TWO QUESTIONS ON SEMIGROUP LAWS

O. Macedońska

B.H. Neumann recently proved some implications for semigroup laws in groups. This may help in the solution of a problem posed by G.M. Bergman in 1981.

INTRODUCTION

Let G be a group, and $S \subseteq G$ be a subsemigroup generating G. It is clear that if S is commutative, then G is commutative. The following question is equivalent to the one posed by Bergman [2, 3].

QUESTION 1. Let S generating G satisfy a law. Must G satisfy the same law?

For some laws the answer is positive ([9, 5, 8, 1]), however in general the question is open and in the opinion of Ivanov and Rips it has a negative answer. All semigroups we consider are cancellative.

QUESTION 2. Let a semigroup law a = b imply a semigroup law u = v in groups. Does the same implication hold in semigroups?

To show implication of laws in semigroups we can use only so-called positive endomorphisms, which map generators to positive words. It is shown in [8] (an example at the end of this paper), that all implications for positive laws of length ≤ 5 which hold in groups, also are valid for semigroups. The fact that the law $x^2y^2x = yx^3y$ implies xy = yx in semigroups (and hence in groups) is proved in [5, p.132].

We show the equivalence of the above Questions.

It is shown in [10], that the law $x^{s+t}y^2x^t = yx^{s+2t}y$, gcd(s,t) = 1, implies $xy^2x = yx^2y$ in groups (which is equivalent to [x,y,x] = 1 [12]). So if there exists a semigroup satisfying $x^{s+t}y^2x^t = yx^{s+2t}y$, gcd(s,t) = 1, but not $xy^2x = yx^2y$, the desired counterexample for Question 1 would be found.

Let $a = a(x_1, ..., x_n)$, $b = b(x_1, ..., x_n)$ be positive words. A semigroup law a = b is called balanced if every x_i has the same exponent sum in a and b. The law is trivial if $ab^{-1} = 1$ in F. The law is called cancelled if the first (and the last) letters in a and b are different.

Received 16th October, 2001

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

NOTATION Let F be a free group and $\mathcal{F} \ni 1$ be a free semigroup, both generated by x_1, x_2, x_3, \ldots Words in \mathcal{F} are called positive. We denote:

 End^+ - the set of positive endomorphisms which map x_i to positive words,

 N_w - a normal End⁺-invariant closure of a word w in F,

End – the set of all endomorphisms of the free group F,

 V_w - a fully invariant subgroup generated by a word $w \in F$,

 $(u,v)^{\#}$ - the smallest cancellative congruence in \mathcal{F} implying the law u=v.

A relatively free cancellative semigroup, defined by the law u = v is isomorphic to $\mathcal{F}/(u,v)^{\#}$ [8].

We note that if N_w contains a positive word, say x^2yz^4 , then it contains x^7 and hence $x^{-1} \in x^6N_w$ implies $F = \mathcal{F} \mod N_w$.

REMARK 1. Since each semigroup with a non-balanced law is a group, we have to consider only balanced non-trivial semigroup laws. Each such law implies a binary balanced and cancelled law A(x, y) = B(x, y) ([6]).

QUESTIONS AND RESULTS

To formulate the above Questions in terms of normal subgroups we need

LEMMA 1. A semigroup law u = v implies a = b in semigroups if and only if $N_{ab^{-1}} \subseteq N_{uv^{-1}}$. The implication holds in groups if and only if $V_{ab^{-1}} \subseteq V_{uv^{-1}}$.

PROOF: The law u=v implies a=b in semigroups if and only if the corresponding smallest congruences satisfy $(a,b)^{\#}\subseteq (u,v)^{\#}$. If we map $F\to F/N$, then $\mathcal F$ is mapped onto $\mathcal F/N^{\#}$, where $N^{\#}$ is a cancellative congruence in $\mathcal F$ defined as: $N^{\#}=\left\{(s,t);\ st^{-1}\in N\cap\mathcal F\mathcal F^{-1}\right\}$. It is proved in [7, Theorem 2], that $N:=N_{uv^{-1}}$ is the smallest normal subgroup such that $N^{\#}=(u,v)^{\#}$. So we have

(1)
$$(u,v)^{\#} = \{(s,t); st^{-1} \in N_{uv^{-1}} \cap \mathcal{F}\mathcal{F}^{-1}\}.$$

Since $\mathcal{F}/(u,v)^{\#}$ is embeddable into a group $F/N_{uv^{-1}}$, and $N_{uv^{-1}}$ is the smallest normal subgroup with this property, it follows by [4, 12.3], that

(2)
$$N_{uv^{-1}} = gpn(st^{-1}; (s,t) \in (u,v)^{\#}).$$

Hence by (1), (2): $(a, b)^{\#} \subseteq (u, v)^{\#}$ if and only if $N_{ab^{-1}} \subseteq N_{uv^{-1}}$, which gives the first statement of the Lemma. The second statement is known [11].

