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1. Introduction

Let G be an abelian lattice ordered group (an /-group). If G is, in fact, totally
ordered, we say that G is an 0-group. A subgroup and a sublattice of G is an
/-subgroup. A subgroup C of G is called convex if 0 ^ g ^ ceC and geG imply
g e C, C is an l-ideal if C is a convex /-subgroup of G. If C is an /-ideal of G, then
GjC is also an /-group under the canonical ordering inherited from G. If, in fact,
G/C is an 0-group, then C is said to be a prime subgroup of G.

A prime subgroup C of an 1-group G is an l-ideal such that F = G + \ C is a
prime filter; that is, F satisfies:

(1) x /\yeF for all x,yeF,
(2) x e F if x S; y and y e F, and
(3) x + y e F, for x ^ 0 and j> ^ 0, implies x e f o r y e F .

If F is an ultrafilter (a maximal prime filter), then C is said to be a minimal prime
subgroup of G (Conrad and McAllister (1969; page 148)).

If g is a nonzero element of G, let Lg be an l-ideal of G maximal without g.
Such an /-ideal Lg is said to be a regular l-ideal and is called a value of g. It is
well-known that Lg is a prime subgroup of G (Conrad, Harvey and Holland
(1963; page 150)). Furthermore, if Ug is the smallest /-ideal of G containing Lg

and g, then UJLg is an 0-subgroup of the reals, and we say that Ug covers Lg.
Such a pair of /-ideals (Ug,Lg) constitutes a jump, and the quotient group UJLg

is a component of G.

A famous theorem of Hahn (1907) states that a (divisible) 0-group G can be
embedded in the lexicographic product of its components. Hill and Mott (1973)
attempted to obtain a corresponding embedding theorem for the so-called general-
ized discrete 0-groups, that is, 0-groups all of whose components are order
isomorphic to the group Z of integers. Such an embedding is not possible, in
general, but, on the contrary, it is possible for countable generalized discrete
0-groups.

Here we take the definition of Hill and Mott (1973) one step further. We say
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that an /-group G is generalized discrete (abbreviated g.d. /-group) if each com-
ponent of G is lattice isomorphic to Z.

We gain insight into the structure of g.d. /-groups by analyzing several well-
known embedding theorems, and among the embedding theorems for /-groups
(besides Hahn's theorem (1907)), two, especially, stand out: the embedding
theorem of Lorenzen (1939) and the embedding theorem of Conrad, Harvey, and
Holland, (1963; page 153).

These two results, together with results from Hill and Mott (1973), establish
embedding theorems for g.d. /-groups. In particular, Lorenzen's theorem yields
an embedding of a g.d. /-group in the cardinal product of g.d. 0-groups. Moreover,
this result, with the assistance of an embedding theorem of Hill and Mott (1973),
furnishes an embedding (reminiscent of the Conrad-Harvey-Holland embedding
theorem) of countable g.d. /-groups in the lexicographic product V{Zb,h), where
each Z6 is isomorphic to Z, and where A is a root system.

The point of view in Hill and Mott (1973) was that generalized discrete 0-groups
offered a natural extension of the order properties of the additive group Z to 0-
groups of higher rank. We also investigated the algebraic properties of generalized
discrete 0-groups; in particular, we showed that a countable generalized discrete
0-group is algebraically free — that is, free in the category of abelian groups. Here
it is shown that the same result holds for countable generalized discrete /-groups.
Moreover, subgroups and cardinal sums of g.d. /-groups are again generalized
discrete, but the cardinal product of infinitely many g.d. /-groups is not generalized
discrete.

One observation at this point, then, is this: the concept of a generalized dis-
crete /-group is related to algebraically freeness •— for a g.d. /-group is Kj-free,
but on the contrary, not to order freeness — for the free abelian /-groups intro-
duced by Weinberg (1963) are not generalized discrete (except in one trivial
case). On the other hand, a free abelian /-group is algebraically free, Hill (preprint).

Throughout this paper, let Z denote the additive group of integers under the
natural order. Moreover, if Gx is a partially ordered group for each 1 e A, let
Lite A^J. and YJ\ e AGX denote the cardinal product and cardinal sum of the Gk. If
A is a finite set, we also use the notation, G1 © c G2 ©c ©c •" ©c GB) to denote
the cardinal product.

2. Equivalent forms of the definition

Let us begin by listing some other forms of the definition of generalized dis-
crete /-group. The proof is straightforward.

