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Abstract

Let G be a Lie group, Go the connected component of G that contains the identity, and Aut G the group of
all topological automorphisms of G. In the case when G/Go is finite and G has a faithful representation,
we obtain a necessary and sufficient condition for G so that Aut G has finitely many components in terms
of the maximal central torus in Go.

1991 Mathematics subject classification (Amer. Math. Soc): primary 22E15; secondary 22D45.

1. Introduction

Let G be a Lie group, and let Aut G be the group of all topological automorphisms
of G. If X and Y are subsets of G, we denote by N(X, Y) the collection of all
those elements a of AutG such that a(x)x~l e Y and a~i(x)x~1 e Y for every x
in X. Let & be the set consisting of elements of the form N(K, V), where K ranges
over all compact subsets of G and V ranges over all neighborhoods of the identity
element of G. Then, Aut G is a topological group with & as a fundamental system
of neighborhoods of the identity element of AutG. In [6], Hochschild proves that
AutG is a Lie group and has at most countably many components whenever G/Go

is finitely generated, where Go denotes the connected component of G that contains
the identity element. It is the aim of this paper to study the case when Aut G has
only finitely many components. In the case when G/Go is finite and G has a faithful
representation, we obtain a necessary and sufficient condition for G so that Aut G has
finitely many components.

Let G be as above and T be the maximal central torus in Go. By a theorem of
Iwasawa ([11, Theorem 1']), every automorphism in (AutG)o fixes every element
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of T. So, if (Aut G)o | T is infinite, then Aut G has infinitely many components, where
(Aut G)o | T denotes the image of the map from (Aut G)o into Aut T sending every
element of (Aut G)o onto its restriction of T. This suggests that we concentrate our
study on the maximal central torus T in Go. The example of the n-dimensional torus
shows that the dimension of T is important in determining whether or not Aut G has
finitely many components. However, the following example demonstrates that the
mere consideration of the dimension of T is not enough.

EXAMPLE. Let S be the 1-dimensional torus, Si = S2 = S, and T = 5i x S2. Let
a € Aut T be such that a2 = idr, and let Aa be the subgroup of Aut T generated
by a. Let Ga — T>\Aa and 0 € AutGCT. It is straightforward to check that
0(a)cr~l e T and 6\T is a member of the centralizer C{a) of a in Aut7\ It
follows that AutGCT is topologically isomorphic to TXC(CT); and hence, A u t C
has finitely many components if and only if C(a) has finitely many components.
In particular, let S and y be automorphisms of T defined by 8(x, v) = (x, y) and
y(x, y) = (Jc, y), where we denote the conjugate of a complex number w by w.
Then, it is straightforward to check that C(S) has infinitely many components and
C(y) has finitely many components; in turn, Aut Gs has infinitely many components
and Aut Gy has finitely many components. We note that the maximal central tori of
(Gj)0 and (GY)0 are both T. A close examination of these two groups reveals the
following:

(i) Both Si and S2 are smallest nontrivial subtori of T in Gs (respectively Gy)
that commute with As (respectively Ay).

(ii) There is an isomorphism of Si onto S2 that commutes with As (namely, the
map sending every complex number to its conjugate). On the contrary, there
is no isomorphism of Si onto S2 that commutes with Ay.

This example motivates us to introduce what is called a A-decomposition of the
maximal central torus that plays an important role in our study. To see this, we notice
that since G has finitely many components, the restrictions of all inner automorphisms
of G to T form a finite subgroup, denoted by A, of Aut T. In Section 2, we prove that
there are nontrivial A-invariant closed subtori Tu T2, . . . , Tm such that each 7} has
no proper A-invariant closed subtorus of T (we call such subtori of T the A-simple
subtori of T),T = TlT2--- Tm, and 7} n (^ • • • 71-_i7)+i • • • Tm) is finite for every
i 6 {1, • • •, m). We call such a decomposition of T into product of A-simple subtori
a A-decomposition of T. Two A-simple subtori Ta and Tb of T are said to be almost
A-isomorphic if there is a continuous homomorphism a of Ta onto Tb such that a has
finite kernel and a o S = 8 o a for every 8 in A. Two A-simple subtori Ta and Tb of
T are said to be A-isomorphic if there is a topological isomorphism a of Ta onto Tb

such that a o 8 — 8 o a for every 8 in A. If, in addition, Ta = Tb, then we call such a
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map a a A-automorphism of Ta. We say that T is A-rigid if T satisfies the following
two properties:

(a) no two distinct A-simple subtori of T are almost A-isomorphic; and
(b) for every A-simple subtorus TcofT, there are only finitely many A-automorph-

isms of Tc.

Let Tc be a A-simple subtorus of T and Aut4Tc be the group of all A-automorphisms
of Tc. In view of Condition (b) above, in Section 3, we completely determine when
AutATc has finitely many elements and when Aut^Tc has infinitely many elements
from the dimension of the torus Tc by way of characterizing Autarc as the group of
units in the ring of algebraic integers in a certain algebraic number field, in the case
when A | Tc is abelian. In order to see this, let us first fix some notations. If 8 e A,
we denote by 8° the differential of 8. Let A° = {5° : 8 e A}, W be the Q-span of the
kernel of the exponential map from .i?(7) onto T,WC = W (~\ 3f(Tc), and D be the
centralizer of A° | Wc in HomQ( Wc, Wc), the collection of all Q-linear endomorphisms
of Wc. Then, we have the following results.

THEOREM 12. Using the same notation as above, if A | Tc is abelian, then the map
sending every element a ofAatATc onto a° \ Wc is a group isomorphism of Aut ATC onto
the group of units in the ring of algebraic integers in D.

COROLLARY 13. We use the same notation as above and suppose that A | Tc is
abelian. If the order of A | Tc is 1, 2, 3, 4, or 6, then AatATc has 2, 2, 6, 4, or 6
elements, respectively. Moreover, these are the only cases in each of which Aut4Tc

has finitely many elements.

Suppose that G is a Lie group such that G has a faithful representation and G
has finitely many components. Then, G is a semidirect product EM, where E
is a simply connected solvable normal analytic subgroup of G and M is a maximal
reductive subgroup of G; moreover, there is a finite subgroup D of M such that
M = M0D ([12, p. 42]; [7, Chapter XVIII]). Let S = [Mo, Mo] and K = Z(MO)O,
where Z(M0) is the center of Mo. Then, AT is a maximal torus in the radical of Go

([7, Chapter XVIII]). Recall that A is the finite subgroup of Aut T consisting of the
restrictions of all inner automorphisms of G to T. If we denote by IG (D) the group of
all those inner automorphisms of G determined by elements in D, then A is precisely
the group of restrictions of automorphisms in IG(D) to T. Since D normalizes K,
the restrictions of automorphisms in IG(D) to K form a finite subgroup of Aut K.
By an abuse of notation, we still denote this group by A. Then, both T and K have
A-decompositions. Now, we are in a position to state our main theorem, which is
proved in Section 4.
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THEOREM 17. Using the same notation as above, in order that AutG has finitely
many components, it is necessary and sufficient that G satisfies the following two
conditions:

(a) T is A-rigid; and
(b) there is no A-simple subtorus of T that is almost A-isomorphic to any A-simple

subtorus of K that is not in T.

