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TWO QUESTIONS ON SEMIGROUP LAWS

O. MACEDONSKA

B.H. Neumann recently proved some implications for semigroup laws in groups. This
may help in the solution of a problem posed by G.M. Bergman in 1981.

INTRODUCTION

Let G be a group, and S C G be a subsemigroup generating G. It is clear that if S
is commutative, then G is commutative. The following question is equivalent to the one
posed by Bergman [2, 3].

QUESTION 1. Let S generating G satisfy a law. Must G satisfy the same law?

For some laws the answer is positive ([9, 5, 8, 1]), however in general the question
is open and in the opinion of Ivanov and Rips it has a negative answer. All semigroups
we consider are cancellative.

QUESTION 2. Let a semigroup law a = b imply a semigroup law u = v in groups. Does
the same implication hold in semigroups?

To show implication of laws in semigroups we can use only so-called positive endo-
morphisms, which map generators to positive words. It is shown in [8] (an example at
the end of this paper), that all implications for positive laws of length < 5 which hold
in groups, also are valid for semigroups. The fact that the law z%y?z = yz3y implies
zy = yz in semigroups (and hence in groups) is proved in [5, p.132].

We show the equivalence of the above Questions.

It is shown in [10], that the law z°*'y?zt = yz*+%y, gcd(s,t) = 1, implies
zy’z = yz’y in groups (which is equivalent to [z,y,z] = 1 [12]). So if there exists a
semigroup satisfying z*ty%zt = yz**+%y, ged(s,t) = 1, but not zy*z = yz?y, the desired
counterexample for Question 1 would be found.

Let a = a(z1,-..,%n), b= b(z1,...,2,) be positive words. A semigroup law @ = b
is called balanced if every z; has the same exponent sum in a and b. The law is trivial if
ab~! = 1in F. The law is called cancelled if the first (and the last) letters in a and b are
different.
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NOTATION Let F be a free group and F > 1 be a free semigroup, both generated by
Z1,Z2,Z3,.... Words in F are called positive. We denote:

End* - the set of positive endomorphisms which map z; to positive words,

N, — a normal End*-invariant closure of a word w in F,

End - the set of all endomorphisms of the free group F,

V, — a fully invariant subgroup generated by a word w € F,

(u,v)# — the smallest cancellative congruence in F implying the law u = v.

A relatively free cancellative semigroup, defined by the law u = v is isomorphic to
F/(u,v)* [8].

We note that if N, contains a positive word, say z?yz?, then it contains z7 and
hence 7! € 28N, implies F = F mod N,,.
REMARK 1. Since each semigroup with a non-balanced law is a group, we have to con-

sider only balanced non-trivial semigroup laws. Each such law implies a binary balanced
and cancelled law A(z,y) = B(z,y) ([6]).

QUESTIONS AND RESULTS

To formulate the above Questions in terms of normal subgroups we need

LEMMA 1. A semigroup law u = v implies a = b in semigroups if and only if
N1 € Nyy-1. The implication holds in groups if and only if V-1 C V1.

PRrROOF: The law u = v implies ¢ = b in semigroups if and only if the corresponding
smallest congruences satisfy (a,b)* C (u,v)¥#. If we map F — F/N, then F is mapped
onto F/N#, where N* is a cancellative congruence in F defined as: N¥* = {(s,t); st~}
e NNFF “1}. It is proved in {7, Theorem 2], that N := Ny,-1 is the smallest normal
subgroup such that N# = (u,v)*. So we have

(1) (u,v)# = {(s,t); st™' € Nyyr NFF '}

Since F/(u,v)* is embeddable into a group F/Ny,-1, and N,,-1 is the smallest normal
subgroup with this property, it follows by [4, 12.3], that

(2) Nyy-r = gpn(st™; (s,t) € (v,v)%).

Hence by (1), (2): (a,b)* C (u,v)¥ if and only if Ng-1 & Ny,-1, which gives the first
statement of the Lemma. The second statement is known [11]. 1]
In terms of normal subgroups the above Questions are:

QuEesTION 1’. Does Ny-1 = V-1 hold for each semigroup law a = b7

QUESTION 2. Does V-1 C V1 imply Nyy-1 € Ny,-1 for semigroup laws a = b and
u=1u? ’
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We shall prove that for each semigroup law a = b there exists a semigroup law u = v
such that the fully invariant closure of ab~! coincides with the End*-invariant normal
closure of uv~!. This will imply the equivalence of the Questions.

THEOREM. For every n-variable semigroup law a = b there exists an n + 1-variable
semigroup law u = v such that the equality V-1 = N,,-1 holds.

COROLLARY. Questions 1 and 2 are equivalent.

