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1. Imbedding theorems. Let A, B be two square matrices with complex 
coefficients, of respective orders n and m, where n > m. We shall say that B 
is imbeddable in A if there exists a unitary matrix U of order n such that 
U*A U contains 5 a s a principal submatrix. In other words, B is said to be 
imbeddable in A if there exists a matrix V of type n X m such that F* V = 7W 

(= the identity matrix of order m) and V*A V = B. 
For Hermitian matrices, the following result holds: 

THEOREM 1. Let A, B be two Hermitian matrices of respective orders n and m, 
where n > m. Let ai > a2 > . . . > an and /5i > /32 > . . . > 0m 6e /fee cAar-
acteristic roots of A and B respectively. Then a necessary and sufficient condition 
for B to be imbeddable in A is that inequalities 

(1) at > 0t, a„-i+i < fc_i+i (1 < i < m) 
be fulfilled. 

The necessity part of Theorem 1 is well known (2, p. 75). Inequalities (1) 
had already been given by Cauchy (1, p. 187) for real symmetric matrices. 
To the best of our knowledge, no proof of the sufficiency part has been pub­
lished except for m — 1 or n. Dr. A. J. Hoffman, to whom we described our 
proof in the summer of 1954, kindly sent us an unpublished proof given by 
H. Wielandt in 1953 and based on quite different ideas. 

For normal matrices, we have the following result: 

THEOREM 2. Let A, B be two normal matrices of respective orders n and 
n — 1. Let a\, a2, . . . , an and fiu ft, . . . , /3w_i be the characteristic roots of A 
and B respectively. Renumber them so that ai, a2, . . . , aQ are each distinct from 
fix, ft, . . . , fiq-i, while <xj = fij-i for q + 1 < j < n. Then a necessary and 
sufficient condition for B to be imbeddable in A is that the 2q — 1 points 
ai, a2, . . . , ciq, Pi, j52, . . . , /3ff_i in the complex plane shall be distinct, collinear, 
and that every segment on this line limited by two adjacent at

Js (1 < i < q) 
shall contain one 0y(l < j < q — 1). 

This result generalizes the case m = n — 1 of Theorem 1. It may appear 
surprising that a generalization to normal matrices is possible. For one thing, 
the roots are now complex, and since complex numbers have no natural 
ordering, inequalities (1) might not be extendible. 
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We observe tha t the essential result in Theorem 1 is the case m = n 
in which case (1) becomes 

(2) «1 > 01 > OL2 > > aw_i > /3M_i > aw. 

The result for this case is easily extended to the case m < n — 1. In fact, if 
(1) holds, intermediary sequences of characteristic roots can be inserted such 
t ha t two consecutive sequences are interlaced similarly to (2). Then, by the 
result for m = n — 1, there exists a chain of Hermit ian matrices, with orders 
increasing by unity, such tha t each is imbeddable in the next. 

For normal matrices, Theorem 2 deals only with the case m = n — 1. 
T h e case m < n — 1 seems to involve additional complications. If a normal 
matr ix B of order m < n — 1 is imbeddable in a normal matr ix A of order n, 
it is not t rue in general t ha t there exists a chain of normal matrices, beginning 
with B and ending with A, with orders increasing by unity, such t ha t each is 
imbeddable in the next. As an example, let A, B be diagonal matrices: 

If we take 

A = diag{0, 1, i, l+i], B = diag 

V = 

5 + £ 
10 

5 + 2i\ 
10 ( • 

~i 2I 
1 1 - 2 

Vio 2 - 1 

L2 l j 
then V*V = I2 and V*A V = B; so B is imbeddable in A. By Theorem 2, 
any normal matr ix C of order 3 imbeddable in A must have two of 0, 1, i, 
1 + i as characteristic roots and its third root on the segment joining the 
remaining two. But by Theorem 2, B cannot be imbedded in any such matr ix C. 

Because of interest in extensions of Wi t t ' s theorem on quadrat ic forms in a 
field, the following corollary is worth noting: If a normal matr ix with char­
acteristic roots ai, /32, . . . , fin-i can be imbedded in one with roots ai, a>2, . . . , an, 
then the same is t rue of the respective matrices with roots 02, . . . , 0w-i and 
«2, • . . , cxn. Another interesting fact is as follows: A necessary and sufficient 
condition t ha t all matrices imbeddable in a normal matr ix A be normal is 
t h a t the characteristic roots of A shall be collinear, or (what is the same 
thing) t ha t A have the form w(I + eieH) with H Hermit ian, w a complex 
number and 6 real. The sufficiency is evident: 

V*(I + ei6H)V = In + eieKy 

as K = V*HV is Hermit ian. T o prove the necessity notice t ha t if N is 
normal then WiN + w2I is normal {w\ and w2 complex numbers) . Hence it 
suffices to consider A = diag{0, 1, a + bi}, b =̂  0. But if 

V* 
k k 

-h 0 
h = 1/V2, k = 1/V3, 
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the matrix 

is not normal. 