Since any two maximal tori in the radical of Go are conjugate, we see that The-
orem 17 is independent of the choice of K. If, in addition, G is connected, we have
the following version of Theorem 17.

COROLLARY 18. Suppose that G is an analytic group that has a faithful represent-
ation, and T is the maximal central torus in G. Then, in order that Aut G has finitely
many components, it is necessary and sufficient that T is trivial, or that the dimension
ofT is 1 and T is exactly the maximal torus in the radical ofG.

We also give an example to show that Theorem 17 may fail if G does not have a
faithful representation.

As an application of our main result, we give a necessary and sufficient condition
for an analytic group G so that Aut G is almost algebraic; provided that G has a faithful
representation. (Cf. [4, 16,17].) More precisely, we have the following result.

THEOREM 19. Suppose that G is an analytic group that has a faithful representation,
and T is the maximal central torus in G. Then, Aut G is almost algebraic if and only
if T is trivial, or the dimension of T is 1 and T is exactly the maximal torus in the
radical of G.

NOTATION. Let G be a locally compact group. We denote the connected component
of G that contains the identity element by Go. Aut G denotes the group of topological
automorphisms of G equipped with the topology described above. If / is a function
of G into G, we denote the restriction of / to C by / | C, for every subset C
of G. If A and B are subsets of G and x e G, we denote the inner automorphism
of G that is determined by x by IG(x), the set {IG(x) : x e A] by IG(A), the set
{/G(a) | B : a e A] by IG(A) \ B, and the subgroup of G that is generated by
{aba~lb~l : a e A, b e B] by [A, B]. If F is another topological group, we denote
the collection of all continuous homomorphisms of G into F by Horn (G, F). If,
in addition, G and F are analytic groups, g e Horn (G, F), and T is a subset of
Horn (G, F), then we denote the Lie algebra of G by -£?(G), the differential of g by
g°, and the set {y° : y e F} by F°. We denote the identity map on any set / by idy.
As usual, N, 1, Q, R, and C denote the sets of natural numbers, integers, rational
numbers, real numbers, and complex numbers, respectively.

The authors would like to thank the referee for useful comments and suggestions.
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2. A decomposition of a torus

Throughout this section, T denotes a fixed torus, and A denotes a fixed finite
subgroup of Aut T. First, we introduce what is called a A-decomposition of T that
plays an important role in our study.

Let exp: JSf(T)—>T be the exponential map. It is well-known that &{T) pos-
sesses an R-basis whose Z-span is precisely ker(exp), and ker(exp) is A°-invariant.
Clearly, the Q-span W of ker(exp) is A°-invariant. (We will fix the notation exp
and W throughout this section.) By the representation theory of finite groups, W is a
semisimple A°-module; that is, W can be written as a direct sum Wx ® • • • © Wm of
simple A°-submodules. It is easy to see that Wj possesses a Q-basis B, contained in
ker(exp), for each j € {1, • • •, m}.

Fix an i e {1, • • •, m}. Let B be the Z-span of \JJ=l Bj and A, = (W, <g)Q R) + B.
Since U™=i fy *s clearly an R-basis for Jz?(!T), A,/B is compact. Together with
the fact that B is contained in ker(exp), one concludes readily that A, + ker(exp)
is closed in JSf(T); and hence, 7} = exp(A, + ker(exp)) is a closed subtorus of T.
It is straightforward to check that j£?(7}) = W, <g>Q R, W, = -Sf (7}) D W, and 7) is
A-invariant. Moreover, we notice that 7} has no proper A-invariant closed subtorus.
In order to see this, we let £ be a A-invariant closed subtorus of 7}, exp£ be the
exponential map of .if (E) onto E, and X be the Q-span of ker(exp£). Since exp£

is precisely the restriction map of exp to j£?(E), X is a A°-invariant subspace of the
simple A°-module W,; a fortiori, X is a proper subspace of Wt. It follows that £ is a
proper subgroup of Th This proves that 7} has no proper A-invariant closed subtorus.

DEFINITION 1. A non-trivial A-invariant closed subtorus of T is called a A-simple
subtorus if it has no proper A-invariant closed subtorus.

DEFINITION 2. A decomposition T{T2 • • • Tm of T into A-simple subtori is called a
^-decomposition of T if T,T) (Tx •• • Tt_i Ti+l -TJis finite for every i e {1. • • •, m).

Using this terminology, the discussion above can be summarized as follows.

PROPOSITION 3. A ^-decomposition ofT always exists.

If Wa is a simple A°-submodule of W and Ta = exp(Wa (8*0 K), in view of [1,
p. 174, Proposition 1], we may use the same argument as above to obtain that Ta is a
A-simple subtous of T, &{Ta) = Wa <g>Q R, and Wa = &(Ta) n W. Conversely, if Tb

is a A-simple subtorus of T and Wj = J?(Tb) n W, then it is straightforward to check
that Wi is a simple A°-submodule of W and -S?(7;) = W6 ®Q R. Thus, we have the
following result.
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PROPOSITION 4. There is a one-to-one correspondence between the collection of
all simple A° -submodules ofW and the collection of all A-simple subtori ofT (given
by Wa i-» exp(Wa <g>Q R)).

It seems natural to ask at this point what connection Ta and Tb have if Wa and Wb

are A°-isomorphic, where Ta, Tb, Wa, and Wb have the same meaning as in the last
paragraph.

PROPOSITION 5. Suppose that Wa and Wb are two simple A°-submodules of W,
Ta = exp(Wa <g>Q 1) , and Tb = exp(Wb <g>Q K). Then, the following two statements
are equivalent.

(i) Wa and Wb are isomorphic as A" -modules.
(ii) There is a continuous homomorphism a of Ta onto Tb such that a has finite

kernel and a o 8 = 8 o afar every 8 in A.

PROOF. Denote by expa (respectively expA) the exponential map of J£{Ta) (re-
spectively -Sf (Tj,)) onto Ta (respectively Tb). As we saw before, Wa (respectively
Wb) possesses an R-basis Ba = {bu • ••,bi} (respectively Bb) for .i? (Ta) (respectively
JS?(Tb)) such that the Z-span of Ba (respectively Bb) is precisely ker(expa) (respect-
ively ker(expfc)). Let / be a A°-module isomorphism of Wa onto Wb. Relative to
the bases Ba and Bb, the matrix M associated with / is clearly a matrix over Q.
Choose a large enough positive integer c such that cM is a matrix over Z. Define
g: ^(Ta)-^^(Tb) by g(£'i=l rtb{) = £ j = 1 crj&i) for every ru • • •, r, in 01. It
is straightforward to check that g is a linear isomorphism of J£(Ta) onto J f (Tb),
g(ker(expa)) is contained in ker(expi), and g o 8° — 8° o g for every 8 in A. As a
result, g induces a continuous homomorphism ft of Ta onto Tb with discrete kernel
such that ft o 8 = 8 o fi for every 8 in A. Since Ta is compact, fi has finite kernel. This
proves (i) implies (ii). Conversely, let a be a continuous homomorphism of Ta onto Tb

that satisfies (ii). From the fact that the Q-span of ker(expj (respectively ker(exp;,))
is exactly Wa (respectively Wb), it is straightforward to check that the restriction of
the differential of a to Wa is a A°-module isomorphism of Wa onto Wb. This proves
(ii) implies (i), and the proof of the proposition is complete.