In terms of normal subgroups the above Questions are:

QUESTION 1'. Does $N_{ab^{-1}} = V_{ab^{-1}}$ hold for each semigroup law a = b?

QUESTION 2'. Does $V_{ab^{-1}} \subseteq V_{uv^{-1}}$ imply $N_{ab^{-1}} \subseteq N_{uv^{-1}}$ for semigroup laws a = b and u = v?

We shall prove that for each semigroup law a = b there exists a semigroup law u = v such that the fully invariant closure of ab^{-1} coincides with the End⁺-invariant normal closure of uv^{-1} . This will imply the equivalence of the Questions.

THEOREM. For every n-variable semigroup law a=b there exists an n+1-variable semigroup law u=v such that the equality $V_{ab^{-1}}=N_{uv^{-1}}$ holds.

COROLLARY. Questions 1 and 2 are equivalent.

PROOF: We have to show that for each semigroup law a=b the equality holds: $N_{ab^{-1}}=V_{ab^{-1}}$. Take u=v as in the Theorem, then $V_{ab^{-1}}\stackrel{\mathrm{T}}{=} N_{uv^{-1}}$. By taking the fully invariant closure we get $V_{ab^{-1}}=V_{uv^{-1}}$. If Question 2 has a positive answer then we have $N_{ab^{-1}}=N_{uv^{-1}}\stackrel{\mathrm{T}}{=} V_{ab^{-1}}$, as required.

LEMMAS AND PROOF OF THE THEOREM

LEMMA 2. Let A(x,y) = B(x,y) be a balanced and cancelled semigroup law such that the first letter in A(x,y) is x. Then there exist $a_i = a_i(x,y)$, $b_i = b_i(x,y) \in \mathcal{F}$, i = 1, 2, such that

- (i) $x^{-1}y = a_1b_1^{-1} \cdot (A^{-1}B)b_1^{-1}$,
- (ii) $xy^{-1} = a_2^{-1}b_2 \cdot (AB^{-1})^{\epsilon b_2}, \ \epsilon = \pm 1,$
- (iii) $F = \mathcal{F}\mathcal{F}^{-1}N_{AB^{-1}} = \mathcal{F}^{-1}\mathcal{F}N_{AB^{-1}}.$

PROOF: Since the law A=B is cancelled, it can be written as $x\cdot a_1=y\cdot b_1$, which gives $A^{-1}B=a_1^{-1}x^{-1}yb_1$ and hence (i). The law A=B, (or B=A) can be written as $a_2\cdot x=b_2\cdot y$. In the first case $AB^{-1}=a_2xy^{-1}b_2$ gives $xy^{-1}=a_2^{-1}b_2\cdot (AB^{-1})^{b_2}$. If $B=a_2\cdot x$, $A=b_2\cdot y$, then $xy^{-1}=a_2^{-1}b_2\cdot (AB^{-1})^{-b_2}$, which gives (ii).

Since $A^{-1}B = (AB^{-1})^{-B} \in N_{AB^{-1}}$, we get from (i), that $x^{-1}y \in \mathcal{F}\mathcal{F}^{-1} \mod N_{AB^{-1}}$, which holds under every substitution of elements from \mathcal{F} for x and y. Since every word in F is a product of words in $\mathcal{F} \cup \mathcal{F}^{-1}$, we get $F = \mathcal{F}\mathcal{F}^{-1}N_{AB^{-1}}$. Similarly, from (ii) we get $F = \mathcal{F}^{-1}\mathcal{F}N_{AB^{-1}}$.

The following Lemma is well known in terms of a group of fractions and Ore conditions.

LEMMA 3. Let a = b be a nontrivial semigroup law, and g_1, g_2, \ldots, g_n be elements in F. Then there exist elements s_1, s_2, \ldots, s_n and d in F such that $g_i = s_i d^{-1} \mod N_{ab^{-1}}$.

