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The Metric Dimension of Circulant Graphs

Tomáš Vetrík

Abstract. A subset W of the vertex set of a graph G is called a resolving set of G if for every pair
of distinct vertices u, v of G, there is w ∈ W such that the distance of w and u is diòerent from
the distance of w and v. _e cardinality of a smallest resolving set is called the metric dimension of
G, denoted by dim(G). _e circulant graph Cn(1, 2, . . . , t) consists of the vertices v0 , v1 , . . . , vn−1
and the edges v iv i+ j , where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ t (2 ≤ t ≤ ⌊

n
2 ⌋), the indices are taken modulo

n. Grigorious, Manuel, Miller, Rajan, and Stephen proved that dim(Cn(1, 2, . . . , t)) ≥ t + 1 for
t < ⌊

n
2 ⌋, n ≥ 3, and they presented a conjecture saying that dim(Cn(1, 2, . . . , t)) = t + p − 1 for

n = 2tk + t + p, where 3 ≤ p ≤ t + 1. We disprove both statements. We show that if t ≥ 4 is even,
there exists an inûnite set of values of n such that dim(Cn(1, 2, . . . , t)) = t. We also prove that
dim(Cn(1, 2, . . . , t)) ≤ t + p

2 for n = 2tk + t + p, where t and p are even, t ≥ 4, 2 ≤ p ≤ t, and k ≥ 1.

1 Introduction

_e concept ofmetric dimensionwas introduced by Slater [11],who referred to amet-
ric dimension of a graph as its location number and motivated the study of this in-
variant by its application to the placement of aminimum number of loran/sonar de-
tecting devices in a network so that the position of every vertex in the network can be
uniquely represented in terms of its distances to the devices in the set. Applications of
the study ofmetric dimension to the problem of pattern recognition and image pro-
cessing are given in [9]. We study the metric dimension of circulant graphs, which
are Cayley graphs of cyclic groups.

Let G be a connected graph with vertex set V(G). _e distance d(u, v) between
two vertices u, v ∈ V(G) is the number of edges in a shortest path between them.
A vertex w resolves a pair of vertices u, v if d(u,w) /= d(v ,w). For an ordered set
of vertices W = {w1 ,w2 , . . . ,wz}, the representation of distances of a vertex v with
respect to W is the ordered z-tuple

r(v ∣W) = (d(v ,w1), d(v ,w2), . . . , d(v ,wz)) .

A set of vertices W ⊂ V(G) is a resolving set of G if every two vertices of G have
distinct representations (if every pair of vertices of G is resolved by some vertex of
W). _e cardinality of a smallest resolving set is called themetric dimension, and it is
denoted by dim(G). Note that the i-th coordinate in r(v∣W) is 0 if and only if v = w i .
_is means that in order to show that W is a resolving set of G, it suõces to verify
r(u ∣W) /= r(v ∣W) for every pair of distinct vertices u, v ∈ V(G) ∖W .
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_eMetric Dimension of Circulant Graphs 207

_e metric dimension of various classes of graphs has been investigated for four
decades. For example, the metric dimension of regular graphs was studied in [12];
products of graphs were considered in [6],metricmanifolds in [3], the strong metric
dimension in [8], and the fractional metric dimension in [13].

We deûne a circulant graph. Let n,m and a1 , a2 , . . . , am be positive integers such
that 1 ≤ a1 < a2 < ⋅ ⋅ ⋅ < am ≤ ⌊ n

2 ⌋. _e circulant graph Cn(a1 , a2 , . . . , am) consists of
vertices v0 , v1 , . . . , vn−1 and edges v iv i+a j , where 0 ≤ i ≤ n − 1, 1 ≤ j ≤ m; the indices
are taken modulo n. _e numbers a1 , a2 , . . . , am are called generators. _e graph
Cn(a1 , a2 , . . . , am) is a regular graph either of degree 2m if all generators are smaller
than n

2 , or of degree 2m − 1 if n
2 is one of the generators. Vertices with consecutive

indices are called consecutive vertices. _e distance between two vertices v i and v j in
Cn(1, 2, . . . , t), where 0 ≤ i < j < n, is

(1.1) d(v i , v j) = min{⌈ j − i
t

⌉ , ⌈ n − ( j − i)
t

⌉} .