DEFINITION 6. Two A-simple subtori Ta and Tb of T are said to be almost A-
isomorphic if the second statement (ii) in Proposition 5 holds.

DEFINITION 7. Two A-simple subtori Ta and Tb of T are said to be A-isomorphic
if there is a topological isomorphism a of Ta onto Tb such that a o 8 = 8 o a for every
8 in A. If, in addition, Ta = Tb, then we call such a map a a A-automorphism of Ta.

The following definition singles out a special class of A-tori that plays a central
role in our study.

https://doi.org/10.1017/S1446788700037769 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037769


[7] On the component group of the automorphism group 371

DEFINITION 8. We say that T is A-rigid if T satisfies the following two proper-
ties:

(a) no two distinct A-simple subtori of T are almost A-isomorphic; and
(b) for every A-simple subtorus Tc of T, there are only finitely many A-automorph-

isms of Tc.

In view of Proposition 4 and 5 above, and [1, Proposition 1, 2, pp. 174-175], T
satisfies Condition (a) above if and only if T has a unique A-decomposition 7\ T2 • • • Tm

(up to order) such that if Tt and 7} are almost A-isomorphic for some i, j € {1, • • •, m},
then i = j .

3. The A-automorphism group of a A-simple subtorus

In this section, T denotes a fixed torus and A denotes a fixed finite subgroup
of Aut T. We fix a A-simple subtorus Tc of T, and let A u t ^ be the group of all
A-automorphisms of Tc. Although the results in this section are not needed in the
proof of our main theorem, in view of Condition (b) in Definition 8, it is interesting
to see when Aut4rc has finitely many elements and when Aut4Tc has infinitely many
elements. Firstly, we make the following observation.

PROPOSITION 9. Let a e AuUTc. Then,

(A) a° is semisimple; and
(B) a is ergodic (that is, a° has no eigenvalue which is a root of unity) if and only if

a has infinite order.

PROOF. LetWc = Wr\3f(Tc). Since Wc is the Q-span of the kernel of the exponen-
tial map expc: JS?(Tc) -» Tc and ker(expc) is cK°-invariant, we see that a°(Wc) = Wc.
Let fi = a° | Wc, and let u be the unipotent part and s be the semisimple part in the
multiplicative Jordan decomposition of p. Clearly, there is a non-zero element vx of
Wc such that u (ut) = vt. Let Vi be the Q-span of 8° (ui) as S ranges over all elements
of A. If 8 6 A, since ft commutes with 8°, so does u; and hence, M(5°(D1)) = 8°(vi).
This proves that u is the identity on V]. On the other hand, since Wc is a simple
A°-module (by Proposition 4), the non-zero A°-submodule Vt of Wc must coincide
with Wc. Consequently, u is the identity on Wc; and hence, fi — s. Clearly, this
implies that a° is semisimple, and (A) is proved. Since fi is semisimple, the matrix M
associated with the map of Wc <E)Q C onto Wc <g><, C that is induced from fi is a diagonal
matrix relative to a suitable basis for Wc ®Q C. From the fact that the diagonal of M
consists of all eigenvalues of a0, one concludes readily that if a is ergodic then a has
infinite order. Conversely, suppose that X is an eigenvalue of a° such that X" = 1 for
some positive integer n. Then, clearly, the linear map fi" — id^c is not one-to-one. It
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follows that there is a non-zero element v2 of Wc such that ft" (v2) = v2. Let V2 be the
Q-span of 8°(v2) as S ranges over all elements of A. Then, P"(80(v2)) = S°(v2) for
every 8 e A. This proves that fln is identity on V2. Being a non-zero A°-submodule
of Wc, V2 must coincide with Wc. Consequently, fi has finite order; a fortiori, a has
finite order. This proves that if a has infinite order then a is ergodic. The proof of the
proposition is thereby complete.

In the case when A | Tc is abelian, we may completely determine when
has finitely many elements and when AutaTc has infinitely many elements from the
dimension of the torus Tc, by way of characterizing A u t ^ as the group of units
in the ring of algebraic integers in a certain algebraic number field. In preparation
for this, we need some results from the representation theory of finite groups. If
V is a vector space over a division ring E, we use dim£ V to denote the dimension
of V over E, Hom£(V\ V.) to denote the collection of all £-linear endomorphisms
of V, and GLe(V) to denote the collection of all those elements in Hom£(V, V)
that are invertible. Let Wc = W D J?(TC). Let K be any extension field of Q. If
g G HomQ(Wc, Wc), then we denote by gK the ^T-linear endomorphism of Wc ®Q K
that is defined by gK(^kiWi) = 5Z#,-g(tOi)> where the jfc,-'s are elements of K, the
Wj's are elements of Wc, and we write wt 0 &, as £,u>, for simplicity. The group A0

acts on Wc <g>Q K as the group [(8° | WC)K : 8° e A°} of AT-linear automorphisms of
Wc <g>Q K. This gives a A°-module structure on Wc 0 Q K. In particular, Wc ®Q C is a
semisimple A°-module; that is, Wc ®Q C can be written as a direct sum Vi © • • • © Vs

of simple A°-submodules. For each i e {1, • • •, s}, denote by A.,-: A° -> GLc{Vt)
the C-representation of A° that corresponds to the A°-module structure of Vt, Xi the
character of A° that is afforded by A.,, and Q(x,) the subfield of C that is generated by
Q and {xt{8°) : 8 e A}. Let L = Q(*i) . Then, L = Q(x,) for every / e {1, • • •, s],
L is a finite degree Galois extension of Q, and the Galois group Sf (L/Q) is abelian
([10, p. 152 and (9.21)]). Let r = [L : Q], and Sf (L/Q) = {au • • •, ar}, where
<7i = idt. For each i e {1, • • •, r], define the map Sai: Wc ®Q L -> Wc (giQ L by
SCT. ( ^ /y iOj:) = £ a, (/;) u>;-, where the /y 's are elements of L, and the wj 's are elements
of Wc. It is straightforward to check that

(1) fL o Sai = SOl o fL for every / e HomQ(Wc, Wc) and i e {1, • • •, r}.
Let [/j b e a fixed simple A°-submodule of Wc <g><, L. For every / e {1, • • •, r], let
(/, = 5CT(f/i). In view of (1), Uu- •• ,Ur are A°-submodules of Wc (8)Q L. In fact, we
have the following results.