PROOF: By [6], the law a=b implies a balanced and cancelled binary law A=B. Since $N_{AB^{-1}}\subseteq N_{ab^{-1}}$, the inclusions in Lemma 2 are valid mod $N_{ab^{-1}}$. Then by (iii) we have modulo $N_{ab^{-1}}$: $g_i=a_ib_i^{-1}$ for some $a_i,b_i\in\mathcal{F}$. For n=2, $g_1=a_1b_1^{-1}$, $g_2=a_2b_2^{-1}$. Also by (iii), there exist c,d such that $b_2^{-1}b_1=cd^{-1}$. We introduce $r:=b_1d=b_2c$, then $g_1=a_1b_1^{-1}=a_1dd^{-1}b_1^{-1}=a_1dr^{-1}=:sr^{-1}$, $g_2=a_2b_2^{-1}=a_2cc^{-1}b_2^{-1}=a_2cr^{-1}=:tr^{-1}$, $s,t,r\in\mathcal{F}$. So, by repeating this step we can write g_1,\ldots,g_n with a "common denominator" mod $N_{ab^{-1}}$ as required.

To compare End⁺-invariant and End-invariant closures of words we make an observation that by positive endomorphisms we can map xy^{-1} into any word $g \in F \mod N_{ab^{-1}}$ if we write $g = st^{-1}$ and map x to s, and y to t.

LEMMA 4. There exists an automorphism $\alpha \in \operatorname{Aut} F$ such that for any $w \in F$, $N_{w^{\alpha}}$ is fully invariant $\operatorname{mod} N_{ab^{-1}}$, for any nontrivial $ab^{-1} \in \mathcal{FF}^{-1}$. That is $V_w \subseteq N_{w^{\alpha}}N_{ab^{-1}}$.

PROOF: Let $w=w(x_1,\ldots,x_n)$. We take $\alpha\in \operatorname{Aut} F$ which maps $x_i\to x_ix_{n+1}^{-1},$ $i=1,\ldots,n$ and leaves $x_i,\ i>n$, fixed. It is enough to show that for any g_1,\ldots,g_n in $F,\ w(g_1,\ldots,g_n)\in N_{w^\alpha}N_{ab^{-1}}$. By Lemma 3, we write $g_i=s_id^{-1}$ mod $N_{ab^{-1}}$ and define $\nu\in\operatorname{End}^+$ by $x_i^\nu=s_i,\ i\leqslant n,$ and $x_{n+1}^\nu=d$. Then $modulo\ N_{ab^{-1}}$ we have $(x_ix_{n+1}^{-1})^\nu=g_i$ and $w(g_1,\ldots,g_n)=w(x_1x_{n+1}^{-1},\ldots,x_nx_{n+1}^{-1})^\nu=\left(w(x_1,\ldots,x_n)^\alpha\right)^\nu\in N_{w^\alpha}^\nu\subseteq N_{w^\alpha}$, as required.

COROLLARY 1. For a nontrivial semigroup law a = b the following equality holds:

$$V_{ab^{-1}} = N_{(ab^{-1})^{\alpha}}.$$

PROOF: We have $ab^{-1} \in N_{(ab^{-1})^{\alpha}}^{\alpha^{-1}}$. Since α^{-1} is in End⁺, then $N_{(ab^{-1})^{\alpha}}^{\alpha^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}$ and hence $ab^{-1} \in N_{(ab^{-1})^{\alpha}}$, which gives

$$(3) N_{ab^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}.$$

By Lemma 4 for $w := ab^{-1}$, by (3), and since End⁺ \subseteq End, we have:

$$V_{ab^{-1}} \subseteq N_{(ab^{-1})^{\alpha}} N_{ab^{-1}} = N_{(ab^{-1})^{\alpha}} \subseteq V_{ab^{-1}},$$

П

which implies $V_{ab^{-1}} = N_{(ab^{-1})^{\alpha}}$.

We denote by δ the endomorphism which maps $x_{n+1} \to 1$ and leaves other generators fixed, then $\delta \in \operatorname{End}^+$. As above, $\alpha \in \operatorname{Aut} F$ maps $x_i \to x_i x_{n+1}^{-1}$, $i = 1, \ldots, n$ and leaves x_i , i > n, fixed.

LEMMA 5. Let a=b be a nontrivial semigroup law, and \mathcal{F}_{n+1} be a free subsemigroup generated by x_1,\ldots,x_{n+1} . Then for any positive word $p(x_1,\ldots,x_n)$, there exist positive words $u_i=u_i(x_1,\ldots,x_{n+1})$, $v_i=v_i(x_1,\ldots,x_{n+1})$, i=1,2, such that $p^{\alpha}=u_1v_1^{-1}=u_2^{-1}v_2 \mod(N_{ab^{-1}}\cap \operatorname{Ker}\delta)$.

