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OSCILLATORY PROPERTIES OF SOLUTIONS OF CERTAIN
ELLIPTIC EQUATIONS

NoORIO YOSHIDA

Certain elliptic equations of higher order are studied and a sufficient condition is
given that every solution is oscillatory in an exterior domain. The principal tool
is an averaging technique which enables one to reduce the n-dimensional problem
to a one-dimensional problem.

Oscillation theory for higher order elliptic equations of the form A™u+a;A™ 1u+
--++amu =0 (A is the Laplacian in R™) has been investigated by numerous authors.
We refer the reader to [1, 4] for n = 3, and to [3, 9] for n > 2. In the case where
n = 3, Gérowski [5] obtained the oscillation results for the mth metaelliptic equation
- - - 3
L™u+a; L™ u+- --+amu=0,where L= 3 ajz (az/az,-azk) (ajx = constant).

Jik=1

We are concerned with the oscillatory behaviour of solutions of the elliptic equation
(1) (Lm + ¢11L‘m_1 + -+ am—lL + a‘m)‘u’(z) = 01 zc Q?

where  is an exterior domain of R™ (n > 2), that is  contains the complement
of some n-ball in R™. As usual, z = (2, ©2,..., 2n) denotes a point of R™. It is
assumed that the coefficients a; (j =1, 2, ..., m) are real constants, L is the linear

elliptic operator with constant coeflicients

n az
(2) L= Qg —,
j%l 7 6:,—6::,,
where a;x = ap; and (aji) is positive definite, and Lk is the kth iterate of L

(k=1,2,...,m).
The purpose of this paper is to present sufficient conditions for all solutions of (1)

to be oscillatory in 2. Our method is an adaptation of that used in [3].

DEFINITION: A function u: £} = R? is said to be oscillatory in € if u has a zero
in {z € Q: |z| > r} for any r > 0, where |z| denotes the Euclidean length of z.
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Since (1 is an exterior domain in R™,  contains R™(rg) = {z € R™ : |z| > ro}
for some vy > 0. Let zo = (29, 3, ..., =) be a fixed point of R™(ry) and let p(z) be
defined by

1/2
plz) = (Z Aji(z5 —23) (2 — mk)) ;

where (A;ji) denotes the inverse matrix of (ajx). There is an 7, > 0 such that {z €
p(z) > 11} C R™(rg). Associated with every function v € C(f), we define the
function M{u)(r) by

1 do
(3) M) = oy /S g T

where ¢, denotes the surface area of the unit sphere in R™ and S, = {z € R": p(z) =
r}.

LEMMA 1. If u € C*(f2), then we obtain
1 do 1n @ a1 d

/ Lu— =~ . (r ;M[u](r)), r>r,

Tarn! Vel

where L is given by (2).

PROOF: It is easy to see that *(Vp)(4;x)(Vp) = 1. Hence, the conclusion follows
from a result of Suleimanov [8] (see also [12, Lemma 2.1]). 0

LEMMA 2. If u € C*(Q), then M[u](r) satisfies

do d d d d
2y — = 1-n__ n-1_" 1-n * n-1_*% )
e [ Py - (e (o ) o

PROOF: Lemma 1 implies that

d d
—pl—n__ n—1_*%
(5) MiLul(r) = 7= (2 S M) ),
1 2 do _ l—ni n—l_‘i
(6) —Unr"'l / Léu IVPl =r " (r drM[Lu]('r) .
Combining (5) with (6) yields the desired identity (4). 0

THEOREM. Assume that the algebraic equation

(7 2™t az™ +az™ it am =0
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has simple roots only and has no real nonnegative root. Then every solution u € C*™({2)
of (1) is oscillatory in 2.

PROOF: Suppose to the contrary that there exists a solution u € C?™(Q) of (1)
which does not oscillate in 2. Without loss of generality we may assume that « > 0 in
R™(r;) for some r; 2 r;. The hypothesis implies that

P m
2™+ a1z b a2z2™ 24 ta,, = H (zz + 2biz + (bi + ci)) H (z +di),
k=1 k=2p+1

where ¢k > 0(k=1,2,...,p),de >0(k=2p+1,2p+2,...,m), —bjtic; # -+
ick(j # k,i=+/-1) and d;j # di(j # k). Hence, (1) can be written in the form

)4 m
(H (L2 +26L+ (B +3)) [ (L+di)>u=o.
k=1 k=2p+1 |

1t follows from a result of Wachnicki [10, Theorem 2] that there exists a unique system
ur(z)(k=1,2,...,p), ur(z)(k=2p+1,2p+2, ..., m) such that

(Lz + 2bi L + (bi +¢ci))ur(z) =0 (k=1,2,...,p),
(Z+B)ur(z) =0 (k=2p+1,2p+2,...,m)

and
(8) wz) =) w(z)+ ), ua(2)
: k=1 k=2p+1

(see (4, Lemma 4]). Then we easily obtain
)4 m
(9) Mluj(r) =Y M@)(r) + Y Mlu(r)
k=1 k=2p+1
and we observe, using Lemmas 1 and 2, that

4 (r"—ldirM[uk](T)) + & Mu(r) = 0,

(10) 'l_"dir (r"“‘ dir (r“"dii; (r"_l %M[Ek](r))))