(2) Uu • • • ,Ur are simple A°-submodules of Wc ®Q L, Wc <8>Q L = Ux © • • • © Ur,
and Ut and Uj are not A°-isomorphic for any two distinct /, j e {1, • • •, r}; and

(3) there is an integer k (called the Schur index of Xi over Q) such that 5 = rk,
and Vi,---,VS can be so chosen that, for each / e {1, • • •, r}, the A°-module (/, ®t C
can be written as the direct sum Vik-k+l © Vik-k+2 © • • • © Vik of simple A°-submodules,
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and any two of Vik.k+X, Vik_k+2, • • •, V,* are A°-isomorphic ([3, (70.15)]; [10, (9.21)]).
It follows that

(4) dimQ Wc = dimi(Wc <g>Q L) = r(dimL Ux) = r^(dimc Vx).
Let D be the centralizer of A° | Wc in HomQ(Wc, Wc). Since Wc is a simple A°-module,
by Schur's lemma, D is a division ring. Let

F=lj2a^s°\wc)-ase(

Since A° | Wc is contained in F, Wc is a simple F-module. Viewing Wc as a vector
space over D, the double centralizer theorem promises that F = HomD(Wc, Wc).
From this, we see that

(5) dimQ F = (dimQ D)(dimD(HomD(Wc, Wc))) = (dim,, Wc)
2/(dimQ D).

On the other hand, if we denote by p : A0 —> GLQ(WC) the Q-representation of A° that
corresponds to the A°-module structure of Wc, then p extends to a C-representation
p c : C[A°] - • Homc(Wc <8>Q C, Wc <g>Q C) of the group algebra C[A°] of A° over C.
Since C is algebraically closed, by (2) and (3), Wedderburn's theorem insures that

r

dimQ F = dimc(pc(C[A°])) = y^dimc(Homc(Vi*_yt+1, Vik-k+x))
1=1

= r(dimc V,)2.

Together with (4), we have
(6) &(dimQ F) = (dimQ Wc)(dimc Vx).

In the case when A | Tc is abelian, we have the following result.

LEMMA 10. Using the same notation as above, if A | Tc is abelian, then D = F is
afield, dim, Ux = 1, and [L : Q] = dimQ D = dimQ Wc.

PROOF. Since A | Tc is abelian, F is commutative. Together with the fact that Wc

is a simple F-module, we see that F is a field ([9, Proposition 1.7, p. 418]). Being a
finite dimensional extension field over Q, F may be viewed as an algebraic number
field. Let {Ax, • • •, Ap) be an integral basis for F, x a non-zero element of Wc, and
Xj = Ai (x) for every / e {1, • • •, p}.

We claim that [xx, • • •, xp] is a Q-basis for Wc. To this end, let ax, • • •, ap e Q
such that £f=1 atXi = 0; that is, Q2f=\ atAi)(x) = 0. Suppose that £f=1 a,A, is not
zero. Being an element of the field F, £f=1 a, A, must be a linear automorphism of
Wc. It follows that x = 0, which is a contradiction. Therefore, £f=1 a, A, = 0. The
fact that {Ax, • • •, Ap} is a basis for F therefore forces each of ax, • • •, ap to be zero.
This proves that {x\, • • •, xp} is Q-linearly independent. Next, let 5 be the Q-span of
{xx, • • •, xp}. If A e F and ax, • • •, ap € Q, then A(J^Li a'xi) = (ULi a' AA>)(X)-
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Since each AAt can be written as a linear combination of Au • • •, Ap over Q, one
concludes readily that AQ2?=l a,*,) is again an element of S. This proves that 5
is F-invariant; a fortiori, S = Wc. This proves our claim that {xu • • •, xp) is a Q-
basis for Wc; and hence, dimQ F = dimQ Wc = p. Together with (5), we see that
dimQ D = dim,, F . Being an abelian group, A° | Wc is clearly contained in D. It
follows that F is a Q-vector subspace of D of the same dimension; and hence, F = D.
On the other hand, the fact that A | Tc is abelian forces dimc V] to be 1 ([10, (2.6)]).
Together with (4) and (6), we see that r — p and dimL t/j = 1. This completes the
proof.

LEMMA 11. Using the same notation as above, if A | Tc is abelian, then A | Tc is
cyclic, L is the cyclotomic extension o / Q of order n, and [L : Q] = <p(n), where n is
the order of A | Tc and <p is the Euler function.

PROOF. Let u be a fixed non-zero element of U\. Let / be an element of D. Clearly,
fL is a A°-module endomorphism of Wc ®Q L. In view of (2) and Lemma 10, fL 11/,-
is a A°-module endomorphism of £/,, for every i e [I, • • •, p), where p = dim^ Wc.
Since dimL U\ = 1 (by Lemma 10), there is a unique element £l(f) of L such that
fL(u) = Q,{f)u. Clearly, Q is a field homomorphism of D into L. We are going to
show that Q is, in fact, a field isomorphism of D onto L. To this end, we first notice
that

(7) {Sax (u), • • •, Sap(K)} is an L-basis for Wc 0 Q L.
Also, by (1), we see that

(8) fL{Sai{u)) = oi(£2(/))Sai.(II), for every element / o f D and/ e { l , - - - , p } .
Now, if g and h are elements of D such that fi(g) = fi(/i), then (7) and (8) imply
that gL = hL; a fortiori, g = h. This proves that Q. is one-to-one. To see that fi is
onto, let / be an element of L. Define y to be the L-linear endomorphism of Wc ®Q L
that is determined by y (5CT. («)) = a, (/)5<7, (M) for every / e {1 , • • • , / ? } . Let /* be any
element of A° | Wc. Since A | Tc is abelian, /x is an element of D. If l\, • • •, lp are
elements of L, by (8), we have that
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This proves that y is a A°-module endomorphism of Wc <8>Q L. Next, we let
/„,,•••,/<,, e L be such that ^f=1 laiSai{u) is an element of Wc, and let _/ be a
fixed element of {1, • • • , / ?} . Then

, S C T » = Saj (
1=1 \i=l

and hence, Oj{lai) = lajOa. for every i e {1, • • •, p}. It follows that

1=1

1=1

;=i \,=i /

Since j is an arbitrary element of {1, •••, p}, the calculation above shows that y(Wc)
is contained in Wc. From this, one concludes readily that y | Wc is an element of D such
that £2 (y | We) = /. This proves that £2 is onto; and hence, Q is a field isomorphism of
D onto L. Moreover, since Q(q(idWc)) = <? for every rational number q, we see that

(9) the restriction of the map Q. to the ring of algebraic integers in D is a ring
isomorphism of the ring of algebraic integers in D onto the ring of algebraic integers
in L.