B = V*A V [h (1 + a + bi) -hk 
-hk h 

2. Proof of the sufficiency part of Theorem 1. According to a remark 
made above it suffices to consider m = n — 1. Since the properties in question 
are invariant under unitary transformations we need only prove the following: 
If real numbers at{\ < i < n) and 0 ;(1 < j < n — 1) satisfy (2), then there 
exist n — 1 complex numbers zt(l < i < n — 1) and a real number y such 
that the Hermitian matrix 

(3) 

7 2l 22 Z-i 

Zl 01 0 0 
22 0 02 0 
23 0 0 03 

• Zn-1 

.0 

.0 

.0 

A - i 0 0 0 . . . / 3 n _ i_ 

has {c^} as characteristic roots. To show this, we may assume 

(4) ax > ft > a2 > 02 > • • • > jffn-i > a,, 

instead of (2). In fact, if fij = c^ or c^+i, we can choose Zj = 0 and then work 
with a matrix of order decreased by unity. Since the characteristic polynomial 
of the matrix (3) is 

i n - l j i2 ) w - 1 

{x-T-Zj^v • ri(x-0 - 0.), 

and in view of the strict inequalities (4), the requirement that {a*} shall be the 
characteristic roots of the matrix (3) is equivalent to 

n~l \zi\2 

= at (1 < i < n). 7 + Z — 
.7=1 Oil 

Hence it remains to prove the following 

LEMMA. Under the hypothesis (4), the system of n linear equations 

(5) — ^ - + — ^ + . . . + — ^ — +*» = <*, (K i < n) 

has a unique solution awd /few solution satisfies xk > 0 
(1 < jfe < » - 1). 

Proof. Let A denote the determinant of the coefficient matrix of the system 
(5). Let Ak denote the determinant obtained from A by replacing the &th 
column by the column of quantities af. Then we are to prove that A ^ 0 
and that A&/A is positive for 1 < k < n — 1. 
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This will be seen from certain expressions identically equal to A or A*. 
In deriving these expressions we shall regard the as and /3's as variables. 
First we write 
(6) A = P/Q, 

where 

(7) <2= n n fa-M, 
and where P is a polynomial in the 2n — 1 variables at and /3y. Since two rows, 
or two columns, of A become equal when two as, or two /3's, are set equal, 
every difference at — aj (1 < i < j < n) and /3t — Pj (1 < i < j < n — 1) 
is a factor of P. The number of these factors being 

G)+(";')-<•-»'• 
P being homogeneous of degree (n — l)2 , we must have 

p = c n («.-«y)- n (Pi-h), 
Ki<j<n l<i<j<n—l 

where c is a constant. To determine c we may choose 

0* = j (1 <j < n — 1), ai = i+e(l<iKn- 1), aw = 0. 

After this substitution, if we multiply by e each of the first n — 1 columns of 
A, then from the complete expansion of the determinant it is easily seen that 
en~1A —> 1 as e —-> 0. In the polynomial P in e, the constant term is 

c(n-1)1 J! d-J)2-
l<i<i<ra—1 

Also, we observe that tn~l is a factor of the polynomial Q in e, and that the 
constant term in the polynomial Q/en~1 is 

(_!)•<-»»(„_i). n («-j)2 . 
K K i < n - l 

So we have en~l P/Q -> c ( - 1)*(«-Dn, as e -> 0. Hence c = (-l)*<»-i)» and 

(8) P = (-l)i(w"1)M IT («< " «,) • I l (ft - fc)-
Ki<j<n Ki<j<n-1 

Similarly, we write 
(9) A, = Pk/Qk (1 < k < n - 1). 

where 

(io) &= n n («<-^), 
K « n Ki<w-1 

and 

p* = c* n («< - «J) • n (ft - ft). 
K K K » K K K n - 1 

To determine the constant ck, we use the same substitution as above. If we 
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multiply by e each column of Ak except the &th and nth, then we get en~2Ak-+k, 
as e —> 0. One also verifies that 

en~2 Pk/Qk -> kck(-l)
k^n<n-V, e -> 0. 

