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Non-technical Summary

Paleobiology can offer diverse insights into how climate change has affected past species and
ecosystems. Timely and important areas of research focus on the potential of paleobiology to
contribute to solutions for climate impacts on natural ecosystems. But how far can past
responses to abrupt climate change be generalized to derive predictions for the modern and
future worlds? The long timescales over which biological responses are observed in the deep-
time past hamper the applicability of paleontological observations, but by how much? To
address these questions, we review paleontological evidence for the impacts of geologically
rapid climatic change. Fruitful avenues for future research lie in (1) characterizing the relation-
ship between the magnitude of warming and extinction toll, (2) using physiology to bridge time-
scales, and (3) assessing the role of long-term climate history to predict the impact of short-term
climate change. Identifying how consistent and robust paleontological signals are across time-
scales will help to make deep-time observations more useful for the modern world.

Abstract

Ancient changes in the biosphere, from organismic traits to wholesale ecosystem changes, can
be aligned with climate forcing across the Phanerozoic. Clear examples of abrupt climate
warming causing biodiversity crises are primarily found between the Permian and
Paleogene periods. During these times, catastrophic events occurred, resembling the extreme
climate scenarios projected for the near future. The paleobiologic literature around these
events generally supports the hypothesis that abrupt climate change was a dominant trigger
of extinction and/or ecological crisis. When climate change and climate history are consid-
ered, virtually all post-Paleozoic global biotic events can be confidently attributed to climatic
change, with abrupt warming (hyperthermal events) leaving the most consistent fingerprint.
The combined stress of deoxygenation and warming are sufficient to explain marine extinc-
tion patterns across most hyperthermal events. Although ocean acidification may have con-
tributed, the direct role of pH on the extinction toll of organisms is not consistently
demonstrated. Future research can enhance the correspondence between the magnitudes of
climatic changes and their biological impacts, even though observed rates of change cannot
currently be compared across different timescales. Mimicking multi-scale approaches in mod-
ern ecology, paleontological approaches to climate impact research will benefit from specifi-
cally targeting scaling relationships.

Introduction

We are in the midst of a coupled climate and biodiversity crisis that affects human society at a
global scale (Pörtner et al. 2023). By describing how climate and biodiversity interacted in the
geological past, paleobiology can provide essential information for our potential future. As the
fossil record largely predates human influence, paleobiology can identify conservation-relevant
patterns on the impact of climate change on species and ecosystems (Kiessling et al. 2023). In
this review, we delve into research challenges and explore how a well-informed road map can
effectively overcome them.

Throughout Earth’s history, climate has fluctuated between icehouse and greenhouse inter-
vals largely due to plate tectonics controlling the nature and amount of greenhouse gases in the
atmosphere (Müller et al. 2022) as well as the distribution of heat governed by continental con-
figuration. The profound impact that climate change can have on the biosphere is best seen in
geologically rapid events of mean temperature change. While modern observations of climate
impacts on the biosphere are dominantly focused on the often more easily observed terrestrial
patterns, the marine fossil record is much richer and arguably more complete. Given that our
current understanding of mass extinctions is primarily based upon time series of extinction
magnitude derived from marine fossils (Raup and Sepkoski 1982; Marshall 2023), we here
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emphasize marine biological responses in the pre-Pleistocene
(deep-time) fossil record. In this context, we review the evidence
for past marine biological responses to climate change and iden-
tify the most promising routes of research for assessing and mit-
igating the ecological impacts of current and future climate
change.

Current ecological impacts of climate warming are already
ubiquitous, ranging from phenology (the seasonal timing of bio-
logical events) and range shifts, to changes in community struc-
ture, biodiversity, growth, and (local) extinctions (Poloczanska
et al. 2016; Cooley et al. 2022; Parmesan et al. 2022). Changes
in phenology and geographic ranges are the most obvious ecolog-
ical responses to current warming, with phenology advancing
4.4 ± 1.1 days per decade and expansion of the poleward range
edges averaging 72 ± 13.5 km per decade in marine habitats
(Poloczanska et al. 2013). However, not all ecological responses
are traceable in the fossil record (Table 1), and those that are
observable face the issue of causal attribution. Confirming that
observed fossil biotic changes are indeed attributable to climate
change is sometimes challenging, as there are often other coinci-
dental stressors. Examples include poisoning (Vandenbroucke
et al. 2015; Broadley et al. 2018; Rakociński et al. 2020), UV radi-
ation (Liu et al. 2023), or shutdown of photosynthesis due to
global darkness (Bond and Grasby 2017). By looking at pre-
human worlds, we gain a signal of natural environmental stressors
and avoid obstacles that confront the modern climate impact
research due to mismatches in the scale of human climate forcing
and the observed biological impacts (Parmesan et al. 2011).
Moreover, the extensive timescale of paleontological observations
can provide deeper insights than modern observations into the
long-term ecological and evolutionary impacts of climate change.