Being a finite abelian group, A° | Wc can be written as a direct product of cyclic
subgroups G i, • • • ,Gd each of whose orders is a power of a prime. For a fixed prime q,
suppose that there are two distinct groups among G\, • • •, Gd, say, G\ and G2, such
that I G\ | = q"', | G21= qni, and ri\ > «2- Let Mi be a generator of G\ and /x2 be a
generator of G2. Since £2 is one-to-one, £2(/Ai) is clearly a primitive <7"'th root of unity
in L. On the other hand, (ii2)

q"x = idwc implies that £102) is a ^"'th root of unity in
L; and hence, £2(/x2) = f2(^i)c for some positive integer e. Since £2 is one-to-one,
H2 and /i<4 must be the same—a contradiction. This proves that for any fixed prime q,
there is at most one group among Gu • •• ,Gj that has its order a power of q. Clearly,
this implies that A° | Wc is cyclic; and hence, A | Tc is cyclic.

Let n be the order of A | Tc, n be a generator of A° | Wc, and 6 = £2(jr). Clearly,
0 is a primitive «th root of unity; and hence, the cyclotomic extension 0.(6) of Q
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of order n is contained in L. On the other hand, since XI(M)" = 1 f° r every \x in
A° | Wc ([10, (2.15)]), L is contained in Q(0). (For the definition of Xi and L, see
the paragraph following the proof of Proposition 9.) Consequently, L = Q(9); and
hence, [L : Q] = <p(n), where <p is the Euler function. This completes the proof.

Now, we are in position to characterize Auta7c as the group of units in the ring of
algebraic integres in D, provided that A | Tc is abelian.

THEOREM 12. Using the same notation as above, if A | Tc is abelian, then the map
ty sending every element a ofAut&Tc onto a° \ Wc is a group isomorphism o/AutaTc

onto the group % of units in the ring of algebraic integers in D.

PROOF. It is clear that the map * in question is a group monomorphism of Auta7c

into D. Let a be a A-automorphism of Tc, 6 = * ( a ) , expc:J£?(rc) -> Tc be
the exponential map, and c(x) be the characteristic polynomial of 8. Since ker(expc)
contains an K-basis Bc for J f (Tc) such that the 2-span of Bc is ker(expc), and ker(expc)
is /3-invariant, we see that c(x) is in Z[x]. Being a root of the monic polynomial c(x),
B is an algebraic integer in D. Applying the same argument to a"1, we see that
B'1 = ^ ( a " 1 ) is also an algebraic integer in D. This proves that /J € W. So, in order
to prove the theorem, it remains to show that ty(AutaTc) = W. Let n be a generator
of A° | Wc and 0 = Q(n), where Q: D —> L is the field isomorphism in the proof of
Lemma 11. Let n be the order of A | Tc. Since L = Q(0) and 6 is a primitive nth root
of unity by the proof of Lemma 11, the ring of algebraic integers in L is precisely 1[6]
([3, (21.13)]). On the other hand, since ^ ( ^ ( i d ^ ) ) = q for every rational number
q, one concludes readily from (9) that the ring of algebraic integers in D is precisely
Z[7r]. Since ker(expc) is n -invariant, relative to Bc, the matrix associated with n is
an integral matrix. It follows that, relative to Bc, the matrix associated with every
algebraic integer in D is an integral matrix. Now, let X be an element in <%/. Since
A. and A"1 are algebraic integers in D, relative to Bc, the matrices associated with A.
and k~l are integral matrices. It follows that A(ker(expc)) = ker(expc). From this,
one concludes readily that X induces a A "-automorphism a of Tc such that ^ ( a ) = k.
This shows that * is onto, and the proof of the theorem is complete.

From the last theorem, we may completely determine when AutaTc has finitely
many elements and when Auta7c has infinitely many elements, provided that A | Tc is
abelian.

COROLLARY 13. We use the same notation as above and suppose that A | Tc is
abelian. If the order of A | Tc is 1, 2, 3, 4, or 6, then Autarc has 2, 2, 6, 4, or 6
elements, respectively. Moreover, these are the only cases in each of which Autarc

has finitely many elements.
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PROOF. Let n be the order of A | Tc, and let e, be a fixed primitive /th root of unity
for every positive integer i. By Dirichlet's units theorem ([15, p. 148]), the group of
units of an algebraic number field K is finite if and only if K = Q or K = Q(̂ /—<?)
for some positive square free rational number q. In particular, if L has finitely many
units, then [L : Q] is either 1 or 2; and hence, n = 1,2, 3,4, or 6, and L =Q, Q(e3),
Q(e4), or Q(e6) (by Lemma 11). Since Q has two units, Qfe) = Qfo,) has 6 units,
and Q(e4) has 4 units ([15, p. 130]), the corollary follows immediately from (9) and
Theorem 12. This completes the proof.

The following lemma will be used several times in reducing the proof of the main
theorem to the proof of a simpler situation. Although it is rather simple, we include it
here for completeness.

LEMMA 14. Let p be an open continuous homomorphism of a locally compact
group G onto a (Hausdorff) topological group H. If both ker p and H have finitely
many components, then so does G.

PROOF. Put K = ker p, and choose ku • • • ,k, in K such that K = {J'i=l(Kokj).
Then, GOK = \Ji=l(Goki). It follows that GOK is closed in G and GOK has finitely
many components. So, in order to prove that G has finitely many components, it
suffices to show that G0K is a subgroup of G of finite index. But this follows from
the facts that p(GoK) = Ho and H/Ho is finite. This completes the proof.

4. The main theorem

Suppose that G is a Lie group such that G has a faithful representation and G
has finitely many components. Then, G is a semidirect product Ex • M, where E\
is a simply connected solvable normal analytic subgroup of G and M is a maximal
reductive subgroup of G; moreover, there is a finite subgroup D of M such that
M = M0D ([12, p. 42]), Go = Ex Mo, and Mo is a maximal reductive analytic
subgroup of Go ([7, Chapter XVIII]).

For our purpose, it will be convenient to choose an appropriate E\. Such a choice
is made in the following lemma.

LEMMA 15. Using the same notation as above, there is a subgroup EofGso that
E enjoys all properties that are satisfied by E\, and E T is a characteristic subgroup
ofG, where T is the maximal central torus in Go.

PROOF. Let u be the canonical map of Go onto Go/T. Clearly, u(Go) is an analytic
group whose nilradical (that is, the maximal nilpotent normal analytic subgroup) is
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simply connected. By a result of Hochschild, [8], the holomorph w (G0)x Aut M(G0)
of u(Go) has a faithful representation. And hence, Aut u{Ga) = P (Autw(Go))o for
some finite subgroup P of Aut u(Go) ([13, Theorem 1]). Denote by R the radical (that
is, the maximal solvable normal analytic subgroup) of Go. Consider the canonical
map v of u(R) onto u(R)/u([G0, /?]). Being an abelian analytic group, v(u(R)) is a
direct product of the maximal torus T in v(u(R)) and a vector group Vt. On the other
hand, since P induces a finite group P' of linear automorphisms of -Sf (v(u(R))), P' is
completely reducible. It follows that we may choose V\ such that Vi is invariant under
those automorphisms of v(u(R)) that are induced from P. Clearly, E2 = v~l(Vi) is
therefore P-invariant. Next, consider the analytic group w(fl)xi(Autw(G0))0, where
every element of (Aut u (Go))o acts on u (R) by restriction. For simplicity, let us denote
both the identity element of u(R) and the identity element of (Auttt(Go))o by 1. Let
x e E2 and A e (Autu(Go))o. Then, (x, 1)(1, >.)(*, l r ' a .A. )" 1 = (X^JC)"1 , 1) is
contained in the nilradical of M(/?)XI (Aut M(GO))0. It follows that x X(x)~l is contained
in the nilradical of u(R). Since the nilradical of «(/?) is simply connected, x X{x)~l