PROPOSITION 1. Let G be an abelian l-group. The following conditions are
equivalent:

(1) G is generalized discrete.
(2) For each prime subgroup H of G, GjH is generalized discrete.
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(3) For each regular subgroup H of G, GjH is generalized discrete.

(4) For each minimal prime subgroup H of G, GjH is generalized discrete.

Of course, implicit in the above proposition is the following: If C is an
/-ideal of a generalized discrete /-group G, then G/C is also a g.d. /-group.

3. Stability properties of generalized discrete /-groups

Suppose that G is a g.d. /-group, and suppose, further, that H is an /-group
bearing some (as yet unspecified) connection with G. It is natural to ask: is H also
generalized discrete? We have already seen that the answer is affirmative in case
there is a lattice epimorphism of G onto H. We show, in this section, that the
answer is affirmative in other situations, too. Let us begin with the case where H is
a sublattice of G.

PROPOSITION 2. An l-subgroup of a generalized discrete l-group is general-
ized discrete.

PROOF. Let hsH and K be a value of h in H. By Conrad and McAllister
(1969; page 188), there is a value M of h in G such that M n H = K. This implies
that HjK is a 0-subgroup of the generalized discrete O-group GjM, and, with the
aid of Proposition 4.1 of Hill and Mott (1973), that HjK is generalized discrete.
Proposition 1 gives the conclusion at once.

I f0 ->^4^ .B-^C->0 i san exact sequence of partially ordered groups, then the
sequence is order exact if B + O a. (A) = a(A+)and fi(B+) = C+ (here G+ denotes the
positive cone of a partially ordered group G). The sequence is lexicographically
exact if B+ = {beB\ /?(/>) > 0 or bea(A+)}, and, in this case, B is lexicographic
extension of A by C. It is well-known that a lexicographic extension of an /-group
A by an O-group C is again an /-group. Let us consider lexicographic extensions
of generalized discrete /-groups.

PROPOSITION 3. Suppose that A is an l-group and that C is an O-group. If A
and C are generalized discrete, then any lexicographic extension of A by C is
also generalized discrete.

The proof follows, essentially, from the fact that each /-ideal of B contains,
or is contained in, <x(A).

Of course, an arbitary extension of a g.d. /-group by a g.d. /-group need not
be generalized discrete; in fact, a subdirect sum of two groups will provide an
example. But before describing the order properties of a subdirect sum of two
/-groups, let us recall a few simple acts about the cardinal product of a collection
of /-groups {Gx}XeA. First, ~L1eAGxis an /-ideal of Y[ * S A ^ > second, /-ideals of
£ keAGk are of the form C = Z t S A Q> where each Ck is an /-ideal of G, and,

third, X*LA GJC is lattice isomorphic to ^te\(GJCk). Conclude, therefore,
that the prime subgroups of 2 * e A G x are of the form C = ^L\e\Cx, where
Ck = Gx for all X ^ Ao, and C, 0 is a prime subgroup of Gko.
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PROPOSITION 4. The cardinal sum of generalized discrete l-groups is general-
ized discrete.

The proof is easy from Proposition 1 and the above remarks.
To be sure, one could ask: is the cardinal product of g.d. /-groups again

generalized discrete? This question has a negative answer; in fact, we show in
Proposition 8 that the cardinal product of infinitely many copies of Z is not
generalized discrete.

For the moment, however, let us discuss the order properties of a subdirect
sum of two /-groups G and H. Suppose that a and % are, respectively, lattice
epimorphisms of G and H onto the /-group K. A subdirect sum of G and H deter-
mined by a and T is the subgroup S of the cardinal sum of G and H consisting of
all elements (g, h) such that er(gr) = x(h). Clearly, S is a sublattice of G © c H, and
the projection maps of G © c H onto G and H have kernels naturally identified
with B and A, the kernels of a and T, respectively. Also, A © c B is an /-ideal of S,
and S/(A © c B) ~ K. Moreover, each prime subgroup of S contains A or B, and
any totally ordered epimorphic image of S is, therefore, either an image of G or
of if.

The following proposition is immediate.

PROPOSITION 5. A subdirect sum of l-groups G and H is generalized discrete
if and only if G and H are generalized discrete.

In particular, if £ and G are g.d. /-groups, while H is not generalized discrete,
then S is an extension of B by G, but S is not generalized discrete.