The long timescales that deep-time paleontological data cap-
ture also pose challenges, particularly for application to conserva-
tion biology (Kiessling et al. 2019). In many cases, we still lack a
clear perspective on the importance of scale for assessing climate
impacts. There is a rich literature on spatial scale dependency in
ecological patterns (e.g., Chase and Leibold 2002; Keil et al. 2018;
Chase et al. 2019; Gonzalez et al. 2020; Huang et al. 2021), but
much less is known about the role of temporal scale and the inter-
action between the two. In our context, scale dependency relates
to the degree to which biological climate responses are dependent
upon the time span of observation. A good example for temporal
scale dependency is rate of change, wherein rates of change
exhibit a power-law relationship with the time span of observation
(Kemp et al. 2015; Gingerich 2021) such that any meaningful
comparison of rates of change between the modern and deep
time is prevented. For other variables, the scale dependency is
less clear. For example, how well is the rank order of modern cli-
mate sensitivities among clades and ecosystems reflected in differ-
ential extinction rates in the past? To what extent does the
sensitivity of reef corals to current climate change–induced heat
waves (Gardner et al. 2019) correspond to increased extinction
risks during ancient climate warming events? To what extent
does the sensitivity of reef corals to current climate change–in-
duced heat waves scale up to increased extinction risk at ancient
climate warming events?

Here we summarize the evidence that geologically abrupt cli-
matic changes were a dominant driver of biotic responses, and
we propose research routes to reveal the impacts of deep-time cli-
matic changes on the biosphere. We argue that our efforts will be
most effective when focused on overcoming the challenges of var-
iable spatiotemporal resolution. We highlight that promising

routes are through quantifying commonalities in terms of vulner-
abilities and magnitudes of change.

The Deadly Trio

Bijma et al. (2013) coined the term “deadly trio” to emphasize the
combined impact of warming, ocean acidification, and deoxyge-
nation on marine ecosystems under current climate change.
Each member of the deadly trio effects a range of outcomes
dependent on environment, ecology, and latitude, but their strong
influence on physiology means impacts tend to be interactive.

Temperature is a major driver of physiological processes
(Clarke and Pörtner 2010), but oxygen supply and demand and
their interactions with temperature are also crucial (Sampaio
et al. 2021), governing metabolism and thermal tolerance
(Vaquer-Sunyer and Duarte 2011; Reddin et al. 2020b). The fluc-
tuating nature of the “oxyscape” (oxygen landscape) is thought to
be a key driver of animal physiology (Fusi et al. 2023). The syn-
ergy of oxygen and temperature has far greater impacts in exper-
iments than any other combination of temperature, oxygen,
salinity, and pH (Reddin et al. 2020b).

Ocean acidification and other direct impacts of raised seawater
CO2 have received considerable research attention in the last two
decades (Kroeker et al. 2013; Allison et al. 2021), including the
evaluation of deep-time impacts on marine life (Kiessling and
Simpson 2011; Harper et al. 2020; Chen et al. 2023). However,
the impact of ocean acidification on marine life is much less con-
sistent than often assumed (Sampaio et al. 2021), perhaps because
pH-upregulating mechanisms exist even for relatively simple
organisms such as corals (McCulloch et al. 2012). Although evi-
dence for ocean acidification in the end-Permian extinction has
been presented (Jurikova et al. 2020; Li et al. 2023), the evidence
for biological impacts is meager (Foster et al. 2022). On longer
timescales (longer than 10,000 to 100,000 yr), seawater, seafloor
carbonate sediments, and weathering on land buffer the effect
of CO2 on pH and can even increase the seawater supersaturation
of calcium carbonate (Hönisch et al. 2012). Consequently, though
local and short-term impacts of ocean acidification can be severe,
the translation of these into observable deep-time impacts
requires confirmation.

The great importance of deoxygenation in ancient biotic
events is no surprise to deep-time paleobiologists, as virtually
all global-scale biological events in the geological past were asso-
ciated with anoxia or even euxinia (Harnik et al. 2012; Bond and
Grasby 2017) (Table 2). Black shales have been noted as a hall-
mark of Cretaceous events long before there was a broad scientific
discussion of climate change (Schlanger and Jenkyns 1976).
However, although anoxia and euxinia are facilitated by climate
warming, they have numerous alternative drivers. For example,
the Late Devonian events are marked by anoxia, which was likely
governed by nutrient mobilization from the evolving forest eco-
systems (Algeo and Scheckler 1998; Qie et al. 2023).

Tracing Rapid Climatic Changes in Geological Time

Tracing past climatic changes with confidence is foundational to
the study of their biotic impacts. Despite their shortcomings, geo-
chemical proxies such as stable oxygen isotopes are still our main
source of empirical evidence for long-term and short-term
climatic changes. Such studies have been crucial to assess the
magnitude of climate change across past hyperthermal events
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Table 1. Biologic responses to climate change, present and past. “Present evidence” column uses confidence levels as given in the IPCC WGII Sixth Assessment Report for observed evidence in modern systems (IPCC
2022). The level of confidence is expressed using five qualifiers (“very low,” “low,” “medium,” “high,” and “very high”) and synthesizes the IPCC authors’ judgments about the validity of findings as determined through
evaluation of evidence and agreement in the literature. “Paleo evidence” uses the same framework based on the references cited in this review.

Type of response Present evidence Paleo evidence Problems Opportunities

Phenology Ubiquitous phenology shifts to earlier in
spring and later in fall [very high
confidence].

None. Phenology not observed in the
fossil record.

Not apparent.

Latitudinal range shift Ubiquitous poleward range shifts [high
confidence]. Projections of distribution
models.
Habitat loss, population declines [high
confidence].
Emergence of novel communities
[medium confidence].

Poleward range shifts of selected taxa
observed after some warming events
[high confidence].
Proxy of aggregated shifts from
sampling expectations [medium
confidence].

Range shifts are very sensitive to
sampling biases and timescales.

Numerous.
Identify well-sampled paleontological regions
for testing (e.g., longitudinally constrained shelf
areas). Simulations for theoretical
considerations of detection.

Bathymetric shift Rarely observed in oceans [low
confidence, low agreement].