must be in E2. This proves that E2 is (Aut«(G0))0-invariant. As a result, E2 is a
characteristic subgroup of M(GO). Clearly, £3 = u~l (E2) is therefore /G(D)-invariant.
Let w be the canonical map of E3 onto E3/[GO, /?]. Being an abelian analytic group,
w(E3) is a direct product of the maximal torus T" in w(E3) and a vector group V2. As
we saw before, we may choose V2 so that V2 is invariant under those automorphisms
of w(E3) that are induced from IG{D). Let E = w-\V2). We see that E3 = ET,
and it is straightforward to check that E satisfies all the requirements. This completes
the proof.

Now, let S = [Mo, Mo] and K = Z(MO)O, where Z(M0) is the center of Mo. Then,
S is semisimple, AT is a maximal torus in the radical R of Go, and Mo = K S ([7,
Chapter XVIII]). The lemma below is a special case of our main theorem.

LEMMA 16. Using the same notation as above, Aut(SD) has finitely many com-
ponents, and (Aut (SD))0 = ISD(S).

PROOF. Suppose that 4> is the map of AutS into AutJSf(S) that sends every
element of AutS onto its differential. By a result of H. Matsumoto ([14, The-
orem 2.2]), AutJSf(S) = 7(AutJSf(S))o for some finite subgroup J of AutJSf(S).
Since 0(/s(S)) = (Aut Jz?(S))o, we see that AutS = IS(S) X, where X is the finite
group 4>~\J). Let p: Aut(SD) - • AutS be the map defined by p{0) = 6\S. If
0 e ker p, d e D, and s e S, then dsd~x$(d) = 0{dsd~l)9{d) = 9{d)s; that is,
d~lO(d) is in the centralizer Y of Sin SD. Since Y is a characteristic subgroup of SD,
the map £: ker p - • Aut (DY) defined by £(0) = 6» | (£>7) is well-defined. Next, let
£2: SD —> (SD)/Z(S) be the canonical map, where Z(S) is the center of S. Let e be
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the identity element of SD. For every d e D, we define o(d) as follows:

ft (sd), if there is 5 e S such that sd e Y;
1 ft 00, otherwise.

Clearly, CT is a well-defined map of D onto ft(T); and hence, ft(F) is finite. On the
other hand, since 5 has a faithful representation, Z(S) is finite. As a result, 7 is finite;
and hence, Aut (DY) is finite. Because £ is clearly one-to-one, ker p is finite; and
hence, p"1 (X) is finite. Next, we claim that ISD(S) is closed in Aut (SD). To this end,
suppose that sn e S and v e Aut (SD) are such that Iso(sn) -> v in Aut (SD). Since
p is clearly continuous, Is(sn) —*• p(v) in Aut S. From the fact that Is(S) is closed in
Aut 5, p(v) = /s(s) for some s e S. It follows that i«zn -> s for some zn e Z(S).
Since Z(S) is finite, without loss of generality, we may assume that snz ->• 5 for
some z e Z(5). Consequently, v — ISD(sz~1). This proves that ISD(S) is closed
in Aut (SD) as we claimed. Finally, since Aut (SD) = ISD(S) p~l(X), the lemma
follows immediately from Baire's theorem. This completes the proof.

Recall that T is the maximal central torus in Go. Let A — IG(G) \ T. Clearly,
A is a finite subgroup of Aut7\ In fact, A = /G(D) | T. Since D normalizes K,
IG(D) | K is also a finite subgroup of Aut AT. By an abuse of notation, we still denote
/G(D) | K by A. By Proposition 3, both T and K have A-decompositions. Now, we
are in position to prove our main theorem.

THEOREM 17. Using the same notation as above, in order that AutG has finitely
many components, it is necessary and sufficient that G satisfies the following two
conditions:

(a) T is A-rigid; and
(b) there is no A-simple subtorus ofT that is almost A-isomorphic to any A-simple

subtorus of K that is not in T.

PROOF. First we prove the sufficiency part of the theorem. Suppose that G satisfies
Conditions (a) and (b). It follows from the conjugacy of maximal reductive subgroups
of GthatAutG = IC(GO)AU where Ax - {/ e AutG : f(M) = M}. So,inorderto
prove that Aut G has finitely many components, it suffices to show that A\ has finitely
many components.

Let / be an element of A\. Since E T is a characteristic subgroup of G (by
Lemma 15), for every x e E, we may write f(x) — fE(x)fr(x) with fE(x) e E and
fT(x) 6 T. One sees readily that fE e Aut E, fT e Horn (E, T), and

(10) / * o ( / G 0 0 | £ ) = ( / G ( / (y ) ) |E)o / £ , and

(11) A o (IG(y) | E) = (/C(/O0) | T) o fT,
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for every y e M. Let A2 = {/ e AutG : / ( £ ) = E, f{M) = M). Define
* : A, -> A2 by *(/)(xy) = /£(*)/(y) for every x e £ and y e M. Clearly, *
is a continuous homomorphism of Ai onto ^2- Next, let B{ = {g e Hom(£, T) :
go(Ic(y) | £) = (/G(y) I r )og for every y € M},V = E/[E, £],andexp:JSf(r) -*
T be the exponential map. For every g € Bi, we denote by gv the element in
Horn (V, T) that is induced by g, and g the unique element in Horn (V, S£(T)) such
that expog = gr. For every y e M, we denote by p(y) the automorphism of V
and q(y) the automorphism of JV(T) induced by /G(v). Let g € Bi and j € M .
Clearly, q{y) o g o p(v)"1 6 Hom(V, J?(T)) and exp o<?(y) o j o p(y)"1 =
gv. The uniqueness of g therefore promises that q(y) o g o p(y)~l = g. Since
Hom(£, T) and Hom(V, T) are topologically isomorphic, if we let B2 = {h €
Horn (V, &(T)) : q(y)oho p(y)~l = h for every y € M}, then the foregoing shows
that the correspondence g H> £ gives a homeomorphism of #! onto B2. Since B2 is
clearly connected, so is Bx. On the other hand, in view of (11), it is straightforward
to check that the correspondence / ( - > / , . gives a homeomorphism of the kernel of
* onto fli. Consequently, the kernel of * is connected. By Lemma 14, in order to
prove that Ax has finitely many components, it suffices to show that A2 has finitely
many components.

Since every automorphism of G induces an automorphism of G/Go, and Aut (G/Go)
is finite, in order to prove that A2 has finitely many components, it suffices to show
that A3 = {/ e A2 : x~lf(x) e Go for every x e G ) has finitely many components.