PrROOF: We have to show that for each semigroup law a = b the equality holds:
Nap-r = V1. Take u = v as in the Theorem, then V-1 = Ny,-1. By taking the fully
invariant closure we get V-1 = V1. If Question 2 has a positive answer then we have
Ng-1 = Nyy-1 = Vyp1, as required. 0

LEMMAS AND PROOF OF THE THEOREM

LEMMA 2. Let A(z,y) = B(z,y) be a balanced and cancelled semigroup law such
that the first letter in A(z,y) is . Then there exist a; = ai(z,y), b; = bi(z,y) € F,
1 = 1,2, such that

(i) z7'y=aby' - (A7B),
(i) zy™'=a;'hy- (AB™V)b2, £ = 41,
(i) F=FF INyp-r =F 1FNyp-1.

PROOF: Since the law A = B is cancelled, it can be written as z - a; = y - b;, which
gives A"'B = a7'z7'yb, and hence (i). The law A = B, (or B = A) can be written
asay -z = by-y. In the first case AB™! = gyzy~'b, gives zy~! = a;'by - (AB~V)%2. If
B=gay -z, A=by-y, then zy~! = a;'by - (AB~')~%, which gives (ii).

Since A™'B = (AB~1)~8 € N p-1, we get from (i), that z7'y € FF~! mod Nyp-1,
which holds under every substitution of elements from F for  and y. Since every word
in F is a product of words in F U F~!, we get F = FF !N p-1. Similarly, from (ii) we
get F = F 1 FN,p-1.

The following Lemma is well known in terms of a group of fractions and Ore condi-
tions.

LEMMA 3. Leta = b be a nontrivial semigroup law, and gy, g, . . ., g» be elements
in F. Then there exist elements sy, Sa, . .., S, and d in F such that g; = s;d™! mod Ng-.

PROOF: By [6], the law a = b implies a balanced and cancelled binary law A = B.
Since Nyp-1 € Ng-1, the inclusions in Lemma 2 are valid mod N,,-:. Then by (iii) we
have modulo N-1: g; = a;b]! for some a;,b; € F. Forn = 2, g = a;b7', g2 = azb3".
Also by (iii), there exist ¢,d such that b;'b; = cd~!. We introduce r := bjd = b,
then g; = a1by! = aydd='b7" = aydr=! =: sr7Y, g = axb;! = apcc7lb;! = azerT! =
tr-!, s,t,7 € F. So, by repeating this step we can write g,...,g, with a “common

denominator” mod N,-1 as required. 0
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To compare End ™ -invariant and End-invariant closures of words we make an obser-
vation that by positive endomorphisms we can map zy~! into any word g € F mod N,
if we write g = st! and map z to s, and y to £.

LEMMA 4. There exists an automorphism o € Aut F such that for any w € F,
Nye is fully invariant mod Ny-:, for any nontrivial ab™! € FF~'. That is V, C

NwaNab—l.
PROOF: Let w = w(zy,...,2,). We take o € Aut F which maps z; — z:z;},,
i=1,...,n and leaves x;, i > n, fixed. It is enough to show that for any ¢;,...,¢, in

F, w(g1,---,9n) € NyaNy-1. By Lemma 3, we write g; = s;d~! mod N,;-: and define
ve€End* by z¥ =s;, i<n,and 2%, =d. Then. modulo Ngy-1 we have (z;7,},)" = g;
and w(gy,..-,9n) = W(T1ZTrly, ..., Ta2i1y)” = (w(z1,...,24)%)" € NY C Nya, as
required. 0

COROLLARY 1. For anontrivial semigroup law a = b the following equality holds:
Vab—l = N(ab-l)u .

PRrROOF: We have ab™! € N&bil)a. Since a~! is in End™, then N(ab e € Nap-1ye
and hence ab™! € N(gp-1)a, which gives

(3) Ngy-1 C Nygp-1ya.
By Lemma 4 for w := ab™}, by (3), and since End* C End, we have:
Vab—l g N(n.b_l)o’Nub‘l = N(ab-l)" g Vab_‘:

which implies Vgp-1 = Ngp-1ye. - ]

We denote by 4 the endomorphism which maps z,.; — 1 and leaves other generators
fixed, then & € End*. As above, o € Aut F maps z; — :1:,»:1:;_}_1, i =1,...,n and leaves
i, 1 > n, fixed.

LEMMA 6. Let a = b be a nontrivial semigroup law, and F,,; be a free sub-
semigroup generated by xi1,...,Zny:. Then for any positive word p(z,,...,x,), there
exist positive words u; = ui(Z1,...,Zn41), Vi = Vi(Z1,-..,Tnt1), ¢ = 1,2, such that
p® = uyv; ! = uy vy mod (Ng-1 N Kerd).