Low confidence of bathymetric depth
migrations.

Overprinted by sea
level–induced facies shifts.

Few. Statistical assessment of above vs. below
storm wave base.

Growth, body size Reduced growth and adult body sizes of
some species [medium confidence].

Lilliput effect observed across
multiple biotic events [medium
confidence].

Reduced growth and body size
often have non-climatic drivers.

Numerous. Difficult to extract unique
temperature signal.

Extinction magnitude No global extinction in marine
environments attributed to climate
change yet; numerous local extinctions
[medium confidence].

At least two mass extinctions and
several other extinction crises
triggered by hyperthermal events
[high confidence].

Timing (e.g., backward smearing
of extinctions), geographic
sampling biases.

Numerous. Can extinction magnitude be
predicted from warming and deoxygenation?

Differential vulnerability Experimental responses, relative rates of
abundance and distribution loss [high
confidence].

Change in extinction selectivity from
background selectivity [medium
confidence].

Differential preservation, same
as for extinction magnitude.

Numerous. Need better control for sampling.
Understanding drivers of between- vs.
within-group differences.

Ecosystems Kelp forest and coral reef mass
mortalities from marine heat waves [very
high confidence].
Shifts in community composition [very
high confidence].
Oceanic “dead zones” [very high
confidence].

Coral reefs collapsed in hyperthermal
events and were rare in warm
intervals [very high confidence].
Black shales, absence of bioturbation
[high confidence].

Composition shifts are sensitive
to sea level–induced facies shifts
and sedimentation rates.

Numerous, but mostly for reefs.
Focus on well-sampled taxa and basins, control
for facies shifts.

Cascading effects Rearrangement of marine food webs
[medium to high confidence, depending on
ecosystem].
Loss of ecosystem engineers (see kelp
forests and coral reefs);
Trophic amplification [medium
confidence].

Sometimes hypothesized, limited
evidence.
Change in extinction selectivity trends
of inhabitants of biotic habitat
[medium confidence].
Often little-to-no response of
predators [low confidence].

How to demonstrate specific link
to climate?
Ecosystems evolve.
Separating influence of clade
(and other traits) from trophic
position.

Unknown. Need means of consistent
quantification over changing preservational
scenarios.
Quantify influence of evolution.
Control trophic position for other traits.
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(e.g., Ruhl et al. 2011; Joachimski et al. 2012, 2020; Frieling et al.
2017; Gliwa et al. 2022; Tierney et al. 2022).

Paleoclimate models are another way of tracing climatic
changes over time. Previous models focused on particular snap-
shot intervals such as the end-Cretaceous (Brugger et al. 2017)
or the Permian/Triassic boundary (Winguth et al. 2012, 2015).
A full suite of paleoclimate models across all Phanerozoic stages
was first accomplished by Valdes et al. (2021), and these are useful
in providing a background against which geologically rapid cli-
matic changes can be identified (Kiessling et al. 2023) (Fig. 1).
However, paleoclimate models still have issues to reliably capture
some attributes of past climates such as equable latitudinal climate
gradients during hothouse climates (Sagoo et al. 2013) and more
local features of epeiric seas (Judd et al. 2020). Another challenge
for current climate models is the observation that climate sensitiv-
ity, the increase of surface temperature when atmospheric CO2

concentrations double, is far higher when greenhouse gas concen-
trations are already high (Tierney et al. 2022).

In the face of “unknown unknowns” it is thus best to refer to
proxy data for identifying ancient episodes of rapid climate
change (Foster et al. 2018). Such data clearly identify six hyper-
thermal events over the last 300 Myr that are characterized by
rapid warming, deoxygenation of oceanic water, and an intensi-
fied hydrological cycle, with increased continental erosion and
negative carbon isotope excursions indicating the injection of iso-
topically light carbon (Foster et al. 2018). “Rapid” refers to both
onset and duration but, importantly, is relative to geological time-
scales, where it can mean over tens to hundreds of thousands of
years. Here, we refer to geologically rapid onset as occurring in
less than 500 kyr. Besides these well-known hyperthermals,
there are also other episodes of rapid climatic changes, including
cooling events (Fig. 1). Some of these cooling events were associ-
ated with mass extinctions (end-Ordovician, Late Devonian,
end-Cretaceous), and in the case of the end-Ordovician

(Finnegan et al. 2012) and end-Cretaceous mass extinctions
(Brugger et al. 2017), cooling is thought to have been a primary
trigger.

Among the six hyperthermal events identified in the last
300 Myr, two are exceptionally well studied: the Paleocene–Eocene
thermal maximum (PETM) and the end-Permian mass extinction
(EPME). These two hyperthermals showcase how similar triggers
may result in vastly different responses. Both hyperthermals are
thought to have been triggered by the rapid injection of greenhouse
gases into the atmosphere, leading to profound warming and a
global disturbance of the carbon cycle (Zachos et al. 2008; Cui
et al. 2021). Yet, while the EPME (∼252 Ma) was the most severe
mass extinction of the Phanerozoic, extinction tolls across the
PETM were conspicuously low (Kocsis et al. 2019). Several options
are available to explain the differences, ranging from the varying
magnitude and rates of warming, to the different climate history,
continental configuration, and buffering capacity of the Permian
and Paleocene Earth systems. One immediate observation is the
transient nature of the warming in the PETM (duration ca. 170
kyr; Röhl et al. 2007), whereas the Permian–Triassic warming lasted
millions of years (Sun et al. 2012). Explaining any vastly different
outcomes of superficially similar hyperthermals is mandatory for
paleobiologists aiming to contribute to current threats of biodiversity
from climate change.