Let / G A^andd € D. Since/(M) = M, we see that f(d) = dyforsomey e Mo.
If it e AT, then dy/(*) = f(dk) = f(dkd'l)dy. Since £ = Z{Ma)o, this implies
that df(k)d~l = f{dkd~l) for every d € Z? and * 6 K; that is, / | K (e Aut A")
commutes with 5 for every 6 G A. Next, let W be the Q-span of the kernel of the
exponential map exp]f:JSf(^T) ->• K. AswesawinSectionl,£hasaA-decompositon
T, T2 • • • Tm d C2 • • • Cn of A-simple subtori of K such that T = Tx T2 ••• Tm, and W is
the direct sum (JSf(7\)rW)©- • •®(^(rm)nW)0(^f(Ci)nW)©- • -®(^(Cn)nW)
of simple A°-submodules, where W is the Q-span of ker(exp,.). Let i e {1, • • •, m],
j e {1, • • •,«}, and 7r,: W -> f̂(71-) n W be tHe projection. Since / ° | W is a A°-
module automorphism of W, and since both J£{Ti) n W and JSf(C7) D W are simple
A°-modules, /} = 7r, o (/° | (JSf(C;) D W)) must be either trivial or a A°-module
isomorphism of &(Cj) n W onto JSf (7}) fl W. It follows from Proposition 5 and
Condition (b) that /• must be trivial. From this, one concludes readily that C =
C\ C2 • • • Cn is A3-invariant. On the other hand, since £ is a simply connected analytic
group, Aut E is an algebraic group. Being a compact subgroup of Aut E,IG(C)\E is
also an algebraic group ([2, Proposition 2, p. 230]). It follows that the normalizer Jf of
h (C) IE in Aut £ is an algebraic group; and hence, Jf has finitely many components.
Together with the fact that IG(C) | £ is a torus, J/o must be trivial ([11, Theorem 1']).
As a result, J{ is finite. Since C is j43-invariant, it is easy to see that the map
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A: A3 -+ Aut (/G(C) | E) defined by A(/)(/c(c) I £) = ( / I £)o(/e(c) | £ )o ( / | £)" '
for every / € A3 and c e C is a continuous homomorphism, and A(i43) is contained
in the finite group ^Y. So, in order to show that A3 has finitely many components, it
suffices to prove that the kernel of A has finitely many components; that is, to prove
that A4 = {/ e A3 : (/1 £) o (/G(c) | £) = (/G(c) | £) o (/1 £) for every c e C] has
finitely many components.

Let / e A,. If c € C and x e £, then (10) implies that f {c) f {x) f {c)~x =
cf{x)c~x; that is, c~lf(c) is contained in the centralizer C£ of E in C. Clearly,
(C£)o is contained in 7\ The fact that C (1 T is finite therefore forces C£ to be
discrete. Together with the fact that the map of C into CE that sends every element
c of C onto c~lf(c) is continuous, one concludes readily that / is the identity on
C. This proves that every element of A4 is the identity on C. Next, we consider
the action of A4 on T. To this end, let f e A4. Since / | K commutes with 8 for
every 8 in A, f° \ (&{T) n W) is a A°-module automorphism of Jz?(T) n W\ Let
i € {1, • • •, m). Since .if(7}) O W i s a simple A°-submodule of 3f(T) n W, by the
uniqueness of the A-decomposition of T (by the remark following Definition 8), we
see that f° | (Jif (T) n W) must map .if (7]) n W isomorphically onto Sf(Tj) D W
for some _/ e {1, •• •,m}. Since /c(ker(exp)) = ker(exp), one concludes readily
that /°(ker(exp,)) = ker(exp7), where exp:-S?(r) -^ T, exp,:^f(7;) -» Th and
exp;: _Sf (Tj) ->• 7; are exponential maps. It follows that / ° | (Jif (7]) D W) induces a
A- isomorphism of 7} onto Ty. By the rigidity of T, j must be equal to / and there
are only finitely many choices of f° \ {££(7}) n W). From this, we may conclude that
the image of the map of A4 into Aut T that sends every element / of A4 onto / | T
is finite. Thus, in order to prove that A4 has finitely many components, it suffices to
show that A5 = {/ € A4 : / i s the identity on K) has finitely many components.

Letjr: M ->• M/S be the canonical map, and L = {£ e Aut7r(M) : 7r(j)~1|(7r(j))
€ n(Mo) for every y e M}. Denote by r): A5 -+ L the map that sends every element
/ of A5 onto the automorphism of n{M) that is induced by / | M. Since n(M)
is compact and n(Mo) is a torus, (Aut7r(M))o = /ff(M)(7r(Mo)) ([11, Theorem 1']).
Because /G(MO) is clearly contained in A5, we see that (Aut7r(M))o is contained in
T)(A5); and hence, r)(As) is closed in L. On the other hand, if we let D = [dit • • •, di]
and let U be the Lie group 7r(A/o)'xAut7r(Mo) with multiplication

for every yh y/ e Mo and £, | ' e Aut?r(Mo), then the map <t> of L into U defined
by <!>(£) = Wd^MnidM, • • •, ffWf1)!(wW)), £ | TT(MO)) is a topological iso-
morphism of L onto the closed subgroup <I>(L) of U ([6, Theorem 2]). Consequently,
4>(JJ(A5)) is closed in the compact group n(Mo)

1 x {1}, where 1 denotes the iden-
tity element of Aut7r(Mo). It follows that rj(A5) has finitely many components.
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By Lemma 14, in order to prove that A5 has finitely many components, it suffices
to show that the kernel of r\ has finitely many components; that is, to show that
A6 — {/ G A5 : f(SD) = SD} has finitely many components.

Since IG(S) is clearly contained in A6, we see that ISD(S) is contained in the image
of the map of A6 into Aut (SD) that sends every element of A6 onto its restriction
to SD. Thus, by Lemma 14 and Lemma 16, in order to prove that A6 has finitely
many components, it suffices to show that A-, = [f G A6 : / is the identity on M}
has finitely many components.

Since A1 is topologically isomorphic with A% = {/ G Aut E : f o (lc(y) I E) =
(Ic(y) I E) o f for every y G M] and As is an algebraic group, we see that A1 has
finitely many components. This proves that if G satisfies Conditions (a) and (b), then
Aut G has finitely many components.

Now, we prove the necessity part of the theorem. We first assume that G is not
rigid; that is, T has a A-decomposition TXT2 • • • Tm such that either

(i) T\ and T2 are almost A-isomorphic; or
(ii) there are infinitely many A-automorphisms of 7\.