_is equation can be simpliûed as

d(v i , v j) = ⌈ j − i
t

⌉ if 0 ≤ j − i ≤ n
2
,(1.2)

d(v i , v j) = ⌈ n − ( j − i)
t

⌉ if
n
2
< j − i < n.(1.3)

_e metric dimension of circulant graphs has been extensively studied. Javaid,
Rahim, and Ali [7] showed that dim(Cn(1, 2)) = 3 if n ≡ 0, 2, 3 (mod 4). Im-
ran et al. [4] showed that dim(Cn(1, 2, 3)) = 4 if n ≡ 2, 3, 4, 5 (mod 6), n ≥ 14.
Borchert and Gosselin [1] found the values of dim(Cn(1, 2)) and dim(Cn(1, 2, 3))
for any n. _ey proved that dim(Cn(1, 2)) = 4 if n ≡ 1 (mod 4), and for n ≥ 8we have
dim(Cn(1, 2, 3)) = 5 if n ≡ 1 (mod 6) and dim(Cn(1, 2, 3)) = 4 otherwise. _emetric
dimension of the circulant graphs Cn(1, 3)was studied in [5] and the circulant graphs
Cn(1, n

2 ) for even n were considered in [10].
Grigorious et al. [2] showed that dim(Cn(1, 2, . . . , t)) ≤ t + 1 if n ≡ r (mod 2t),

where 2 ≤ r ≤ t + 2 (the graph is resolved by the vertices v0 , v1 , . . . , vt) and
dim(Cn(1, 2, . . . , t)) ≤ r − 1 if n ≡ r (mod 2t), where r ∈ {t + 3, t + 4, . . . , 2t + 1}.

2 Results

We study upper and lower bounds on the metric dimensions of the circulant graphs
Cn(1, 2, . . . , t). _eorem 2.8 of Grigorious et al. [2] says that if n ≥ 3, then
dim(Cn(1, 2, . . . , t)) ≥ t+1. However, the proof of this theorem is not correct. _e au-
thors tried to show by contradiction that there is no resolving setW of Cn(1, 2, . . . , t)
consisting of t vertices. _ey considered three cases.
Case 1: W consists of t consecutive vertices.
Case 2: W consists of two sets of consecutive vertices.
Case 3: W consists of a set of consecutive vertices W1 and all the other vertices of

W belong to a set of (at most) t consecutive vertices. (Note that NL
r−1(W1)∪

NL
r (W1)′ used in their Case 3.3 is a set of t vertices.)
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208 T. Vetrík

_ese three cases cover only a small part of possible choices of t vertices (of W)
from the set V(Cn(1, 2, . . . , t)), thus the proof is incomplete.
An easy example that contradicts [2,_eorem 2.8] is the graph C20(1, 2, 3, 4). _is

graph is resolved by the set W = {v0 , v2 , v8 , v10}, hence dim(C20(1, 2, 3, 4)) ≤ 4.
Let us prove that if t ≥ 4 is even, then there exists an inûnite set of values of n with

n ≡ t (mod 2t), such that dim(Cn(1, 2, . . . , t)) ≤ t.

_eorem 2.1 Let n = 2tk + t where t ≥ 4 is even and k ≥ 2. _en
dim(Cn(1, 2, . . . , t)) ≤ t.

Proof Let n = 2tk+ t, where t ≥ 4 is even and k ≥ 2. LetW1 = {v0 , v2 , . . . , vt−2} and
W2 = {vtk , vtk+2 , . . . , vtk+t−2}. Note that ∣W1∣ = ∣W2∣ = t

2 . We show thatW =W1 ∪W2
is a resolving set of Cn(1, 2, . . . , t). Let us divide the vertex set of Cn(1, 2, . . . , t)
into three disjoint sets: V1 = {v0, v1 , . . . , vt}, V2 = {vt+1, vt+2 , . . . , vtk+t−1}, V3 =
{vtk+t , vtk+t+1 , . . . , vn−1}.
Firstwe show that no two vertices inV2 have the same representations of distances

with respect to W . For x = 1, 2, . . . , k − 1; j = 1, 2, . . . , t; i = 0, 2, . . . , t − 2, we have
v i ∈W1, and by (1.2),

d(vtx+ j , v i) = x + ⌈ j − i
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

x + 1 if i < j,
x if i ≥ j,

and if x = k and j = 1, 2, . . . , t − 1, by (1.1) we obtain

d(vtk+ j , v i) = min{⌈ (tk + j) − i
t

⌉ , ⌈ n − [(tk + j) − i]
t

⌉}

= min{ k + ⌈ j − i
t

⌉ , k + 1 + ⌈ i − j
t

⌉} =
⎧⎪⎪⎨⎪⎪⎩

k + 1 if i < j,
k if i ≥ j.