There is an apparent paucity of hyperthermal events in the
earlier Paleozoic. Warming might have been involved in the
end-Ordovician and Late Devonian mass extinctions, but they
do not match Foster et al.’s (2018) definition of hyperthermals.
Although the role of warming is increasingly being acknowledged
in the end-Ordovician mass extinction (e.g., Bond and Grasby
2020), this warming was just a deglaciation of the Hirnantian gla-
ciation, and cooling is still seen as the major trigger of the extinc-
tion (Saupe et al. 2020). Similarly, the Late Devonian Kellwasser
crisis was associated with a transient cooling episode interrupting

Table 2. Evidence of climate-related stressors across major biotic turnover events. Traditional “big five” mass extinctions are highlighted in bold. Underlined
indicates evidence not yet provided in Harnik et al. (2012). References are listed in Supplementary Table 1. OAE, oceanic anoxic event.

Event Warming Deoxygenation
Acidification and
hypercapnia

Confidence for attribution to climate
change

Sinsk (early Cambrian) No Yes No Low

Hirnantian Some Yes No High (mostly referring to cooling)

Kellwasser No Yes No Low (cooling rather than warming
and not main cause)

Hangenberg No Yes No Low

End-Guadalupian Some Yes No Medium (but unclear if cooling or
warming)

End-Permian Yes Yes Yes High

End-Triassic Yes Yes Yes High

Toarcian Yes Yes Yes High

OAE 1 (Aptian) Yes Yes Yes High

OAE 2
(Cenomanian–Turonian)

Yes Yes Yes High

K-Pg Some (but after
extinctions)

Some (but after
extinctions)

Yes High (impact winter)

PETM Yes Yes (but limited extent) Yes High

Eocene–Oligocene No No No Medium (likely cooling)
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a longer-term warming trend (Huang et al. 2018). All major and
minor events in the Paleozoic were associated with positive rather
than negative excursions in stable carbon isotopes, which rules
them out as hyperthermals sensu Foster et al. (2018). In spite of
the lack of true-to-definition hyperthermal events, animals in
the early Paleozoic are deemed to have been intrinsically prone
to extinction because seawater temperatures were higher and con-
tinental configuration limited species’ geographic ranges (Pohl
et al. 2023).

Tracing Biological Impacts in Geological Time

Although deep-time observations are necessarily on much longer
timescales than modern or historical records (Fig. 2), this is not
automatically an issue if biotic responses are universal and time-
scale invariant, that is, the response is similar regardless of tem-
poral resolution and extent. For example, timescale invariance is
suggested if marine extinction risk of evolutionary lineages
matches the rank order of performance loss of individuals due
to abiotic stressors within these lineages (Reddin et al. 2020b).
Metabolic theory is commonly put forward to explain scale
invariance. Particularly, the theory of oxygen and capacity limited
thermal tolerance (OCLTT) may be applicable across organismic
and evolutionary scales (Pörtner 2012; Pörtner and Gutt 2016;
Pörtner et al. 2017). The OCLTT theory posits that molecular
to whole-animal mechanisms dictate the thermal constraints on

the capacity for oxygen supply to the organism in relation to oxy-
gen demand. The synergistic effects described by OCLTT decrease
individuals’ performance, which scales up over time to the vulner-
ability of populations and ultimately drives the species to extinc-
tion under profound climate change. OCLTT is also put forward
to explain range shifts (Pörtner 2021), the dwarfing of evolution-
ary lineages and marine communities under climate change
(Calosi et al. 2019), and even environmental origins of
Ediacaran biota (Boag et al. 2018).

To the contrary, when factors are biologically important only
in local areas and on short timescales but not directly increasing
extinction risk, they are instead scale variant, probably due to
emergent properties in a complex system (Congreve et al. 2017).
Biotic interactions, for example, may be crucial to explain biodi-
versity changes at local scales and perhaps for some macroevolu-
tionary patterns (Liow and Quental 2024), but they are unlikely to
explain the near-simultaneous extinction of many species across
clades (Congreve et al. 2017).

The degree to which biotic responses depend on particular
timescales is perhaps the key question of paleontological climate
impact research. Finding generalities of climate change responses,
especially those that are scale invariant, will make paleontological
results more relevant for the discussion of modern climate
impacts. We already have a reasonable understanding of climate
impacts on particular timescales (Fig. 1, Table 1), but there are
still untapped opportunities for paleobiology to contribute to

Figure 1. Climatic context of well-documented hyperthermal events across the Phanerozoic. Five extinction events (end-Ordovician, Late Devonian, end-Permian,
end-Triassic, end-Cretaceous) plus three hyperthermals (Toarcian, Cenomanian–Turonian, Paleocene–Eocene thermal maximum [PETM]). Hyperthermal events are
in bold. The climate stripes are based on mean global temperatures from climate models per stage (Valdes et al. 2021), and the paleographic reconstructions are
from Scotese (2016). Symbols refer to hypothesized ultimate (volcanism, impact) and proximate drivers (cooling, warming, deoxygenation) of extinctions.
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the field (Table 1). We briefly summarize some key paleontolog-
ical evidence for the impacts of climate change on organisms,
focusing on unique signals of hyperthermals.

Changes of Life-History Traits

Life-history traits such as growth rate and mode of reproduction
are commonly discussed in their capacity to predict climate
change impacts (Foden et al. 2013; Pearson et al. 2014;
MacLean and Beissinger 2017; Kubicek et al. 2019). Here, we
seek traits that are directly affected by climate change. The
scope of traits to predict biological impacts is discussed in subse-
quent sections. The most readily preserved traits are
morphological.