REMARK. In Mott (to appear), I defined the dimension of an /-group G in
the following manner. First, if G is an 0-group, then dim G = n if G contains
exactly n distinct convex subgroups ( ^ G). Second, if G is an /-group, then
dim G = sup {dim G/// | / / is a prime subgroup of G}. Thus, if S is the subdirect
sum of the /-groups G and H, then dimS = max {dim G, dim//}.

4. Some embedding theorems

Lorenzen's Embedding Theorem states that an /-group G can be embedded as
a sublattice in the cardinal product of 0-groups of the form GjPx, where PX is a
(minimal) prime subgroup of G. A conclusion follows at once:

PROPOSITION 6. A generalized discrete l-group can be embedded in the
cardinal product of generalized discrete 0-groups.

Recall: an /-group is algebraically free if it is free as an unordered abelian
group — that is — if it is free in the category of abelian groups. The following
result is a direct generalization of Corollary 4.2 in Hill and Mott (1973); it follows
immediately from the cited result for 0-groups, Proposition 2, and Specker's
Theorem (Fuchs (1960; page 1968)).
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PROPOSITION 7. A countable generalized discrete l-group is algebraically
free.

Now let us answer the question raised after Proposition 4; to wit, is the cardinal
product of g.d. /-groups again generalized discrete? The answer to this question
will also show that the converse of Proposition 6 is invalid.

PROPOSITION 8. The cardinal product of infinitely many copies of Z is not
generalized discrete.

PROOF. It suffices to show that the cardinal product P of countably many
copies of Z is not generalized discrete. If B is the subgroup of all bounded ele-
ments in P, then it is not difficult to argue that PjB is divisible. Alternately, if S is
the cardinal sum of countably many copies of Z, then P/S contains a divisible sub-
group (Griffith (1970; page 44)). Thus, in either case, P has an order homomorphic
image L which contains a divisible subgroup. We conclude: L is not generalized
discrete, and neither is P.

In Proposition 6 we proved an embedding theorem for g.d. /-groups, and
Lorenzen's embedding provided the essential clue to the proof. After this success,
we turn our attention to another well-known embedding theorem.

Conrad, Harvey, and Holland (1963) extend Hahn's embedding theorem to
include all /-groups. They define the lexicographic product V of partially ordered
groups Gs, indexed by a partially ordered set A.

Now comes the essential point. If the set A is a root system and if each G6 is
an 0-group, then V is, in fact, an /-group. (A tacit assumption in Hahn's theorem
for 0-groups is that A is linearly ordered.) The concept of a root system, then, is
the major clue to understanding the embedding theorem of Conrad, Harvey, and
Holland.

DEFINITION. A partially ordered set A is a root system if for each 6 e A, the set
{a e Aj a 2: 5} is totally ordered, or equivalently, if noncomparable elements do
not have a lower bound.

Let V = V(Gd, A) be the set of all those elements in the cartesian product of
{Gs}Ss& whose support satisfies the ascending chain condition. Thus, an element
v = (••-, t?a, •••) is in V if and only if {d e A j vs ^ 0} contains no infinite ascending
chains. We say that vd is a maximal component of v if vt ^ 0 and va = 0 for all
a E A such that 5 < <x. Define v e V to be positive if each maximal component is
positive.

Against this general background, let us analyze one isolated situation that
will become the focus of our attention. Two root systems X and Y contained in A
are mutually unrelated if for each xeX and ye Y, x and y do not compare
under the order relation on A. Then if A is the union of disjoint mutually unrelated
root systems Aa, V = V(GS, A) is order isomorphic to the cardinal product of
Va = V(Gd, AJ. In particular, if A is trivially ordered, then V(Gd, A) is the cardinal
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product of {Gt}deA. On the other hand, if each Aa is linearly ordered, then
Va = V(Gd, AJ is an 0-group, and, in this case, Va is the traditional lexicographic
product of {Gd}SeAa in Hahn's theorem.

Here, then, we have arrived at the key to the argument of the next proposi-
tion. In brief, if the root system A is the union of a family {AJ of linearly ordered,
mutually unrelated root systems Aa, then V = V(G6, A) is /-isomorphic isomorphic
to the cardinal product of the 0-groups V(Gs, AJ.

PROPOSITION 9. A countable generalized discrete l-group G is a sublattice of
a lexicographic product of copies of Z.