PROOF: We show first that for any words $c, q \in \mathcal{F}_{n+1}$ the following inclusions hold:

$$(*) cx_{n+1}^{-1} \in \mathcal{F}_{n+1}^{-1} \mathcal{F}_{n+1} \bmod (N_{ab^{-1}} \cap \operatorname{Ker} \delta),$$

$$(**) x_{n+1}^{-1} q \in \mathcal{F}_{n+1} \mathcal{F}_{n+1}^{-1} \bmod (N_{ab^{-1}} \cap \operatorname{Ker} \delta).$$

The law a = b implies the balanced and cancelled binary law A = B, so it is enough to prove the inclusions for the law A(x, y) = B(x, y).

If we apply δ to the balanced equality $A(c, x_{n+1}) = B(c, x_{n+1})$, it becomes trivial, and hence the word $AB^{-1}(c, x_{n+1})$ is in Ker δ . Similarly we get $A^{-1}B(x_{n+1}, q) \in \text{Ker } \delta$. We put now c, x_{n+1} , for x, y, in (ii) (Lemma 2) to get (*), and then put x_{n+1}, q , in (i) (Lemma 2) to get (**).

We continue the proof modulo $(N_{ab^{-1}} \cap \operatorname{Ker} \delta)$. To show that:

$$p(x_1x_{n+1}^{-1},\ldots,x_nx_{n+1}^{-1}) \in \mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1},$$

and

$$p(x_1x_{n+1}^{-1},\ldots,x_nx_{n+1}^{-1})\in\mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1},$$

we use induction on the length |p|=m. Let $p(x_1,\ldots,x_n)=c_mc_{m-1}\ldots c_2c_1,\ c_i\in\{x_1,\ldots,x_n\}$, then $p^{\alpha}=c_mx_{n+1}^{-1}c_{m-1}x_{n+1}^{-1}\ldots c_2x_{n+1}^{-1}c_1x_{n+1}^{-1}$. For $m=1,\ p^{\alpha}=cx_{n+1}^{-1}\in\mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1}$ and by $(*),\ p^{\alpha}=cx_{n+1}^{-1}\in\mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1}$.

Let |p| = m, then $p = c_m c_{m-1} \dots c_2 c_1$ and by inductive assumption $p^{\alpha} = c_m x_{n+1}^{-1} \cdot qr^{-1}$. Then by (**), there exist $s, t \in \mathcal{F}_{n+1}$, such that $x_{n+1}^{-1}q = st^{-1}$ and hence $p^{\alpha} = c_m (x_{n+1}^{-1}q)r^{-1} = c_m (st^{-1})r^{-1} = (c_m s)(rt)^{-1} \in \mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1}$.

Again for |p| = m, we get by assumption $p^{\alpha} = r^{-1}s \cdot c_1 x_{n+1}^{-1} = r^{-1}(sc_1) x_{n+1}^{-1}$. By (*) for sc_1 instead of c, there exist $t, u \in \mathcal{F}_{n+1}$, such that $sc_1 x_{n+1}^{-1} = t^{-1}u$. Then $p^{\alpha} = r^{-1}(sc_1) x_{n+1}^{-1} = r^{-1}t^{-1}u = (tr)^{-1}u \in \mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1}$ as required.

PROOF OF THE THEOREM

We have to show that for every nontrivial n-variable semigroup law a=b there exists an n+1-variable semigroup law u=v such that $V_{ab^{-1}}=N_{uv^{-1}}$.

By Lemma 5 for the words $a = a(x_1, \ldots, x_n)$ and $b = b(x_1, \ldots, x_n)$ we get respectively:

$$a^{\alpha} = u_1 v_1^{-1} \mod (N_{ab^{-1}} \cap \operatorname{Ker} \delta),$$

and

$$b^{\alpha} = u_2^{-1}v_2 \text{ mod } (N_{ab^{-1}} \cap \operatorname{Ker} \delta).$$

Then

$$(ab^{-1})^{\alpha} = u_1 v_1^{-1} v_2^{-1} u_2 = u_2^{-1} (u_2 u_1) (v_2 v_1)^{-1} u_2 \text{ mod } (N_{ab^{-1}} \cap \operatorname{Ker} \delta).$$

We denote $u := u_2u_1$, $v := v_2v_1$, then

(4)
$$(ab^{-1})^{\alpha} = (uv^{-1})^{u_2} \mod (N_{ab^{-1}} \cap \operatorname{Ker} \delta)$$