Since j (where 1 ≤ j ≤ t) is greater than ⌈ j
2 ⌉ elements from the set {0, 2, . . . , t − 2},

the ûrst ⌈ j
2 ⌉ entries of r(vtx+ j ∣W1) for x = 1, 2, . . . , k are x + 1 and the other t

2 − ⌈ j
2 ⌉

entries are equal to x; r(vtx+ j ∣W1) = (x+1, . . . , x+1, x , . . . , x). _e only verticeswith
the same representations of distanceswith respect toW1 are the pairs (vtx+ j−1 , vtx+ j),
where j = 2, 4, . . . , t (if x = k, then j = 2, 4, . . . , t − 2, because vtk+t ∉ V2). But since
for x = 1, 2, . . . , k and j = 2, 4, . . . , t − 2, we have vtk+ j ∈W2 and by (1.2),

d(vtx+ j−1 , vtk+ j) = ⌈ tk − tx + 1
t

⌉ = k − x + 1, d(vtx+ j , vtk+ j) = k − x

and if j = t and x = 1, 2, . . . , k − 1, then by (1.2) for vtk ∈ W2, d(vtx+t−1 , vtk) = k − x,
d(vtx+t , vtk) = k − x − 1, vertices of W2 resolve the pairs (vtx+ j−1 , vtx+ j) for x =
1, 2, . . . , k and j = 2, 4, . . . , t ( j ≤ t − 2 if x = k). _us, any two vertices of V2 have
diòerent representations of distances with respect to W .

We consider representations of distances of the vertices inV3. For x = 1, 2, . . . , k−1;
j = 0, 1, . . . , t − 1; i = 0, 2, . . . , t − 2, we have v i ∈W1 and by (1.3),

d(vn−tx+ j , v i) = ⌈ n − [(n − tx + j) − i]
t

⌉ = x + ⌈ i − j
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

x if i ≤ j,
x + 1 if i > j,
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and if x = k, by (1.1) we obtain

d(vtk+t+ j , v i) = min{⌈ (tk + t + j) − i
t

⌉ , ⌈ n − [(tk + t + j) − i]
t

⌉}

= min{ k + 1 + ⌈ j − i
t

⌉ , k + ⌈ i − j
t

⌉} =
⎧⎪⎪⎨⎪⎪⎩

k if i ≤ j,
k + 1 if i > j.

Since j (where 0 ≤ j ≤ t − 1) is greater than or equal to ⌊ j
2 ⌋ + 1 elements from the set

{0, 2, . . . , t−2}, the ûrst ⌊ j
2 ⌋+1 entries of r(vn−tx+ j ∣W1) (for x = 1, 2, . . . , k) are x and

the other entries are equal to x + 1. _e only vertices with the same representations of
distanceswith respect toW1 are the pairs (vn−tx+ j , vn−tx+ j+1),where j = 0, 2, . . . , t−2.
Since for vtk+ j ∈W2, by (1.2),

d(vn−tx+ j , vtk+ j) = ⌈ n − tx + j − (tk + j)
t

⌉ = k − x + 1,

d(vn−tx+ j+1 , vtk+ j) = k − x + 1 + ⌈ 1
t
⌉ = k − x + 2,

vertices ofW2 resolve the pairs (vn−tx+ j , vn−tx+ j+1). _us, any two vertices of V3 are
resolved byW .

Note that a vertex v ∈ V2 and a vertex in V3 can have the same representation of
distances with respect to W1 only if all entries of r(v ∣W1) are the same numbers. For
x = 1, 2, . . . , k − 1, we have vtx+t−1 , vtx+t ∈ V2 and r(vtx+t−1 ∣W1) = r(vtx+t ∣W1) =
(x + 1, . . . , x + 1), and for vtk+t−1 ∈ V2, we have r(vtk+t−1 ∣W1) = (k + 1, . . . , k + 1).
For x = 1, 2, . . . , k, we have vn−tx+t−2 , vn−tx+t−1 ∈ V3 and r(vn−tx+t−2 ∣W1) =
r(vn−tx+t−1 ∣W1) = (x , . . . , x), which implies that for x = 1, 2, . . . , k − 1, we have

r(vtx+t−1 ∣W1) = r(vtx+t ∣W1) = r(vn−tx−2 ∣W1) = r(vn−tx−1 ∣W1).

Since for vtk ∈W2, by (1.2),

d(vtx+t−1 , vtk) = ⌈ tk − (tx + t − 1)
t

⌉ = k − x , d(vtx+t , vtk) = k − x − 1,

d(vn−tx−2 , vtk) = ⌈ (n − tx − 2) − tk
t

⌉ = k − x + 1, d(vn−tx−1 , vtk) = k − x + 1,

the vertices vtx+t−1 , vtx+t ∈ V2 are of distance at most k − x from vtk and the vertices
vn−tx+t−2 , vn−tx+t−1 ∈ V3 are of distance k− x + 1 from vtk ∈W2. _erefore, any vertex
in V2 and any vertex in V3 have diòerent representations of distances with respect to
W .

