V).

(ii) There is a constant n0 > 0 depending only on A. and u and there is a constant
R2 > 0 depending only on k and u such that for n > n0, if (6 + 2s)/a < m < n/2,
then \S\ < exp(-R2min(alm2, l)nkm2s-2ks-k).

PROOF. From the above expression for the supplementary integral 5 we have

|5 | < sup \<p(a)\.
{a:ao<l«l5l/2|

From Lemma 8 we have an estimate of the size of <p and hence an upper bound for |5 | .
This is the idea of the proof.

(i) Suppose 0 < m < K/a. Then, since n ~S> 1/CT by Lemma 6,
K

m<Uj<n K/a<Uj<XK/a K/a<uj<kK/a

We consider two cases. Firstly, if a0 < \ct\ < a/(2kK), then using a lower bound
on U(kK/a) — U(K/a) (similar to that provided in Lemma 3 for the case X = 2)
and Hypothesis H we obtain

K/<j<u,<kK/tT K/<7<u,<XK/(j
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Lemma 5 (i) gives \/o » /I'/U+O and hence, since 1 < A. < 2, the above expression
is » ao

2<T-V(2-^+l>.
Secondly, if a/ (2A. K) < |a| < 1 /2, then Hypothesis K gives

\\au.\\2 » (l/a)i(2-X) » „'»-»/<*+'>.
X K K

Kla<Uj<XK/n

Hence from Lemma 8 we have the result (i).
(ii) Suppose (6 + 2s)/a < m < n/2. Then

(9.1) ^ ;
m<Uj<n m<uj<Xm

From Lemma 16

r « 5 «

so that from (9.1)

(9.2)

We consider two cases. Firstly, if a0 < M < l/(2Am), then Hypothesis H and an
argument along the lines of the proof of Lemma 3 give

m<Uj<km m<uj <km

Secondly, if l/(2Xm) < \a\ < 1/2 then Hypothesis K gives

In the light of (9.2), Lemma 8 and the remarks at the commencement of this proof,
we have the result (ii). •

10. Proof of the main theorem

Preliminaries to commencement of the proof Let 8 > 0 be given such that
0 < 8 < 1 (as in (4.1)). In order to prove Theorem 2 we must show that

/ •1/2

/ ^(a)e(-
.7-1/2

•1/2 j
(10.1) / ( ) ( ) r f

7 1 / 2

04((/n/n)16'33)).
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For any a0 such that 0 < a0 < 1 /2 we have

/•1/2
/ <p(a) e(—an) da = M + S,

J-l/2

where, by Lemma 9

M = / cp(a) e(—an) da = (1 + £i(a0)) ,

where £i(a0) <SC Pi/A^2 + Q-2"2A2alt provided that the conditions (7.1)—(7.3) are
satisfied, and Lemma 18 gives different upper bounds on

" W.
<p(a) e(—an) da,

depending on whether or not (6 + 2s)/a < m < nl~s.
We divide the main work of the proof into two parts, Part 1 corresponding to the

case 1 < m < (6+2s)/o and Part 2 corresponding to the case (6+2s)/a < m < n[~s.

Parti The case 0 < m < (6 + 2s)/a.
For this case we shall show that for any X such that 1 < A. < 2 we have

(10.2) / (p(a)e(-an)da = ( ( / ( 2 2 ) ( 2 2 ) ) )

We therefore now consider k such that 1 < X < 2, with X fixed throughout this part
of the argument, and use this value of k in the various estimates.

In order to apply Lemma 9 we require that each of the conditions (7.1)—(7.3) hold.
Thus what requires checking is whether

(10.3) ( —— ) > 27r<*o > -7= and -^— > 2na0.
1/3

VlOp.J " " jA~i log 3

It suffices to choose a0 satisfying (10.3) and we can simplify the choice for a0 by
minimising the error terms Ex and E2 which are such that

(10.4) M= ,_ = ( l + £i(a0)) and S =

Lemma 9 gives

(10.5)
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Lemma 18 (i) gives

(10.6) \S\ < exp (-/?, min(a0
2or-2, i ^ 'O-w+U) ,

where R\ = Ri(k) depends only on A, and u. It is clear that making a0 as large as
possible will minimise E\ and E^.

Now from Lemma 17(i) (with the choice K = 6 + 2s)

(10.7) A2 x n ( 2

-v / ( 2 s + 2 )(logn)- ' / ( 2 l + 2 )(10.8) p3Mrxn- ' / ( 2 j + 2 ) ( logn)

where the implied constants depend only on u.
Thus

1 / T \ 1/3

2 T T V 1 0 P 3 /

(10.9) cr/(27rlog3)»«- | / ( l+v )aogn)-' / ( l+v ) and

Hence there is a positive constant K4 (depending only on u) such that the choice

(10.10) a0 = ^4«

for a0 is consistent with (10.9) and (10.3).
In the light of (10.8) and the above choice for a0 in (10.10) we have from (10.5) that

£i(a0) « n-
s/a*+2)(\ogn)-'/as+2). Using the lower bound for a"1 from Lemma 17(i)

and the choice for a0 in (10.10) we have from (10.4), (10.6) and the the fact that
2 - A > 0, we obtain £2(«o) «:«" ' « «"v/(2v+2)(log«)-'/(2v+2), and the conclusion
(10.2) follows. k