The reduction of adult body size under current warming is
already widespread in extant species (Daufresne et al. 2009;
Gardner et al. 2011; Forster et al. 2012; Baudron et al. 2014;
Calosi et al. 2019). Although size reductions may only be slightly
more common than size increases as a response to warming
(Audzijonyte et al. 2020), it is tempting to relate the widespread
Lilliput effect in ancient taxa to climate warming (Piazza et al.
2019, 2020; Rita et al. 2019). Additionally, limited oxygen supply
is expected in a warming ocean due to increased oxygen demand
and decreased efficiency of oxygen delivery for organisms in
warmer water (Chapelle and Peck 1999; Deutsch et al. 2011). In
both the modern ocean (Audzijonyte et al. 2019; Verberk et al.
2021) and the paleontological record (Foster et al. 2019), limited
oxygen supply is increasingly being recognized as a culprit of
reduced body size in marine invertebrates. While this makes it
hard to tease apart the explicit roles of temperature versus oxygen

in past crises, all hyperthermal events of the last 300 Myr are
marked by a coincidence of warming and widespread anoxia.
Given their synergistic impacts (see “The Deadly Trio”), a separa-
tion may only be worthwhile during hypothermal events.

While the aforementioned strong links between hyperther-
mals, seawater deoxygenation, and a reduction in body size
exist, the pattern is not universal across the Phanerozoic.
Complicating observations include an increase in the size of radi-
olarians across the PETM (Westacott et al. 2022) and no size
change in ostracods over the end-Permian (Nätscher et al.
2023). In addition, a substantial Lilliput effect has also been
noted in the absence of rapid warming, such as across the
Cretaceous/Paleogene boundary, perhaps due to limited food sup-
ply (Smith and Jeffery 1998; Aberhan et al. 2007). We are thus still
lacking evidence for the generality of any distinct intraspecific
body-size signature of hyperthermal events.

Skeletal growth specifically of reef corals appears to be
impaired by warming (Cantin et al. 2010). However, there is a
complex connection between growth rate, skeletal density, and
temperature (Brachert et al. 2013), which renders it difficult to
find a direct connection between temperature change and growth
rate in fossil materials. Calcification rates of fossil Cenozoic corals
are mostly lower than those of modern reef corals, which could be
attributed to warmer climates of the past but perhaps more plau-
sibly to a lower aragonite saturation state (Brachert et al. 2020).
Similarly, irregular growth bands in surviving corals of the
end-Triassic mass extinction have been attributed to environmen-
tal stress, but not necessarily temperature (Kiessling et al. 2009).
Modern studies supporting a thinning or change in the skeletal
structure of bivalve shells (Mackenzie et al. 2014; Fitzer et al.

Figure 2. Timescales over which climate impacts have been studied. Timescales of less than 1 year refer to laboratory studies and mostly refer to physiological
experiments. Present-day and historical observations of climate impacts refer to timescales of 100 to 102 years, whereas everything coarser than that is near time
(103 to 105 years) or deep time (104 years and greater) evidence. Key references are provided in Supplementary Table 2.

Wolfgang Kiessling et al.102

https://doi.org/10.1017/pab.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/pab.2024.20


2018) have yet to be demonstrated in past hyperthermals. Again, a
distinct climate signal in growth and skeletal attributes is lacking
across past episodes of rapid climate change. Metabolic theory
suggests that body-size changes may become more variable and
partly dependent on dispersal ability with warming (Deutsch
et al. 2022), which opens avenues for future research.

Distribution Shifts

Poleward range shifts are among the clearest responses of current
climate warming (Sunday et al. 2012; Pecl et al. 2017; Kumagai
et al. 2018). Ranges shift rapidly, especially in the ocean
(Poloczanska et al. 2013; Lenoir et al. 2020), and track climate
velocities well (Pinsky et al. 2013, 2020), especially when consid-
ering dispersibility (Sunday et al. 2015). The rapid response of
distributions to climate change challenges their detection in
deep time (Yasuhara and Deutsch 2022). A short warming
pulse such as the PETM likely leaves behind only limited numbers
of fossils in higher latitudes, before subsequent cooling would
shift ranges back equatorward. This would limit the chances of
detecting transient range shifts in the fossil record. With this in
mind, it is surprising that the PETM is especially rich in docu-
mented range shifts (Bowen et al. 2002; Wing et al. 2005),
although well-documented marine examples are limited to micro-
plankton (Speijer et al. 2012). Equatorward range shifts with cool-
ing have also been recorded (Kelley and Raymond 1991), but
there is only a single demonstration of latitudinal range shifts in
accord with long-term temperature change across the
Phanerozoic. This study (Reddin et al. 2018, 2020a), after correct-
ing for sampling, found that range shifts roughly followed tem-
perature changes derived from stable oxygen isotopes ever since
the Ordovician.