So we have 

(ID pk = (_i)w-*»<-« n (««-«,)• n (^-^)-p*= (-1)™-" n (««-«,)• n (/î« 
Ki<j<n 1 < K K » - 1 

From (6), (7), (8) and (4), it is clear that A ^ 0. Collecting our results 
we obtain, after simplification, 

(12) A*/A = n («« o / n (̂  
1 < K » - 1 

A) (1 < ife < w - 1), 

which is positive, by (4). This completes the proof. 

From the above proof, it is clear that in the case of real symmetric matrices 
A, B, Theorem 1 remains valid if we require U to be orthogonal in our definition 
of imbedding. 

3. Proof of Theorem 2. We first prove the necessity part. Let A, B 
be two normal matrices of orders n and n — 1 respectively. Let at (1 < i < n) 
be the characteristic roots of A, and let /3j (1 < j < n — 1) be those of B. 
Assume that B is imbeddable in A. Then there exists a unitary matrix U of 
order n such that U*A U is of the form 

(13) U*A U = 

7 
id i 01 

0 
0 

22 

0 

0 

Z-i 

0 
0 
03 

.l&n-l 0 0 0 

The fact that U*A U is normal can be expressed by 

(14) \zj\ = \wj\ 

(15) ^ z* = wj wk 

(16) (0, - T)WJ 

Zn-l 

0 
0 
0 

0 n - l 

(1 < j < n - 1), 

(1 < j < w - 1, 1 < & < n - 1), 

(1 < j < r c - 1). (P* - y) ZJ 

From (15), we have (zj Wj)(zkzk) = (JS* wk)(wj Wj), so among the w — 1 
numbers ZjWj (1 < j < n — 1), the non-zero ones have the same amplitude. 
Designating this common amplitude by 20, we have by (14) : 

(17) zj = ei2dwj (1 <j <n - 1). 

We may assume that zq, zq+i, . . . , zn-\ are all those z/s which are zero (if 
they exist). If 1 < j < g — 1, then by (16), either /3j — y = 0, or 

amp(0 ; — 7) = 6 (mod TT). 
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In either case, we can set 
(18) 0, = 7 + e" i, 
where bj is real. Put 
(19) M^ = e _ i 9 2^ 

Then by (17), 
(20) ûj = e~u Wj 

Introduce the Hermitian matrix of order q 

"0 U\ Ui 11% 

Ml by 0 0 
(21) H =• W2 0 b2 0 

W j _ .! 0 0 0 

( l < j < g - 1), 

(Kj<q- 1). 

( K i < î - D-

. . . « J . -1 

. . . 0 

. . . 0 

'. '.. i,--1 J 
and let 
(22) C = ylt + eieH, D = diag{/3s, /?5+1, . 

Then according to (18), (19) and (20), we have 

• 0 -

(23) £/*/!£/ -[f3-
Let a i > a 2 > . . . > a « z b e the characteristic roots of the Hermitian matrix II. 
Then by (22) and (23), the characteristic roots [at\ of A (also of U*AU) 
can be so renumbered that 

(24) 
faj = y + eie a.} (1 <j <q), 

(q + 1 <j<n). 

Now we renumber /3i, /?2, . . . , j8ff_i in such a way that the corresponding 
&i, 62, . . . , 5?_i (see (18)) are arranged in decreasing order. Then, since 
ai, a2, . . . , aç are the characteristic roots of iJ, we have the interlacing 
inequalities 
(25) ai > 6i > a2 > b2 > . . . > &ff_i > aff. 

Relations (18), (24) and (25) together express precisely the condition stated 
in the theorem. 

To prove the sufficiency, let complex numbers at (1 < i < n) and /3j 
(1 < j < n — 1) satisfy the condition stated in the theorem. Then for some 
complex number y and real numbers 

6; ai, a,2, . . . , aq; &i, bo, . . . , bq-i, 

we have the relations (18), (24) and (25). From (25) and Theorem 1, there 
exists a Hermitian matrix H of order q, with characteristic roots #i, a2, . . . , aqi 

and containing diag{6i, &2, . . . , bq^i} as a principal submatrix. Using this H 
and the numbers 7, 0 appearing in (18), (24), we form the normal matrix 

C = ylq + eie H. 
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Let D = diag{/3fi, j8ff+i, . . . , 0w_i}. Then 

[oC^] 
is a normal matrix of order n, and by (24), its characteristic roots are 
«i, «2, • • • , an. Since i J contains diag{6i, 62, . . . , ^-1} as a principal submatrix, 
so by (18), 

contains diag{/?i, /32, . . . , j8w_i} as a principal submatrix. 
This shows that every normal matrix of order n — 1 with characteristic 

roots fa (1 < 7 < w — 1) is imbeddable in any normal matrix of order n 
with characteristic roots a* (1 < i < w). 
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