+ 2= (m L M) ) + (8 + D ME) =0

1—n
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Using the same arguments as in [3, p.231], we see that
(11) D2 Mui)(r) ~ Agsin (‘L (&-(0- n2)4'15"2)1/2da + 0;,) (r — o0)
for some constants Ay and 6, (k=2p+1,2p+2,..., m). The following system

(12) yl = (A + V(T))y, y= '(ylv Y2, Ys, y4)1

is associated with (10), where

r

0 1 0 0
0 0 1 0
4= 0 o o 1}’
~(B+c2) 0 —2b 0
0 0 0 0
0 0 0 0
Vi =1, 0 0 0
0 _(2bk1r:l _ ("—1’)‘&"-3)) _(ﬂ—l)gﬂ—-”) _2('*'—1)

Since det (4 — AI) = A* + 2b;A? + (b2 + c%), we find that the characteristic roots of 4
1/2
are +p; =+ ipz, where py = 2712 (—bk + (bf= + ci)l/z) and p; =

1/2
9-1/2 (b;c + (b'fc + ci)llz) . It is easily seen that the characteristic polynomial for
A + V(r) is given by

Y 2(n — 1)’\3 + (2bk + (n— 13£n—3))A2

r

+ (2bkn_1 - (n_1)§"_3))A+bi+ci.
T Yl

Using Ferrari’s formula (see [11, p.190]), we conclude that the characteristic roots A;(r)
of A+ V(r) can be written in the form

M) = =" () + () il)  (=1,2),

M) = =2 )+ 1P ) (=3, 9)

where lim pi(r) = pr (k =1, 2). We easily see that

/ [V!(r)|ldr <oco and lLim V(r)=0.
- r— 00
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Then there are the solutions &;(r) (7 =1, 2, 3,4) of (12) and 7 (r; < ¥ < ) such
that

r]i.IEo ®;(r)exp (_J[ z\j(s)ds) = pj (7=12,3,4),

where each p; (j =1, 2, 3,4) is a characteristic vector of A associated with p; +
(=Y, (5 =1, 2), —p1+(=1Y ip, (G = 3, 4) (see [2, p.92]). Hence, the following
holds:

r

<I>J-1-("‘1)/2 = Pjexp (/y pl(s)d.s) (cosﬁ p2(s)ds + (—1)j+1isin/_ uz(s)ds)
(r — o0;7 =1, 2),
&,;7(" /2 x Pexp (——‘L pi(a)ds) (cosj[ pa(s)ds + (1)t sin[_ pz(s)ds)

(r— o005 =3,4),

where P; = K;p; for some constants K; € R! (j =1, 2, 3, 4). Since M[u](r) is a real-
valued function and a linear combination of the first components of &; (j =1, 2, 3, 4),
we obtain

(13)
+(*=1/2 M[&,](r) = By exp ( ﬁ pl(a)d3> sin ( ﬁ p2(s)ds + ak>

+ Crexp (— /~ ) ul(s)ds) sin ( /~ " a(s)ds + 'r;,) (r — o)

for some constants By, Cx, o and 7x (k =1, 2, ..., p). Combining (9), (11) and (13)

yields
(14)
(D2 Mlu)(r) ~ k;:;HAk sin ( /~ ' (& - (1-n?)a"1572) 2ds + ok)
+ kz: Byexp ( ﬁ pl(s)ds) sin ( /~ " pa(s)ds + a,,)
+ é Chexp <— ,[ yl(s)ds) sin ( ,[ pa(s)ds + ‘r;,) (r — ).

Since u > 0 in R™(r2), the left hand side of (14) is positive for r > r,. However, the
right hand side of (14) changes sign in an arbitrary interval (r, 0o0) (see [4, Lemma 6]).
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This is a contradiction. If (7) has only simple negative or only simple complex roots,
then we replace (8) by

u(z) = Zuk(z), (L +d})us(z) =0,
k=1

m/2
and u(z) = Z ur(z), (L% + 26, L + b} + c2)x(z) = O,
k=1

respectively. Proceeding as above, we are led to a contradiction. The proof is com-
plete. a

REMARK 1. In the case where ) = R", zp =0 and L is the Laplacian A in R”, we
conclude that p(z) = |z| and |Vp| = 1. Then, M{u|(r) given by (3) reduces to the
spherical mean of u over {z € R™: |z| =r}.

REMARK 2. In view of Lemma 1, we obtain

1 k do — l—ni n—li * —
/g' Lfu—— (r i Mu)(r), (k=1,2,...,m).

oprn1 |Vp|
Hence, we can extend the results of Naito and Yoshida [7] to the more general elliptic

equation
L™u+ a L™ u 4 -+ amu + &(z, v) = f(2),

where L is given by (2).

REMARK 3. If u € C?™(Q) and u satisfies (1), then u is analytic in Q (see [6, p.178]).
Hence, the set of zeros of a nontrivial solution of (1) does not have interior points.

REMARK 4. Our theorem generalises a result of Gérowski [5, Theorem 3]. If L = A,
our results reduce to the results of [1, 4] for n = 3, and to the results of {3, 9] for
n22.
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