Let us study the vertices in V1. For j = 1, 2, . . . , t and i = 0, 2, . . . , t − 2, where
i /= j, we have v i ∈ W1 and d(v j , v i) = ⌈ ∣ j−i∣

t ⌉ = 1. _us, r(v j ∣W1) = (1, . . . , 1) for
v j ∈ V1 ∖W1. From the previous part of this proof it follows that the only vertices in
V2 ∪V3 with the representation of distances with respect to W1 equal to (1, . . . , 1) are
vn−2 and vn−1. For j = 1, 3, . . . , t − 1 and i = 0, 2, . . . , t − 2, we have vtk+i ∈W2, and by
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(1.1),

d(v j , vtk+i) = min{⌈ (tk + i) − j
t

⌉ , ⌈ n − [(tk + i) − j]
t

⌉}

= min{ k + ⌈ i − j
t

⌉ , k + 1 + ⌈ j − i
t

⌉} =
⎧⎪⎪⎨⎪⎪⎩

k if i < j,
k + 1 if i > j.

Since j is greater than j+1
2 elements from the set {0, 2, . . . , t − 2}, the ûrst j+1

2 entries
of r(v j ∣W2) are k and the other entries are equal to k+ 1. _is means that the vertices
v1 , v3 , . . . , vt−1 have diòerent representations of distances with respect to W2. Since
for vtk ∈ W2, we have d(vt , vtk) = k − 1, d(vn−2 , vtk) = d(vn−1 , vtk) = k + 1 and for
j = 1, 3, . . . , t − 1, we have d(v j , vtk) = k, all vertices of Cn(1, 2, . . . , t) are resolved by
W . Hence, dim(Cn(1, 2, . . . , t)) ≤ ∣W ∣ = t.

In [2] the authors proposed a conjecture saying that dim(Cn(1, 2, . . . , t)) = t+p−1
for n = 2tk + t + p, where 3 ≤ p ≤ t + 1. We disprove this conjecture if t and p are
even. Let us present a new upper bound on the metric dimension of Cn(1, 2, . . . , t)
for n ≡ r (mod 2t), where r = 0 and r = t + 2, t + 4, . . . , 2t − 2.

_eorem 2.2 Let n = 2tk + t + p where t and p are even, t ≥ 4, 2 ≤ p ≤ t, and k ≥ 1.
_en

dim(Cn(1, 2, . . . , t)) ≤ t + p
2
.

Proof Let n = 2tk + t + p where k ≥ 1, t ≥ 4 is even and p = 2, 4, . . . , t. Let
W1 = {v0 , v2 , . . . , vt−2}, W2 = {vt−1 , vt+1 , . . . , vt+p−3},
W3 = {vtk+p−2 , vtk+p , . . . , vtk+p+t−4}.

Note that ∣W1∣ = ∣W3∣ = t
2 and ∣W2∣ = p

2 . We show that W = W1 ∪ W2 ∪ W3 is a
resolving set of Cn(1, 2, . . . , t).

Let us divide the vertex set of Cn(1, 2, . . . , t) into four disjoint sets:

V1 = {v0 , v1 , . . . , vt}, V2 = {vt+1 , vt+2 , . . . , vtk+t},
V3 = {vtk+t+1 , vtk+t+2 , . . . , vtk+t+p−1}, V4 = {vtk+t+p , vtk+t+p+1 , . . . , vn−1}.
First we show that no two vertices in V2 have the same representation of distances

with respect to W . For x = 1, 2, . . . , k − 1; j = 1, 2, . . . , t; i = 0, 2, . . . , t − 2, we have
v i ∈W1, and by (1.2),

d(vtx+ j , v i) = x + ⌈ j − i
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

x + 1 if i < j,
x if i ≥ j,

and if x = k; j = 1, 2, . . . , t, by (1.1), we obtain

d(vtk+ j , v i) = min{⌈ (tk + j) − i
t

⌉ , ⌈ n − [(tk + j) − i]
t

⌉}

= min{ k + ⌈ j − i
t

⌉ , k + 1 + ⌈ p + i − j
t

⌉} =
⎧⎪⎪⎨⎪⎪⎩

k + 1 if i < j,
k if i ≥ j.
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Since j (where 1 ≤ j ≤ t) is greater than ⌈ j
2 ⌉ elements from the set {0, 2, . . . , t − 2},

the ûrst ⌈ j
2 ⌉ entries of r(vtx+ j ∣W1) for x = 1, 2, . . . , k are x + 1 and the other t

2 − ⌈ j
2 ⌉

entries are equal to x; r(vtx+ j ∣W1) = (x + 1, . . . , x + 1, x , . . . , x). _us, the only ver-
tices in V2 with the same representations of distances with respect toW1 are the pairs
(vt+1 , vt+2), (vt+3 , vt+4), . . . , (vtk+t−1 , vtk+t). Let us show that most of these pairs are
resolved by vertices in W3.