PROOF. By Proposition 6, G can be embedded as a sublattice in f l t ^ A ^ ,
where A is an index set for the minimal prime subgroups Mx of G, and where
Gx = G/Mx is a countable generalized discrete 0-group. By Theorem 5.1 of Hill and
Mott (1973) each Gx can be embedded in the lexicographic product (in fact, sum)
of copies of Z over a linearly ordered set A .̂ Let A be the disjoint union of the Ax

and let A be partially ordered in such a way that the subsets Ax are mutually
unrelated. Then G can be embedded in V(Zd,A), where each Zx is O-isomorphic
to Z.

REMARKS. The countability assumption is necessary in Proposition 9, for in
Hill and Mott (1973) an example is given of a generalized discrete 0-group G that
cannot be embedded in a cartesian product of copies of Z. Moreover, it is actually
proved in Hill and Mott (1973) that a countable generalized discrete 0-group
can be embedded in a lexicographic sum of copies of Z. That is: each Gx

is embedded in Vf(Zd,Ax), the 0-subgroup of V(ZS,AX) consisting of all elements
with finite support. We now ask: can we prove an analogous result for countable
generalized discrete /-groups? Or, in other words: in the embedding of Proposi-
tion 9, can each element of G be identified with an element of V(Zd, A) with finite
support? In short: can G be embedded in S * e A Vf(Zs, Ax)f The answer to this
question can be found in example I of section 6. This example shows that even if
the group G has a basis, there need not exist an embedding into 1t*XeAVf(Zi,Ax).

If a group G is a sublattice of a cardinal product of generalized discrete
0-groups, Proposition 8 shows that G need not be generalized discrete. The group
G must, therefore, be analyzed more closely. Proposition 10 will be useful in this
respect. First, let us recall the definition of subcardinal product. If G and Gx are
partially ordered groups with positive cone P and Pk, respectively, then (G, P) is a
subcardinal product of n*(^>^V) ^ P = G t^Yi* A anc* ^ f ° r e a c n projection
map n , onto Gx, nk(P) = Px.

PROPOSITION 10. Suppose that Hx is a convex subgroup of a generalized
discrete 0-group GX. Moreover, suppose that G is a sublattice and a subcardinal
product of the groups Gx such that E* Hx s G. If Gj 2,*XHX is generalized
discrete, then so is G.
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PROOF. The proof is essentially the same as that of Proposition 3.1 of Mott

(to appear) but we include it here for completeness.

Let K be a prime subgroup of G and let a be the natural homomorphism onto

the 0-group T = GjK. If K 2 Z \ EX, then T is an Z-homomorphic image of the

generalized discrete group G/ 1\HX. If K $ I.*kHx, then Hko $ K for some Xo.

Let H be the subgroup of f ] t Gx consisting of all elements {gJ with gXo = 0. If

h0
eH^o\K> a n d i f ^ o i s P o s i t i v e > t h e n h/\hXo = 0 for each heH C\G. Since K

is a prime subgroup, H n G s I W e conclude, therefore, that T is an Z-homo-
morphic image of G/G n H. But G a subcardinal product of the groups Gk implies
that GIG n H is O-isomorphic to ( [ } * Gx)/#- O r > i n o t n e r words: GjG nH ~ GXo.
Thus, T is an image of GXo, and we conclude: T is generalized discrete.

5. Order freeness

Up to this point we have been considering certain similarities between
generalized discrete /-groups and algebraically free groups. But few comparisons
are entirely exact, and the present one is no exception. For instance, there are
two features fundamental to the concept of algebraically free groups, the existence
of a basis and the universal mapping property, but even though these features
have their counterparts in ordered groups, they are not necessarily satisfied by
generalized discrete Z-groups.

Let us first discuss the notion of a basis for a partially ordered group. A posi-
tive element of a partially ordered group G is basic if the set {x e G\ 0 ^ x ^ b)
is totally ordered. Conrad introduces the concept of basis for an /-group G in
Conrad (1961), and then proves that G has a basis if and only if each positive
element of G exceeds a basic element.

This question, then, arises: does a generalized discrete Z-group necessarily have
a basis? Example II gives a negative answer. We turn our attention, therefore, to a
class of groups characterized by a universal mapping property — the free abelian
Z-groups of Weinberg (1963).

