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OSCILLATORY PROPERTIES OF SOLUTIONS OF CERTAIN
ELLIPTIC EQUATIONS

NORIO YOSHIDA

Certain elliptic equations of higher order are studied and a sufficient condition is
given that every solution is oscillatory in an exterior domain. The principal tool
is an averaging technique which enables one to reduce the n-dimensional problem
to a one-dimensional problem.

Oscillation theory for higher order elhptic equations of the form A
• • • + amu = 0 (A is the Laplacian in Rn) has been investigated by numerous authors.
We refer the reader to [1, 4] for n = 3, and to [3, 9] for n ~£ 2. In the case where
n = 3, Gorowski [5] obtained the oscillation results for the mth metaelliptic equation
_ _ _ s
Lmu + a1L

m~1u-\ \-amu = 0, where L = £ a,jk(d
2/dxjdxk) (ajk = constant).

i,i=i

We are concerned with the oscillatory behaviour of solutions of the elliptic equation

(1) (Lm + a1L
m'1+ • • •+a m _ 1 £ + a m )u(z)=0 , x e Q,

where fi is an exterior domain of Rn (n ^ 2), that is 17 contains the complement
of some n-ball in Rn. As usual, x = (zj, X2, •.., xn) denotes a point of Rn. It is
assumed that the coefficients a.j (j = 1, 2, . . . , m) are real constants, L is the linear
elliptic operator with constant coefficients

j,k=l °

where oyt = Ofcj and (ojt) is positive definite, and L is the fcth iterate of L
(i = l, 2, . . . , m ) .

The purpose of this paper is to present sufficient conditions for all solutions of (1)
to be oscillatory in Q. Our method is an adaptation of that used in [3].

DEFINITION: A function u: fi —• K1 is said to be oscillatory in Q if u has a zero
in { i £ f l : \x\ > r} for any r > 0, where \x\ denotes the Euclidean length of x.
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298 N. Yoshida [2]

Since fi is an exterior domain in R n , il contains Rn(r 0 ) = {x 6 R n : \x\ > r0}
for some r$ > 0. Let xo = (*?) *2> • • • > ' 'n) ^ e a fixed point of Rn(ro) and let p{x) be
defined by

1/2

where (Ajk) denotes the inverse matrix of (a;-j.). There is an ri > 0 such that {x £
Rn : p(x) > r i} C Rn(r0) . Associated with every function u G C(fi), we define the
function M[«](r) by

(3) M[u}(r) = —^ j ^ u—, r > r1(

where <rn denotes the surface area of the unit sphere in Rn and Sr — {x £ Rn : p(x) =

LEMMA 1. Hue C2(f2), then we obtain

r > n,/
|Vp|

wrhere Z is given by (2).

PROOF: It is easy to see that *(V/))(>i,-j!)(Vp) = 1. Hence, the conclusion follows

from a result of Sulelmanov [8] (see also [12, Lemma 2.1]). D

LEMMA 2 . Hue C4(fi) , then M[u](r) satisfies

(4)V

PROOF: Lemma 1 implies that

(5) M[Lu](r) =r1~n± (r""1 ±

(6) — ^ - f / £»ttk ^ «r«r»-i ./Sr dr

Combining (5) with (6) yields the desired identity (4). U

THEOREM. Assume that the algebraic equation

(7) z m + a1z
m-1 +a2z

m-2 + --+am = 0
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ias simple roots only and has no real nonnegative root. Then every solution u £ C2m(fl)
of (1) is oscillatory in n .

PROOF: Suppose to the contrary that there exists a solution v, € C2m(fl) of (1)
which does not oscillate in f2. Without loss of generality we may assume that v, > 0 in
Rn(r2) for some Ti ^ T\ . The hypothesis implies that

zm + a^™-1 + a2z
m~2 + • • • + am = J J (z2 + 2bkz + (b\ + c\)) J ] (* + d*),

k=l

where ck > 0(fc = 1, 2, . . . , p), dk > 0(k = 2p + 1, 2p + 2, . . . , m), -bj±icj£ -bk±
ick(j ^ k, i = v/~l) a n ^ dj ^ dk(j =fi k). Hence, (1) can be written in the form

l ik=2p+l .