This implies:

$$(5) N_{(ab^{-1})^{a}} \subseteq N_{uv^{-1}} N_{ab^{-1}}$$

and

(6)
$$N_{uv^{-1}} \subseteq N_{(ab^{-1})^{\alpha}} N_{ab^{-1}}.$$

To prove the equality

$$(7) N_{(ab^{-1})^{\alpha}} = N_{uv^{-1}},$$

we apply δ to (4). Since $\alpha\delta$ is the identity map on x_i , $i \leq n$, and δ is in End⁺, we have that $ab^{-1}=(ab^{-1})^{\alpha\delta}$ is conjugate to $(uv^{-1})^{\delta}\in N_{uv^{-1}}^{\delta}\subseteq N_{uv^{-1}}$. This implies $N_{ab^{-1}}\subseteq N_{uv^{-1}}$ which, together with (5) gives $N_{(ab^{-1})^a} \subseteq N_{uv^{-1}}$. Since by (3), $N_{ab^{-1}} \subseteq N_{(ab^{-1})^a}$, it follows from (6), that $N_{uv^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}$, and hence (7) holds.

Now, since by Corollary 1, $V_{ab^{-1}} = N_{(ab^{-1})^a}$, we have by (7), the required equality П $V_{ab^{-1}} = N_{uv^{-1}}.$

EXAMPLE OF IMPLICATIONS IN SEMIGROUPS

- [8] The law $(xy)^2 = (yx)^2$ implies $xy^2 = y^2x$ for groups because we can apply the automorphism $\alpha: x \to x, \ y \to x^{-1}y$. For semigroups we can not use this automorphism. To prove that $(xy)^2 = (yx)^2$ implies $xy^2 = y^2x$ for semigroups we show first that $(xy)^2$ $= (yx)^2$ implies:
 - (i) $(yx)^2y = y(yx)^2$, (use the word $y(xy)^2$),
 - (ii) $(yx)^2y = y(yx)^2$, (use the word $y(xy)^2$), (iii) $x((yx)^2y)^2 = ((yx)^2y)^2x$, (use $(i)^{\alpha}$, $x^{\alpha} = xyx^2$, $y^{\alpha} = y$; and $x \leftrightarrow y$)
 - (iii) $((yx)^2y)^2 = (yx)^4y^2$, (use $((yx)^2y)((xy)^2y)$),
 - (iv) $(yx)^4 = (xy)^4$.

Then for some word p we start with $p \cdot xy^2$ and by using (i)—(iv) obtain $p \cdot y^2x$, which by cancellation, implies required $xy^2 = y^2x$. Namely, for $p = (xy)^4$ we have

which gives $pxy^2 = py^2x$ and hence $xy^2 = y^2x$ as required.

REFERENCES

- R.G. Burns, O. Macedońska and Y. Medvedev,, 'Groups satisfying semigroup laws, and nilpotent-by-Burnside varieties', J. Algebra 195 (1997), 510-525.
- G.M. Bergman, 'Hyperidentities of groups and semigroups', Aequationes Math. 23 (1981), [2] 50-65.
- G.M. Bergman, 'Questions in algebra', (preprint, Berkeley, U.C. 1986). [3]
- A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Math. Surveys 7 (Amer. Math. Soc., Providence R.I., 1964).
- J. Krempa and O. Macedońska, 'On identities of cancellative semigroups', Contemp. [5] Mathem. 131 (1992), 125–133.
- J. Lewin and T. Lewin, 'Semigroup laws in varieties of soluble groups', Proc. Cambridge [6] Philos. Soc. 65 (1969), 1-9.

- [7] O. Macedońska, 'On cancellative congruences for semigroups', Zeszyty Nauk. Politech. Slaskiej Mat.-Fiz. 84 (1999), 171-176.
- [8] O. Macedońska and M. Żabka, 'On equivalence of semigroup identities', Math. Scand. 88 (2001), 161-181.
- [9] A.I. Malcev, 'Nilpotent semigroups', Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz. Mat. Nauki 4 (1953), 107-111.
- [10] B.H. Neumann, 'Some semigroup laws in groups', Canad. Math. Bull. 44 (2001), 93-96.
- [11] H. Neumann, Varieties of groups (Springer-Verlag,, Berlin, Heidelberg, New York, 1967).
- [12] A.I. Shirshov, 'On some positively defined varieties of groups', Siberian Math. J. (1959), 165-178.

Institute of Mathematics Silesian Technical University ul. Kaszubska 23 44-100 Gliwice Poland

e-mail: olga@zeus.polsl.gliwice.pl