ProoF: We show first that for any words ¢, ¢ € F,;; the following inclusions hold:

(%) ez, by € Fili Fop mod (Ngy-r N Ker ),
(*+) 2;1,q € Fop1 Fol mod (N1 NKerd).

The law a = b implies the balanced and cancelled binary law A = B, so it is enough to
prove the inclusions for the law A(z,y) = B(z,v).
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If we apply 6 to the balanced equality A(c, z,41) = B(¢, Zp41), it becomes trivial,
and hence the word AB~!(c, zp41) is in Kerd. Similarly we get A~'B(z,41,9) € Kerd.
We put now ¢, Zn41, for z,y, in (ii) (Lemma 2) to get (), and then put z,41, g, in (i)
(Lemma 2) to get (*x*).

We continue the proof modulo (Ng-1 N Kerd). To show that:

-1 -1 -1
p(xlxn-i-l’ ceey $n$n+1) € Fas1Fnsrs
and
-1 -1 -1
p(zlzn-i-l’ s :-'Enxn+1) € FonrFnt1,
we use induction on the length {p| = m. Let p(z1,...,%Zn) = €mCm-1---C2C1, G
_ -1 -1 -1 -1 . -1
€ {z1,...,2,}, then p* = T | 1Cm 1Ty, ... T 1 1C1T4,. For m = 1, p* = ez},

€ FonrFp}y and by (#), p* = cz,}y € Fofy Fotr-
Let |p| = m, then p = ¢pem—1...c261 and by inductive assumption p* = cm:l:;il .

gr='. Then by (xx), there exist s,t € Fnyi, such that z},¢ = st™' and hence
P* = Cm(T7109)7 7 = em(stT)r! = (ems)(rt) ™ € Fann Frfy.

Again for |[p| = m, we get by assumption p* = r7ls- ez}, = r7(sc1)z),
By () for sc, instead of c, there exist t,u € Fny1, such that sc;z;}, = t"'u. Then
p® =r"Y(se))z ), = 77w = (tr)'u € F .} Fay as required. 0

PROOF OF THE THEOREM

We have to show that for every nontrivial n-variable semigroup law a = b there
exists an n + 1-variable semigroup law u = v such that V-1 = Ny,-1.

By Lemma 5 for the words a = a(xy,...,z,) and b = b(zy,...,T,) we get respec-
tively:
a® = uyv7! mod (Ng-1 NKer ),
and
b* = uy'vy mod (Ng-1 N Ker §).
Then )

(ab™1)* = wyvj vy ug = ug ' (ugu) (vav1) T'ug mod (Ng-1 N Ker§).
We denote u := usuy, v := vpuy, then

(4) (ab™)® = (uv™")*? mod (N-1 N Ker d)

This implies:

(5) N(ab“‘)" C Nyy-1Nogp-1
and
(6) Ny,-1 C N(ab—l)a Nyp-1.
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To prove the equality
(7) N(ab")" = Nuv"a

we apply d to (4). Since aé is the identity map on z;, ¢ < n, and  is in End™, we have that
ab™! = (ab~")* is conjugate to (uv‘1)6 € NS . C Ny-1. This implies Nyy-1 C Nyt
which, together with (5) gives Ngp-1)a € Nyy-1. Since by (3), Nyp-1 € Nigp-13a, it follows
from (6), that Ny,-1 € N(gs-1)e, and hence (7) holds.

Now, since by Corollary 1, Vop-1 = N(gp-1)a, we have by (7), the required equality
Vip-1 = Nyy-1. a

EXAMPLE OF IMPLICATIONS IN SEMIGROUPS

[8] The law (zy)? = (yx)? implies zy? = y%z for groups because we can apply the
automorphism a : £ — z, y = z~'y. For semigroups we can not use this automorphism.
To prove that (zy)? = (yz)? implies zy? = y?z for semigroups we show first that (zy)?
= (yz)? implies:

(i) (yz)%y = y(yz)? (use the word y(zy)?),
(i) =((¥2)%)" = ((¥2)%) s, (use (i), z° = zyz?, y* = y; and T & y)
() (@0)%)' = @)% (use (¥2)%) ((zv)%)),

(iv) (yz)* = (ay)*.
Then for some word p we start with p - zy? and by using (i)—(iv) obtain p - %z, which
by cancellation, implies required zy? = y?z. Namely, for p = (zy)* we have
@
pzy? = (zy) ey’ = z(yz)* (y2)’yy = 2(yz)’y(yz)’y
2 (i) 2 (i) (iv)
= z((y2)%y)" = ((y2)%) = = (y2)'y’s = (2y)*y’z = py’s,

which gives pzy? = py?z and hence zy? = y%r as required.
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