Since for x = 0, 1, . . . , k and j = 0, 2, . . . , t − 2, we have vtk+p+ j−2 ∈W3 and by (1.2),
d(vtx+p+ j−2 , vtk+p+ j−2) = k − x and d(vtx+p+ j−3 , vtk+p+ j−2) = k − x + ⌈ 1

t ⌉ = k − x + 1,
vertices in W3 resolve the pairs (vp−3 , vp−2), (vp−1 , vp), . . . , (vtk+p+t−5, vtk+p+t−4).
Note that

{(vt+1 , vt+2), (vt+3 , vt+4), . . . , (vtk+t−3 , vtk+t−2)}
⊂ {(vp−3 , vp−2), (vp−1 , vp), . . . , (vtk+p+t−5 , vtk+p+t−4)} ,

which implies that all pairs of vertices in V2 except for the pair (vtk+t−1 , vtk+t) are
resolved. Since vt−1 ∈W2 resolves the pair (vtk+t−1 , vtk+t), any two vertices ofV2 have
diòerent representations of distances with respect to W .

We consider representations of distances of the vertices inV4. For x = 1, 2, . . . , k−1;
j = 0, 1, . . . , t − 1; i = 0, 2, . . . , t − 2; we have v i ∈W1, and by (1.3),

d(vn−tx+ j , v i) = ⌈ n − [(n − tx + j) − i]
t

⌉ = x + ⌈ i − j
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

x if i ≤ j,
x + 1 if i > j,

and if x = k, we obtain

d(vn−tk+ j , v i) = min{⌈ (n − tk + j) − i
t

⌉ , ⌈ n − [(n − tk + j) − i]
t

⌉}

= min{ k + 1 + ⌈ p + j − i
t

⌉ , k + ⌈ i − j
t

⌉} =
⎧⎪⎪⎨⎪⎪⎩

k if i ≤ j,
k + 1 if i > j.

Since j (where 0 ≤ j ≤ t − 1) is greater than or equal to ⌊ j
2 ⌋ + 1 elements from the set

{0, 2, . . . , t−2}, the ûrst ⌊ j
2 ⌋+1 entries of r(vn−tx+ j ∣W1) (for x = 1, 2, . . . , k) are x and

the other entries are equal to x + 1. _e only vertices with the same representations of
distances with respect to W1 are the pairs

(vtk+t+p , vtk+t+p+1), (vtk+t+p+2 , vtk+t+p+3), . . . , (vn−2 , vn−1).
But since for x = 1, 2, . . . , k and j = 0, 2, . . . , t − 2, we have vtk+p+ j−2 ∈ W3, and by
(1.2),

d(vn−tx+ j−2 , vtk+p+ j−2) = k − x + 1,

d(vn−tx+ j−1 , vtk+p+ j−2) = k − x + 1 + ⌈ 1
t
⌉ = k − x + 2,

vertices of W3 resolve all pairs except for the pair (vn−2 , vn−1), which is resolved by
vt−1 ∈W2. _us, any pair of vertices in V4 is resolved byW .

Note that a vertex v ∈ V2 and a vertex in V4 can have the same representation
of distances with respect to W1 only if all entries of r(v ∣W1) are the same numbers.
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For x = 1, 2, . . . , k, we have vtx+t−1 , vtx+t ∈ V2 and r(vtx+t−1 ∣W1) = r(vtx+t ∣W1) =
(x + 1, . . . , x + 1). For vn−tx+t−2 , vn−tx+t−1 ∈ V4, we have

r(vn−tx+t−2 ∣W1) = r(vn−tx+t−1 ∣W1) = (x , . . . , x),
which implies that for x = 1, 2, . . . , k − 1, we have r(vtx+t−1 ∣W1) = r(vtx+t ∣W1) =
r(vn−tx−2 ∣W1) = r(vn−tx−1 ∣W1). For vtk+p−2 ∈W3, by (1.2),

d(vtx+t−1 , vtk+p−2) = k − x − 1 + ⌈ p − 1
t

⌉ = k − x ,

d(vtx+t , vtk+p−2) = k − x − 1 + ⌈ p − 2
t

⌉ ≤ k − x ,

d(vn−tx−2 , vtk+p−2) = k − x + 1,

d(vn−tx−1 , vtk+p−2) = k − x + 1 + ⌈ 1
t
⌉ = k − x + 2,

so the vertices vtx+t−1 , vtx+t ∈ V2 are of distance at most k − x from vtk+p−2, and the
vertices vn−tx−2 , vn−tx−1 ∈ V4 are of distance at least k − x + 1 from vtk+p−2 ∈ W3.
_erefore, any vertex in V2 and any vertex in V4 have diòerent representations of
distances with respect to W .