If F is an algebraically free group, then a free abelian Z-group over F is an
Z-group L, together with an embedding a : F -> L, such that for each Z-group G
and each homomorphism y :F -> G, there is an Z-homomorphism ji :L -> G such
that /fo = y. The traditional model for L is obtained by taking all possible total
orders 7\ on F and letting L be the Z-subgroup of the cardinal product of the
O-groups (F, Tx) generated by the diagonal (Conrad and McAllister (1969)) .In this
setting, the elements of F are identified with the diagonal elements of YYx (•*% 71).
Weinberg (1963) was the first to discuss free abelian Z-groups, and he showed in
Weinberg (1965) that a free abelian Z-group L can be embedded in a cardinal
product of copies of Z.

Despite the fact that any free abelian l-group L is algebraically free (Hill
(preprint)), L is not, for all practical purposes, generalized discrete.
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PROPOSITION 11. A free abelian l-group L over a free abelian group F is
generalized discrete if and only if F is isomorphic to Z.

PROOF. Let F be a free abelian group generated by A. If card A ^ Ko, then
Q, the additive group of rational numbers, is a homomorphic image of F. But then
the totally ordered group Q is the image of L under an /-map. Thus, L is not
generalized discrete.

Thus, card A is finite. If card A = n > 1, then F can be embedded in the
group R of real numbers. With this ordering, F is clearly not generalized discrete,
and since the identity map on F can be lifted to an Z-map of L onto F we see that
L is not generalized discrete in this case either.

Therefore, card A = 1.

6. Some examples

We conclude with some examples. Examples I and II are significant because
they answer questions raised in the paper. Example III is included as an applica-
tion of Proposition 10.

I. Bounded integer-valued sequences. Let G be the sublattice of all bounded
sequences in n*>e<»Z;, the cardinal product of countably many copies of Z. Then
G is a generalized discrete group of dimension one. The fact that G is one dimen-
sional (epi-archimidean in Conrad's terminology (preprint)) follows since if / > 0
and g > 0, there is an integer n such that nf(i) > g(i), for all i such that f(i) # 0.
Moreover, for each proper prime subgroup of C of G, G\C is isomorphic to Z and
is generated by the constant function h, where h(i) = 1 for each i (Conrad
(preprint)). Each positive element g eG exceeds a basic element•— namely, for
some integer i, g exceeds the characteristic function of the set {i}. Therefore, G
has a basis, but G cannot be embedded in a cardinal sum of copies of Z since G
does not satisfy the descending chain condition on positive elements.

II. Periodic integer valued functions. The group G above contains the sub-
lattice H of all periodic integer-valued sequences. Thus, H is also generalized
discrete. But H contains no basic elements (Conrad, Harvey and Holland (1963;
page 165)), thus, this example answers the question raised in Section 5.

III. Let Z ®LZ denote the lexicographic product over the linearly ordered
set A = {1,2}. Sheldon (to appear) considers the group S of all functions / from
the positive integers into Z ®LZ for which there exists integers a and b such that
f(n) = (0, an + b) for all positive integers n outside a finite set. Observe that S is
a subcardinal product of (Z ©L Z); for ieco, and that S 3 I*eco(Z ©LZ)f.
Moreover, the map a: S -> Z ©L Z denned by <r(/) = (a, b) is an Z-map with
kernel L*isa(Z © t Z)t. We conclude: S is generalized discrete.

IV. An example of Sheldon. For each b e [0,1], let hb(x) = [l/(x - b)2],
where [ ] denotes the greatest integer function. Define hb(b) = 0. Consider the
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group generated by all finite step functions and all functions hb. Sheldon (to
appear) observes that G is a sublattice of n*<K0,nz<r

If/ = g + £ cbhb, where g is a step function and cb e Z, let cb(f) = cb. Then
the only prime subgroups of G' = Gj T, *Za are of the form

K(b) = {feG'\cb(f) = 0},

Kr(b) = {/e G'\f = 0 on (b, c) for some b < c},

Kt(b) = {feG'\f = 0 on (c,b) for some c < b}.

Clearly, the group Gs of step functions is contained in K{b) for each b e [0,1], and
G'/Gs ~ S^fo.ijZ,, under the map that takes/ = g + £ cb/it, to the function
se Z*e[OlljZ«,' where s(b) = c6. Thus, G'IK(b) ~ Z. Moreover, G'IKr(b')
~ Z ©L Z under the map that takes / = g + S cbhb to (v(g),cy), where y(gf) is
the constant value of g on an interval (b, c).

Examples I and II are one-dimensional, whereas examples III and IV are
two-dimensional.
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