Part 2 This is the case where n'~s >m>(6 + 2s)/a.
For this case we shall show that for any A. such that 1 < A. < 1 + <5/33 we have

(10.11) / <p(a) e(-an) da = / _ _ (l + Ok ( (m/«) l 6 / 3 3 ) ) .
J-\/2 yjlnAj

(The reason for the upper bound 1 + <5/33 will become clear later in the argument).
We therefore take A. such that 1 < A. < 1 + 5/33, fixed throughout this part of the
argument, and we note that this implies

(10.12) <5>33(A.-1).
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As in Part 1, in order to apply Lemma 9 we require that each of the conditions
(7.1M7.3) hold. Automatically condition (7.3) holds. All that remains to be checked
is whether

/ 3 \ l / 3 1
(10.13) T T M >2naQ>

\1OP3/

Thus it suffices to choose «o satisfying (10.13). It is clear from the bound for Et \
in Lemma 9 and the bound for | 5 | in Lemma 18 (ii) that making a0 as large as possible
will minimise E\ and E2 from (10.4).

From Lemma 17 (ii) we obtain

1 / 3 \ ' / 3

___ ( 1 N^ rl,-2M+(X-l><l+.v))/3,,-7/3+2X

In \10p3
and

Hence there is a constant K5 > 0 depending only on k and u such that the choice
for a0, namely

(10.14) ao = K5m-2{l+a-m+>Min~7/w\

is consistent with (10.13). It follows from the bound on Pi/A^2 in Lemma 17 (ii) and
the choice for a0 in (10.14) that the bound for E\ (a0) in Lemma 9 becomes

(10.15)
l l X l / 2 i

^ (

Since the exponent in the exponential function exp above is

"

we have
/ J j ( l + ( l + . v ) ( X - l ) ) / 2

«
x n

A/2

Also using (10.4) and the bound for S in Lemma 18 (ii) and then substituting (10.14)
we obtain
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for some positive constant R4 depending only on k and u. Because

B«/3-32»-l)/3 for

having S > 33 (k — 1) ensures that

- 1

and hence that

We can simplify the bound on the error terms Ex and E2 by writing

wl/2+(l+.v)U-l)/2 1 6 / 3 3 ml/66+(l+.I)U-D/2

^X/2 " " \~^) X
 Ml/66+U-l)/2

Using the condition m < n' ~s and that ^ < 1, it can be checked that

m
<

nl/66+a-l)/2 '

and this last expression will be less than unity provided that the exponent of n is
negative. It is sufficient that (10.12) be satisfied. Thus the bounds on the error terms
Ei and E2 are Os((m/n)[(>/i3) as required in (10.11).

Completion of the proof If 0 < m < (6 + 2s)/a, we use a particular k in Part 1,
say k = 3/2, giving

/ •1/2 i

/ (p(a)c(-an)da =
-i/2 s/2nA22nA2

where the implied constants are absolute. We note that in the proof of Lemma 14 the
choice A. = 3/2 was made, but could equally have been any other specified k.

If m > (6 + 2s)/a, we take k - 1 + 5/33 in Part 2, giving

/•1/2 j

/ <p(a) e(-an) da = (1 + O,((m/«)16/33)).
.7-1/2 *J2nA2

•1/2 j

() () d
7-1/2

Thus in all cases we obtain (10.1), as required. This completes the proof of the
main theorem of this paper. •
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11. Discussion

Modifications of main theorem We can modify the main theorem to accomodate
'small' m more precisely. We note that for m = o(nl / (1+s )(logn)' / (1+ i )) w e have by
Lemma 17 (i) thatm < (6 + 2s)/cr. Hence Part 1 of the proof of Theorem 2 is relevant
and we have as a corollary of Theorem 2 the following theorem.

THEOREM 19. Let u be a strictly increasing sequence of positive integers satisfying
Hypotheses H and K. Let qu(m,n) be as above and let a and A2 be as in be as in
(2.12) and (2.7). Then as n -*• oo,

qu(m, n) =

As an application, this theorem can be used for more refined results on qu(m,n).
When u = (jk) an asymptotic estimate explicit in m and n can be obtained. This will
be done in a subsequent paper. Applications of this theorem extend to the sequence
of prime numbers as well as a wide range of uniformly distributed sequences and
polynomial sequences.

Hypotheses on sequence The hypotheses of Roth and Szekeres are sufficient to
prove a theorem like Theorem 2 certainly when m = 0 and without much modi-
fication, when m is not 'too large'. However, it appeared difficult to provide an
estimate of qu(m,n) for m 'large' under Hypotheses (RSI) and (RS2) of Roth and
Szekeres because the asymptotic estimation of the cumulants when m is 'large' re-
quired a knowledge of the behaviour of Uj more detailed than that deducible from
Hypothesis (RS1). This was the reason for the tightening of (RS1).

Although not pursued in this paper, there is the possibility of weakening Hypothe-
ses H and K by introducing the concept of regularly varying functions. The function
Co*5 (log*)"' is regularly varying and this suggests that it may be possible replace
Hypothesis H by the condition that U(x) is regularly varying.
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