We consider representations of distances of the vertices inV3. For j = 1, 2, . . . , p−1
and i = 0, 2, . . . , t − 2, we have v i ∈W1, and by (1.1),

d(vtk+t+ j , v i) = min{ k + 1 + ⌈ j − i
t

⌉ , k + ⌈ p + i − j
t

⌉} = k + 1;

thus, r(vtk+t+ j ∣W1) = (k + 1, . . . , k + 1). _e only vertices in V2 ∪ V4 with the same
representations with respect to W1 are vtk+t−1 and vtk+t .

We show that any two vertices inV3∪{vtk+t−1 , vtk+t} have diòerent representation
of distances with respect to W . It suõces to consider the vertices in

V ′ = (V3 ∪ {vtk+t−1 , vtk+t}) ∖W3

= {vtk+t−1 , vtk+t+1 , . . . , vtk+t+p−3} ∪ {vtk+t+p−2 , vtk+t+p−1}.
For j = −1, 1, . . . , p − 1 and i = −1, 1, . . . , p − 3, we have vt+i ∈W2 and

d(vtk+t+ j , vt+i) = k + ⌈ j − i
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

k if i ≥ j,
k + 1 if i < j.

Since j is greater than j+1
2 elements from the set {−1, 1, . . . , p − 3}, the ûrst j+1

2 en-
tries of r(vtk+t+ j ∣W2) are k + 1 and the other p

2 −
j+1
2 entries are equal to k. For

i = −1, 1, . . . , p − 3,

d(vtk+t+p−2 , vt+i) = k + ⌈ p − i − 2
t

⌉ = k + 1;

thus, r(vtk+t+p−2 ∣W2) = (k + 1, . . . , k + 1). _e only pair of vertices in V ′ having
the same representationswith respect toW2 is (vtk+t+p−2, vtk+t+p−1),which is resolved
by vtk+p−2 ∈W3, since

d(vtk+t+p−2 , vtk+p−2) = 1 and d(vtk+t+p−1 , vtk+p−2) = 1 + ⌈ 1
t
⌉ = 2.
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Let us study the vertices in V1. For j = 1, 3, . . . , t − 1 and t; i = 0, 2, . . . , t − 2, we
have v i ∈ W1 and d(v j , v i) = ⌈ ∣ j−i∣

t ⌉ = 1, thus r(v j ∣W1) = (1, . . . , 1) for v j ∈ V1 ∖W1.
From the previous part of the proof it follows that the only vertices in V2 ∪ V3 ∪ V4
with the representation of distances with respect to W1 equal to (1, . . . , 1) are vn−2
and vn−1. So it remains to resolve the vertices v1 , v3 , . . . , vt−1; vt , vn−2 , vn−1. First we
give representations of v1 , v3 , . . . , vp−3 and vn−2 , vn−1 with respect toW3; thenwe give
representations of vp−1 , vp+1 , . . . , vt−3 with respect to W3, and then we consider the
vertex vt .

We show that for j = 1, 3, . . . , p − 3 and j = n − 2, n − 1, we have r(v j ∣W3) =
(k + 1, . . . , k + 1). For j = 1, 3, . . . , p− 3 and i = 0, 2, . . . , t − 2, we have vtk+p+i−2 ∈W3,
and by (1.1),

d(v j , vtk+p+i−2) = min{ k + ⌈ p + i − j − 2
t

⌉ , k + 1 + ⌈ j + 2 − i
t

⌉} = k + 1,

d(vn−1 , vtk+p+i−2) = min{ k + 1 + ⌈ 1 − i
t

⌉ , k + ⌈ p + i − 1
t

⌉} = k + 1,

d(vn−2 , vtk+p+i−2) = min{ k + 1 + ⌈ −i
t
⌉ , k + ⌈ p + i

t
⌉} = k + 1,

which means that r(v j ∣W3) = r(vn−1 ∣W3) = r(vn−2 ∣W3) = (k + 1, . . . , k + 1).
We give representations of vp−1 , vp+1 , . . . , vt−3 with respect to W3. For j =

1, 3, . . . , t − 1 − p and i = 0, 2, . . . , t − 2, we have vtk+p+i−2 ∈W3 and

d(vp+ j−2 , vtk+p+i−2) = k + ⌈ i − j
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

k if i < j,
k + 1 if i > j.