Rather than tracing surviving taxa between time bins, quanti-
fying latitudinal diversity gradients (LDG) may reveal the inter-
play between evolutionary dynamics and range shifts (Jablonski
et al. 2006; Raja and Kiessling 2021). The observation of diversity
peaks away from the tropics, especially during greenhouse inter-
vals, is suggestive of a climate signal (Mannion et al. 2014;
Brodie and Mannion 2023), as tropical temperatures often
approached metazoan limits (Storch et al. 2014) and the optimal
temperature for aquatic phyla is centered around 20°C (Boag et al.
2021; Costello et al. 2023). Overheated tropics seem to limit bio-
diversity due to both regional extirpations and raised relative
extinction rates (Reddin et al. 2019). Latitudinal diversity shifts
match well with range shifts on short timescales because here dis-
tributional changes alone, rather than speciation and extinction,
are responsible for the LDG (Kiessling et al. 2012; Yasuhara
et al. 2020; Chaudhary et al. 2021). The flat LDG in the aftermath
of the EPME is a mixed signal of high tropical extinction and
poleward range shifts (Song et al. 2020).

Besides poleward range shifts, depth migration might appear
to be a promising route to escape the heat of shallow waters
(Yasuhara and Deutsch 2023). Two factors limit migration of
shallow-water species into greater water depths: (1) limited food
supply in more light-limited, deeper settings and (2) limited oxy-
gen availability in deeper waters approaching the oxygen mini-
mum zone (Breitburg et al. 2018). Accordingly, modern depth
shifts are more pronounced in midlatitudes (Chaikin and
Belmaker 2023) and late Pleistocene to Holocene depth shifts
have been observed in deep-sea ostracods for which the aforemen-
tioned limitations do not apply (Yasuhara et al. 2008). Perhaps
due to the association of anoxia with ancient hyperthermal events,

patterns of fossil depth shifts are not documented across past
hyperthermals.

Extinction

Extinction is a defining theme for paleontology and perhaps the
greatest asset of the discipline for deep-time climate impact
research. Confirmed extinctions due to current climate change
are rare (IPCC 2022). Although future projections using species
distribution models reach 14–32% of macroscopic species within
50 yr under even intermediate warming scenarios (Wiens and
Zelinka 2024), the scope of species distribution models to predict
extinction risk is currently problematic (Zurell et al. 2023). The
wealth of empirical evidence for climate-related extinction, prop-
erly scaled, provides a unique opportunity for paleontological data
to validate such models and presumably the future under high
warming scenarios.

For marine extinctions, the past drivers were likely the same
deadly trio threatening modern marine life under climate change:
warming, deoxygenation, and acidification (Payne and Clapham
2012). Groups that are most vulnerable to climate-related stressors
on the timescale of days to weeks tend to have higher extinction
rates, especially during hyperthermal events, than groups with
greater resilience (Reddin et al. 2020b). Laboratory experiments
suggest that synergies among stressors particularly pertain to
combined warming and hypoxia, while other combinations of
stressors such as warming and acidification do not lead to a
greater effect size than individual stressors (Reddin et al.
2020b). Metabolic expectations combined with Earth system
modeling also suggested that the combination of warming and
deoxygenation can cause sufficient habitat loss to drive mass
extinction (Deutsch et al. 2015; Penn et al. 2018).

Seeking life-history traits of raised vulnerability has a long his-
tory in paleobiology, particularly across major extinction events
(e.g., Jablonski and Raup 1995; Aberhan and Baumiller 2003;
Kiessling et al. 2007; Clapham and Payne 2011; Payne et al.
2016; Clapham 2017; Foster et al. 2023). However, there are few
studies to assess the specific signal of climate change (Ezard
et al. 2011; Woodhouse et al. 2023). Reddin et al. (2021) com-
pared a large suite of traits alongside taxonomic patterns across
the six hyperthermal events identified by Foster et al. (2018)
and found that photosymbiosis, deposit feeding, having actively
burrowing or swimming adult life stages, an affinity for reef hab-
itat, or aragonitic relative to low-Mg calcite skeletal composition
consistently enhanced the extinction vulnerability of marine gen-
era. Vulnerability here was defined relative to the genus’s back-
ground extinction selectivity (sensu Raup and Boyajian 1988). A
meta-analysis showed that acidification responses of organisms
in modern experiments were particularly severe for those with
greater fossilization potential, suggesting that ancient acidification
impacts should be particularly clear in the suite of organisms pre-
served as fossils (Reddin et al. 2020b). Surprisingly, ancient mass
extinctions, including those that were triggered by hyperthermals,
did not selectively remove larger-bodied forms (Payne et al. 2016).
However, hyperthermals appear to increase the relative extinction
risk of larger-bodied genera compared with non-hyperthermal
times (Reddin et al. 2021).

A robust prediction for the expected extinction toll based on a
certain magnitude of global temperature change would be a leap
forward. Song et al. (2021) argued that 5.2°C of temperature
change, warming or cooling, is a critical threshold for a mass
extinction to occur, whereas Kaiho (2022) suggested 7°C of
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absolute temperature change as a critical value. Given that these
results were achieved at rather coarse stratigraphic resolutions,
revisiting the basic results at finer temporal resolutions would cer-
tainly be beneficial (Spalding and Hull 2021). Song et al. (2021)
also reported a rate of climate change of >10°C/Myr as critical
for a mass extinction event. As we discuss later, referring to rates
is generally problematic when timescales are different (see “The
Crux with Rates of Change”). Although the critical rates may be
informative on the stage-level stratigraphic resolutions in Song
et al. (2021), they have no relevance for current rates of change.