It follows from a result of Wachnicki [10, Theorem 2] that there exists a unique system
uk(x)(k = 1, 2, . . . , p), uk(x)(k = 2p + 1, 2p + 2, . . . , TO) such that

(L2 + 2bkL + (b2
k + c2

k))uk(x) - 0 (i = 1, 2, . . . , p),

(L + <*!)«*(*) = 0 (fc = 2p + 1, 2p + 2, . . . , m)

and
p m

(8) u(x) = Y,Zk(x)+ Y, «*(*)
J f c = l k=2p+l

(see [4, Lemma 4]). Then we easily obtain

(9) M[«](r) = £jlf[54](r)+ £ M[uk)(r)
t=l k=2p+l

and we observe, using Lemmas 1 and 2, that

(b\ + c\)M[uk){r) = 0.
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Using the same arguments as in [3, p. 231], we see that

(11) /—1)/»W[t t i ] ( r )«i l*8inrr(^-( l -n 2)4-1«-1) 1 / a«I . + « ^ (r -» oo)

for some constants Ak and Ok [k = 2p + 1, 2p + 2, . . . , m). The following system

(12) y' = (A+V(r))y, y = \yu y2, y,, y4),

is associated with (10), where

A =

V{r) =

/o
0
0
0 -

0 1 0 0 \
0 0 1 0
0 0 0 1

0 0
0 0
0 0

0 \
0
0

~1 ("-1X"-3)'\ (n-l)(n-») 2(n-l)
r r3 J T3 r

are

Since det (A - \I) = A4 + 26* A2 + (b2
k + c|) , we find that the characteristic roots of A

i ± i/*2, where m = 2"1/2 (-bk + (b\ + 4 ) 1 / 2 ) and fi2 -

+ (ft2. + c2.) J . It is easily seen that the characteristic polynomial for

A + V(r) is given by

Using Ferrari's formula (see [11, p.190]), we conclude that the characteristic roots Ay(r)
of A + V(T) can be written in the form

j - 3, 4),

where lim /xjt(r) = /xjt (fc = 1, 2). We easily see that

|F'(r)|dr < oo and lim V(r) = 0.
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Then there are the solutions $ j ( r ) (j = 1, 2, 3, 4) of (12) and r (rj ^ r < oo) such
that

( [r \
J t i m ^ ^ e x p I - / \j{s)da\ =pj (j = 1, 2, 3, 4),

where each pj (j = 1, 2, 3, 4) is a characteristic vector of A associated with /xi +

(-l) '+ 1t / i2 (j - 1, 2), -m + (-iy+1iiJ,2 (j = 3, 4) (see [2, p.92]). Hence, the following

holds:

I I I / \ f / \ 3*4-1 • • /

Ut\\S)ds I [ cos / Ui%[s)ds ~\~ (—1) i s in / LL2
J \ J 7 J7

( r \ f r j+i r
I — / ni[8)ds ) I cos / fi2[s)da -\- (—1) isin / /
\ J7 ) \ J7 J7

( r -^oo; i = 3,4),

where Pj = KjPj for some constants Kj £ R1 (j = 1, 2, 3, 4). Since M[ujfe](r) is a real-
valued function and a linear combination of the first components of $j (j = 1, 2, 3, 4),
we obtain

(13)
/ f \ f tr

sin I / fi2(s)ds + t

+ Ck exp ( - I fi!(3)ds J sin I I fj.2{s)ds + Tk) (T -> oo)

for some constants I?* , C*, o-t and T* (fc = 1, 2, . . . , p). Combining (9), (11) and (13)
yields

(14)

k=2p+l

^ B k p ([_ m ( ) d j sinin f A /x2(«)ds + *kJ

(- I Hi(s)d8j sin f / /x2(s)ds + rkJ (r -^ do).

Since u > 0 in Rn(r2), the left hand side of (14) is positive for r > r2. However, the
right hand side of (14) changes sign in an arbitrary interval (r, oo) (see [4, Lemma 6]).
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This is a contradiction. If (7) has only simple negative or only simple complex roots,
then we replace (8) by

m/2

and u(x) = ^ uk(x), (L2 + 2bkL + b\ + c2
k)uk(x) = 0,

respectively. Proceeding as above, we are led to a contradiction. The proof is com-
plete. D

REMARK 1. In the case where fi — R", x0 = 0 and L is the Laplacian A in 1 " , we
conclude that p(x) = \x\ and |Vp| = 1. Then, M[tt](r) given by (3) reduces to the
spherical mean of u over {x 6 Rn : |x| = r}.

REMARK 2. In view of Lemma 1, we obtain

Hence, we can extend the results of Naito and Yoshida [7] to the more general elliptic
equation

Lmu + a^L"1-^ + • • • + amu + $(«, u) = f(x),

where L is given by (2).

REMARK 3. If u € C2m(fi) and u satisfies (1), then u is analytic in fl (see [6, p.178]).
Hence, the set of zeros of a nontrivial solution of (1) does not have interior points.

REMARK 4. Our theorem generalises a result of Gorowski [5, Theorem 3]. If L = A,
our results reduce to the results of [1, 4] for n = 3, and to the results of [3, 9] for
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