Clearly, in either case, K has a A -decomposition of the form Tx T2 • • • Tm C\ C2 • • • Cn.
As above, we let C = CXC2 • • • Cn. Moreover, we let H = T2T3 ••• TmCSD and
F = H C\T\. Clearly, F is finite. Say, F has a elements. Suppose that (i) holds,
and / is a continuous homomorphism of Ti onto T2 such that / has finite kernel and
/ o S = S o / for every S e A. Define g(t) = f(t)a for every t e Tx. Since / is
surjective, g is a non-trivial continuous homomorphism of Tx into T2 and F is contained
in the kernel of g. Now, define r(xth) = xtg(t)h for every x € E,t e 7i,and/z € H.
It is straightforward to check that r is a topological automorphism of G. Again since /
is surjective, the map sending every positive integer i onto r' \ T is a one-to-one map of
the set of positive integers into Aut T. Since (Aut G)o \ T is trivial ([11, Theorem 1']),
we may conclude that Aut G has infinitely many components. Next suppose that (ii)
holds, and let Tt be the collection of all A-automorphisms of TY. If y e r l 5 then
y (F) is a finite subgroup of 7\ of order less than or equal to a. Because there are only
finitely many such subgroups of T\, we see that VX(F) = U{y(F) : y G H} is finite.
Since there are only finitely many functions of F into Ft (F) and Ft is infinite, there
must be in F] an infinite subset T2 such that the restrictions of all elements in f2 to
F are all the same. Fix an element yo in F2. Let F = [y~l o y : y e F2}. Then,
F consists of infinitely many A-automorphisms of T\ which are the identity on F.
we denote by y the topological automorphism of G defined by y(xth) = xy(t)h for
every x G E, t e Tu and h G H. Since {y\T: y e F} consists of infinitely many
elements, we may conclude that Aut G has infinitely many components.

Finally, we assume that K has a A-decomposition T\ T2 • • • TmC\C2 • • • Cn such that
T = TXT2- Tm and there is a continuous homomorphism / of C; onto T\ with finite
kernel, and / o S = 8 o / for every S e A. Let H = TXT2 • • • TmC2C3 • • • CnSD and
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let F — H n Cx. Clearly, F is finite. Say, F has a elements. Define g(c) — f(c)a

for every c e C\. Since / is surjective, g is a non-trivial continuous homomorphism
of C\ into Ti and F is contained in the kernel of g. Now, define r(xch) = xg(c)ch
for every x e E, c e Cx, and h e H. It is straightforward to check that r is a
topological automorphism of G. Again since / is surjective, the map sending every
positive integer / onto r' is a one-to-one map of the set of positive integers into
AutG. Let A{G, T) = {a e AutG : a is the identity on T} and let B = EC f) T.
Clearly, (AutG)o and {r' : / e N} are contained in A{G,T), and B is finite.
Let /x: R ->• R/B be the canonical map, where R is the radical of Go. Clearly,
fi(R) = n(EC) x /x(T). Being an abelian analytic group, n(EC)/[n(EC), n(EC)]
is a direct product of its maximal torus r and a vector group U. Now,leta e A{G, T),
and denote by a the automorphism of fi(R) that is induced by a. If z € EC,
then we may write a(ii(z)) = ai(/i(z))a4(/i(z)), where 6tx{ix{z)) e ^(EC) and
a4(/Li(z)) e /x(r). Clearly,«! e Aut/x(£C) anda4 e Hom(/A(£C), T). Identifying
Horn (/z(£C), T) with Hom(r, T) x Hom(f/, T), we may further decompose aA

into (d2. "3) where a2 G Horn (T, T) and 0:3 € Horn (U, T). This shows that every
element a of A(G, T) can be decomposed continuously into three maps («i, a2, 6c3),
where <5i € Aut(/z(£C)), d2 e Hom(r, T), and d3 e Hom(f7, T). Clearly, the
d2-component of every element in (Aut G)o is trivial. On the other hand, since
[EC, EC] is clearly contained in E, we see that T is not trivial and the d2-components
of {r' : i € N} are all distinct. From this, we conclude readily that AutG has
infinitely many components. The proof of the theorem is thereby completed.

Since any two maximal tori in the radical of Go are conjugate, we see that The-
orem 17 is independent of the choice of K. If, in addition, G is connected, we have
the following version of Theorem 17.

COROLLARY 18. Suppose that G is an analytic group that has a faithful represent-
ation, and that T is the maximal central torus in G. Then, in order that AutG has
finitely many components, it is necessary and sufficient that T is trivial, or that the
dimension ofT is 1 and T is exactly the maximal torus in the radical ofG.

If G does not have a faithful representation, even when G is connected, Theorem 17
fails to hold as shown in the following example due to Dani [4].

EXAMPLE. Let H be the three-dimensional Heisenberg group and Z an infinite
cyclic subgroup contained in the center of H. Let S be a subgroup of Aut(///Z)
that is isomorphic to SL(2, R) and G = (// /Z)xS. Then, the center of G" is an
n-dimensional torus and Aut G" has finitely many components for all n ([4], p. 451).

As an application of our main result, we give a necessary and sufficient condition
for an analytic group G to have Aut G being almost algebraic (provided that G has a
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faithful representation), (cf. [4,16,17].) By an algebraic group, we mean an algebraic
subgroup of GL(V) for some vector space V over R. A subgroup G of GL(V) is said
to be almost algebraic if there is an algebraic subgroup of GL{V) that contains G as a
subgroup of finite index. If G is a subgroup of GL( V), we denote by G* the algebraic
group hull of G; that is, the smallest algebraic subgroup of GL(V) that contains G.
We will need, in the sequel, the following results on almost algebraic groups.

(12) If G is an almost algebraic subgroup of GL(V), then Go = (G*)o and G
has finitely many components. ([5, p. 266].)

(13) A subgroup H of GL(V) is almost algebraic if and only if H is closed, H
has finitely many components, and the Lie algebra of H is algebraic. ([5, (2.2)].)

(14) If G is an analytic group, then (AutG)o, identified as a subgroup of
GL(j£?(G)), is almost algebraic. ([16, 17].)

Now, we are ready to state our result.

THEOREM 19. Suppose that G is an analytic group that has a faithful representation,
and T is the maximal central torus in G. Then, Aut G is almost algebraic if and only
if T is trivial, or the dimension of T is 1 and T is exactly the maximal torus in the
radical of G.

PROOF. In view of Corollary 18 and (12) above, it remains to show that AutG
is almost algebraic if Aut G has finitely many components. To this end, suppose
H = Aut G has finitely many components. Since H normalizes Ho, H normalizes
(Ho)*\ and hence, H(HO)* is a subgroup of GL(j£?(G)) after identification. By (14),
Ho is almost algebraic; and hence, by (12), ((Ho)*)o = Ho. Together with the fact
that H has finitely many components, one sees that (//(//o)*)o = Ho and H(H0)* has
finitely many components, H(HO)* is closed, H(HO)*/H is finite, and H(HO)*/(HO)*
is finite. By [5, Lemma 1.3], the Lie algebra of H(HO)* is algebraic. Then, by (13),
H(HO)* is almost algebraic; and hence, (H\HO)*)*/H\HO)* is finite. Together with
the fact H* = (H(HO)*)*, we have H*/H is finite. This proves that H is almost
algebraic, and the proof of the theorem is complete.
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