A potentially important and fitting subject for paleobiological
scrutiny is the influence and mechanism of evolutionary legacies,
which shape the vulnerability of organisms to climate change
(Bennett et al. 2021). The longer-term climatic history a clade
has experienced influences its response to short-term climate
change (Mathes et al. 2021a,b). For example, abrupt warming is
more deleterious when built upon a long-term warming trend
than when the short-term warming follows a long-term cooling
(Mathes et al. 2021b). Coinciding directions of recent and legacy
climatic change appear to consistently amplify the extinction
response to recent climatic change, either in the case of warming
or cooling. Evolutionary legacy may also be behind the observa-
tion that tropical species live close to their upper thermal limits,
such that even mild temperature increases can lead to large
regional species losses (Hodapp et al. 2023). More work on the
relative influence of climate legacy on extinction risk is clearly a
promising avenue for future research.

Ecosystems

Assessing the response of entire ecosystems to climate changes is
perhaps more important than evaluating the responses of individ-
ual species. Clearly, the cumulative pressures on individual species
must lead to altered ecosystem resilience (Malhi et al. 2020).
Modern marine ecosystems are sometimes said to be already
exposed to pressures not encountered in millions of years
(Hoegh-Guldberg and Bruno 2010), but this statement is not suf-
ficiently scrutinized.

The main changes observed in modern marine ecosystems due
to climate change include reduced primary productivity in most
regions, altered food web dynamics, and reduced abundance of
habitat-forming species (Hoegh-Guldberg and Bruno 2010;
Cooley et al. 2022). These patterns can also be observed in
response to past climatic changes.

Changes in past primary productivity can be traced with geo-
chemical methods, which are beyond the scope of this review.
However, there is increasing evidence for reduced primary pro-
ductivity across the end-Permian (Algeo et al. 2013; Shen et al.
2015; Grasby et al. 2016) and end-Triassic crises (Schoepfer
et al. 2016; Fujisaki et al. 2020) in line with projections under
future climate change (Cooley et al. 2022). As a consequence of
extinctions and reduced productivity, altered food web structures
are to be expected (Roopnarine 2006) and have been noted across
major environmental disturbances (e.g., Aberhan and Kiessling
2015; Huang et al. 2023). Such changes are also evident in biotur-
bation intensity, which is commonly reduced after
climate-induced crises (Calosi et al. 2019). Increases in extinction
risk of deposit feeders during hyperthermals relative to other
times (Reddin et al. 2021) may occur because rapidly warming
and periodically anoxic seafloor conditions sway resource compe-
tition among deposit feeders away from metazoans and toward
prokaryotes (Crichton et al. 2023).

Reduced abundance of habitat-forming species is a key
response to climate change in present and past marine ecosys-
tems. Together with kelp forests, coral reefs are known as the
marine ecosystem most vulnerable to modern climate change
(Cooley et al. 2022). Coral reefs also have an excellent geological
record tracing back at least to the Ordovician (Kröger et al. 2017).
Although there is no significant cross-correlation between mean
seawater temperature and fossil reef abundance (Kiessling 2002,
2009), it is nevertheless striking that times of global warmth
such as the middle and Late Cretaceous and the early Paleogene
were marked by depressed reef building (Pandolfi and Kiessling
2014). Likewise, the biotic composition of reefs seems to be linked
to seawater temperature. For example, the long-term change from
microbial-sponge-dominated reefs to coral-dominated reefs in the
Triassic may be linked to cooling (Kiessling 2010), whereas the
Cretaceous demise of coral reefs and increase of rudist biostromes
may be linked to warming (Pandolfi and Kiessling 2014). In this
way, the reef builder’s abundance and altered composition is a
consistent signature of climate response. The study of habitat-
forming species, their interactions, and ecosystem service from
deep time to modern offers unique insights into ecosystem
responses to climate change.

Adaptation to Climate Changes

The scope of modern marine organisms for local adaptation in a
warming world is strongly debated (Hoffmann and Sgrò 2011;
Araújo et al. 2013; Munday et al. 2013; Kurman et al. 2017;
Torda et al. 2017; Bairos-Novak et al. 2021; Lachs et al. 2023).
Although the evolvability of many organismic traits is high, the
adaptation potential to warming climates appears to be low
(Araújo et al. 2013). Thermal limits have evolved mostly to
become narrower with the evolution of increasingly complex
domains of life (Storch et al. 2014). The fossil record supports
that adaptation options to climate change are limited, with
increasing evidence of niche conservatism within evolutionary
lineages. Specifically, the thermal niches of species appear to be
conserved over thousands to millions of years in foraminifers
and mollusks, respectively (Yasuhara et al. 2012; Saupe et al.
2014; Antell et al. 2021). Similarly, the message of the deep-time
coral reef record is clear: coral reefs have limited scope for adap-
tation to climate warming, regardless of the inferred rate of
change. Times of prolonged warming were equally bad for coral
reef development, as were times of geologically rapid warming
(Pandolfi and Kiessling 2014).

Rates of climate change are often in focus for the assessment of
the adaptation potential (Peck et al. 2009; Quintero and Wiens
2013; Jezkova and Wiens 2016; Fordham et al. 2020; Williams
et al. 2021). Simulations support that rates of climate change
are critically important for speciation and extinction (Qiao et al.
2016), but we argue that empirical rate measurements in deep
time have no direct relevance for current climate impact research,
especially not when they are compared across vastly different time
spans such as this century against evolutionary rates measured
over millions of years (Quintero and Wiens 2013).

Research Challenges and a Way Forward

There are promising routes for paleobiology to better address and
translate into conservation strategies under climate change. As
discussed previously (Kiessling et al. 2023), there are a number
of simple measures to make paleontological findings more policy
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relevant. Foremost, reporting of paleobiological results needs to be
improved by being clearer about effect sizes, uncertainties, and
time spans over which effects are observed. Second, research
needs to be more targeted toward projecting climate change
impacts. The search for commonalities among mass extinctions
was once fruitful for revealing macroevolutionary principles, but
now a critical comparison among past hyperthermal events may
be more rewarding (Reddin et al. 2023).