Since j is greater than j+1
2 elements from the set {0, 2, . . . , t − 2}, the ûrst j+1

2 entries
of r(v j ∣W3) are k and the other entries are equal to k + 1. Note that the ûrst entry of
r(v j ∣W3) is always k.

Let us show that vtk+t−2 ∈ W3 resolves vt from the other vertices in the set
{v1 , v3 , . . . , vt−1; vt , vn−2 , vn−1}. By (1.2), we have d(vt , vtk+t−2) = k + ⌈−2

t ⌉ = k
and d(v j , vtk+t−2) = k + 1 + ⌈− j−2

t ⌉ = k + 1 for j = p − 1, p + 1, . . . , t − 3, and
d(v j , vtk+t−2) = k + 1, also for j = 1, 3, . . . , p − 3 and j = n − 2, n − 1. It follows
that the vertices vp−1 , vp+1 , . . . , vt−3 and vt are resolved.

It remains to resolve the vertices v1, v3 , . . . , vp−3 and vn−2, vn−1; thus,we study their
representations with respect to W2. For j = 1, 3, . . . , p − 3 and i = −1, 1, . . . , p − 3, we
have vt+i ∈W2, and by (1.2),

d(v j , vt+i) = 1 + ⌈ i − j
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

1 if i ≤ j,
2 if i > j.

Since j is greater than or equal to j+3
2 elements from the set {−1, 1, . . . , p−3}, the ûrst

j+3
2 entries of r(v j ∣W2) are 1 and the other p

2 −
j+3
2 entries are equal to 2. Note that

the ûrst two entries of r(v j ∣W3) are always 1.
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For i = −1, 1, . . . , p − 3, by (1.3),

d(vn−1 , vt+i) = 1 + ⌈ i + 1
t

⌉ =
⎧⎪⎪⎨⎪⎪⎩

1 if i = −1,
2 if i ≥ 1.

_us, r(vn−1 ∣W2) = (1, 2, . . . , 2). We have d(vn−2 , vt+i) = 1 + ⌈ i+2
t ⌉ = 2, so

r(vn−2 ∣W2) = (2, . . . , 2).
No two vertices of Cn(1, 2, . . . , t) have the same representations of distances with

respect toW ; hence,W is a resolving set ofCn(1, 2, . . . , t) and dim(Cn(1, 2, . . . , t)) ≤
∣W ∣ = t + p

2 .

Now we focus on lower bounds on themetric dimension of circulant graphs. For
any vertex v j of Cn(1, 2, . . . , t), the vertex v j+⌊n/2⌋ will be called the opposite vertex
of v j . Clearly, for any t consecutive vertices v i , v i+1 , . . . , v i+t−1 ∈ V(Cn(1, 2, . . . , t)) ∖
{v j , v j+⌊n/2⌋}, we have

x = d(v j , v i) ≤ d(v j , v i+1) ≤ ⋅ ⋅ ⋅ ≤ d(v j , v i+t−1) ≤ x + 1(2.1)
or

x = d(v j , v i+t−1) ≤ d(v j , v i+t) ≤ ⋅ ⋅ ⋅ ≤ d(v j , v i) ≤ x + 1(2.2)

for some positive integer x. _ese inequalities will be used in the proofs of _eo-
rems 2.3 and 2.5.

_eorem 2.3 Let n ≥ t2 + 1 where t ≥ 2. _en
dim(Cn(1, 2, . . . , t)) ≥ t.

Proof We prove the result by contradiction. Suppose that dim(Cn(1, 2, . . . , t)) ≤
t−1. LetW ′ = {w0 ,w1 , . . . ,wt−2} be a resolving set of the graphCn(1, 2, . . . , t),where
the vertices w0 ,w1 , . . . ,wt−2 are not necessarily diòerent. Without loss of generality
we can assume that w0 = v0. For j = 1, 2, . . . , ⌊ t

2 ⌋, by (1.2),

d(v0 , v jt) = d(v0 , v jt−1) = ⋅ ⋅ ⋅ = d(v0 , v jt−(t−1)) = j,
and by (1.3) we have

d(v0 , vn− jt) = d(v0 , vn− jt+1) = ⋅ ⋅ ⋅ = d(v0 , vn− jt+(t−1)) = j.
Let Vj = {v jt−(t−1) , v jt−(t−2) , . . . , v jt} and V− j = {vn− jt , vn− jt+1 , . . . , vn− jt+(t−1)} for
j = 1, 2, . . . , ⌊ t

2 ⌋. Note that all vertices in Vj (in V− j) have the same distance from v0
and

⌊
t
2 ⌋

∑
j=1

∣Vj ∣ =
⌊
t
2 ⌋

∑
j=1

∣V− j ∣ = t⌊ t
2
⌋ =

⎧⎪⎪⎨⎪⎪⎩

t2
2 if t is even,
t(t−1)

2 if t is odd.