We identify three outstanding scientific questions: (1) Context
dependency: why are responses to similar climatic changes some-
times very different? (2) Scale dependency: which responses, if
any, are scale-invariant and how can we quantify scale-
dependence? (3) Applicability: how can we translate deep-time
paleontological findings into conservation strategies?

The first question is perhaps the most pressing. There are differ-
ences in extinction magnitude that cannot be simply attributed to
differences in climate forcing. There seems to be a stronger impact
of hyperthermals that occurred during Pangean times than later
on, which has been attributed to a lack of chemical buffering in
the pre-Jurassic oceans (Zeebe and Westbroek 2003; Wignall
2016). This hypothesis makes the implicit assumption that distur-
bances of the carbon cycles, for example, through ocean acidification,
were directly responsible for the extinctions. Following Sampaio et al.
(2021) and Reddin et al. (2020b), we challenge this assumption, not-
ing that the interplay of deoxygenation and temperature rise was
likely a major extinction trigger. Recent evidence suggests that the
extent of anoxia across the PETMwas much more limited than dur-
ingMesozoic anoxic events (Clarkson et al. 2021) and the ocean was

The Crux with Rates of Change

Rates of natural processes are virtually impossible to compare across timescales. Most natural processes advance more like a car on a long-distance trip rather
than a rocket in space; similar to how the average speed of a car decreases as the distance increases due to bends in the road and pauses as the driver gets
distracted, or needs to sleep, the progression of these processes slows down over time. Similarly, evolutionary rates, rates of climate change, and some
measures of extinction rates are critically dependent upon the timescale of observation (Blois and Hadly 2009; Gingerich 2009, 2019, 2021; Kemp et al. 2015).
Because none of these processes are monotonic, the true rate can change over time and, like a detoured car, even reverse direction (Fig. 3). Amid a longer-term
warming trend, there might be intervals of stasis and even cooling. Similarly, there might be times of evolutionary stasis amid a directional long-term change.
Overall, these vagaries produce a negative power-law relationship between time span of observation and observed rate of change. Without considering this
temporal scaling, any comparison of historical and prehistorical rates of change is meaningless (Gingerich 2019; Watkins 2023). It is mathematically
straightforward to normalize rates to any arbitrary time span, but it is better to compare rates only when either the numerator (magnitude of change) or
denominator (time span of change) is the same (Gingerich 2019). Achieving a finer temporal resolution across hyperthermal events may also help to assess the
basic pattern of true rate trajectories.

Figure 3. Potential patterns of temperature rise (ΔT ) within a longer (e.g., geologically resolvable) time interval (Δt) of observation. Taking the rates at face value
implies a naïve, linear interpolation (A). True temperature changes are likely to be much more complex and made up as a composite of patterns (B–F), all involving
greater rates (steeper slopes, red color) at some times within Δt than the naïve rate. Increasing the temporal resolution is unlikely to capture the true maximum rate
within Δt, but it might inform us of the underlying process(es). Within each panel, all trajectories move from the lower left to the upper right cross.
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generally less prone to anoxia after the Turonian (Smith and Stockley
2005; Kiessling and Kocsis 2015). Climate legacies (Mathes et al.
2021b) and the shorter duration of the warming might also contrib-
ute to the lower impact of post-Cretaceous warmings.

The second question (scale dependency) is directly linked to
the third (applicability). Scale dependency needs to be quantified
as much as possible with both empirical paleontological work and
modeling. How predictable are the impacts of climate change
across timescales? For example, sponges are sometimes conceived
as the winners of climate change relative to corals (Bell et al.
2018), but the evidence is equivocal in the modern ocean
(Lesser and Slattery 2020). The fossil record tells us that sponges
were consistently less vulnerable during past hyperthermal events
than corals when differing sampling completeness is taken into
account (Reddin et al. 2021), but more work is clearly needed
to specify which groups of sponges might be the future reef build-
ers. We may benefit from ecological approaches to measure scale
dependence in biodiversity–ecosystem functioning relationships
(Gonzalez et al. 2020).

The fossil record can also help reveal how a climate-induced
mass extinction unfolds. Gradually increasing warming leading
to gradual body-size reductions and pulsed extinctions culminat-
ing in a more or less abrupt extinction have been documented for
the EPME (Kiessling et al. 2018; Gliwa et al. 2022). However, we
still need a higher temporal resolution of both geochemical and
paleontological data at global scales, including a consideration
of sampling biases at all hyperthermal events. Simulations based
on metabolic theory are promising to bridge gaps in space,
time, and genealogical as well as ecological hierarchies (Penn
and Deutsch 2022). For instance, poleward range shifts may be
a precursor to raised tropical and polar extinctions (the former
being scale dependent and the latter potentially scale invariant),
as endemic species are funneled into habitat area bottlenecks
(Reddin et al. 2022). Finally, assessing the impacts of ancient cli-
matic events also requires robust estimates of background vari-
ability and a comparison with events that were likely not
primarily driven by climate change. The latter are rare, as even
the impact-driven end-Cretaceous mass extinction had severe cli-
matic consequences, albeit with cooling dominating (Vellekoop
et al. 2016). In addition, background variability is probably insuf-
ficiently characterized due to the research focus of extreme events.
A future quest will thus be to contrast hyperthermal extinction
drivers against non-hyperthermal drivers.
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