_us,∑⌊
t
2 ⌋

j=1 ∣Vj ∣+∑
⌊
t
2 ⌋

j=1 ∣V− j ∣ ≤ t2. Since n ≥ t2+1, the setsVj andV− j are disjoint. Since
we have 2⌊ t

2 ⌋ pairwise disjoint sets and 2⌊ t
2 ⌋ ≥ t − 1, there is at least one set V ′ = Vl ,

l ∈ {±1,±2, . . . ,±⌊ t
2 ⌋}, containing no opposite vertices of w1 ,w2 , . . . ,wt−2.

We show thatV ′ cannot be resolved byW ′. Let p be thenumberof verticesofW ′ in
V ′ (0 ≤ p ≤ t − 2). Without loss of generality we can assume thatw1 ,w2 , . . . ,wp ∈ V ′

and wp+1 ,wp+2 , . . . ,wt−2 ∉ V ′. Let va1 , va2 , . . . , va t−p be t − p diòerent vertices of
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V ′ ∖W ′, where a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ at−p . We know that d(vas ,wr) = 1 for any s =
1, 2, . . . , t − p and any r = 1, 2, . . . , p. _us, t − p − 1 pairs

(va1 , va2), (va2 , va3), . . . , (va t−p−1va t−p)

have the same representations of distanceswith respect to the verticesw0 ,w1 , . . . ,wp .
From (2.1) and (2.2) it follows that any of t − p − 2 vertices wp+1 ,wp+2 , . . . ,wt−2 can
resolve at most one pair (vas , vas+1), where s ∈ {1, 2, . . . , t − p − 1}, which implies that
there exists a pair (two vertices of V ′) that cannot be resolved by W ′. Hence, W ′ is
not a resolving set of Cn(1, 2, . . . , t), a contradiction.

From _eorems 2.1 and 2.3 we obtain the following corollary.

Corollary 2.4 Let n ≡ t (mod 2t), where n ≥ t2 + 1 and t ≥ 4 is even. _en

dim(Cn(1, 2, . . . , t)) = t.

Finally, we state a lower bound on Cn(1, 2, . . . , t) for n ≡ r (mod 2t), where r ∈
{0, 1} ∪ {t + 2, t + 3, . . . , 2t − 1}.

_eorem 2.5 Let n = 2tk + r where t ≥ 2, k ≥ 0 and t + 2 ≤ r ≤ 2t + 1. _en

dim(Cn(1, 2, . . . , t)) ≥ t + 1.

Proof Let n = 2tk + r where t ≥ 2, k ≥ 0 and t + 2 ≤ r ≤ 2t + 1. By _eorem
2.3, we have dim(Cn(1, 2, . . . , t)) ≥ t. We prove that dim(Cn(1, 2, . . . , t)) ≥ t + 1.
Suppose to the contrary that it is possible to resolve the graph Cn(1, 2, . . . , t) by t
vertices. Let W ′ = {w0 ,w1 , . . . ,wt−1} be a resolving set of Cn(1, 2, . . . , t). Without
loss of generality we can assume that w0 = v0. Let V ′ = {vtk+1, vtk+2 , . . . , vtk+t+1}.
Note that for j = 1, 2, . . . , t + 1,

d(v0 , vtk+ j) = min{⌈ tk + j
t

⌉ , ⌈ n − (tk + j)
t

⌉}

= min{ k + ⌈ j
t
⌉ , k + ⌈ r − j

t
⌉} = k + 1.

We show thatV ′ cannot be resolved byW ′. Let p be thenumberof verticesofW ′ in
V ′ (0 ≤ p ≤ t− 1). We can assume thatw1 ,w2 , . . . ,wp ∈ V ′ andwp+1 ,wp+2 , . . . ,wt−1 ∉
V ′. _e distance between any vertex in V ′ ∖W ′ and w i is 1 for i = 1, 2, . . . , p, thus
all vertices in V ′ ∖W ′ have the same representations of distances with respect to the
vertices w0 ,w1 , . . . ,wp . Let va1 , va2 , . . . , va t−p+1 be the vertices of V ′ ∖W ′, where a1 ≤
a2 ≤ ⋅ ⋅ ⋅ ≤ at−p+1. By (2.1) and (2.2), any of the t − p − 1 vertices wp+1 ,wp+2 , . . . ,wt−1
can resolve atmost one of t−p pairs (va1 , va2), (va2 , va3), . . . , (va t−pva t−p+1); therefore,
there exists a pair that cannot be resolved byW ′, a contradiction.
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