T. Hattori
Nagoya Math. J.
Vol. 145 (1997), 29-68

DISCRETE SPECTRUM OF MANY BODY
SCHRODINGER OPERATORS
WITH NON-CONSTANT MAGNETIC FIELDS I

TETSUYA HATTORI

1. Introduction

In this paper we discuss the discrete spectrum of the Schrodinger operator
H, ,(b), defined as below, for an atomic system in a magnetic field. Let x = (',
...,z € RY, where 2’ is a point in R°(1 <7 < N), and V; be the gradient in
R® with respect to 21 < 7 < N). Then we consider the following operator:

(1.1) HN,Z(b)=§<TJ.(b)2— Z >+ 2 S -

i=1 |z’ isigsy |zt — 2|

defined on Cg (R™), where Z > 0, N€ N, b € C'(R%® being real-valued and
(1.2) T, =T, =—iV,—blx) QA<;<N.

For a vector potential b € C'(R®)®, the vector field ﬁ(y) =V X b(y) y € R is
called the magnetic field. By [11] (p 190) or [12] (Chap. 9), the operator Hy ,(b) is
essentially self-adjoint in LZ(RM), so we denote its self-adjoint extension by the
same notation Hy ,(b), which we study in this paper. This operator Hy ,(b) is the
atomic Hamiltonian with a nucleus, that is assumed to be infinitely heavy, of
charge Z and N electrons of charge — 1 and mass 1/2, and with the magnetic
vector potential b. The eigenvalues and the eigenfunctions of Schrodinger oper-
ators are often called energy levels and bound states, respectively.

The problem is the finiteness or the infiniteness of the discrete spectrum of
H, ,(b), which is one of the characteristic spectral properties. This problem in the
case that b = 0 was studied by Zhislin [17], [18], Jafaev [10], Uchiyama [15] and
others. Zhislin treated the case Z# N — 1 in [17] and [18), and thereafter Jafaev
[10] treated the delicate case Z = N — 1. The following theorem, which is
obtained by combining [17], [18] with [10], gives the necessary and sufficient
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condition for the finiteness of the discrete spectrum of Hy ;(0).

Tueorem 0.1 ([10], [17], [18]). The number of the discrete spectrum of
Hy, ,(0) is finite if and omly if Z < N — 1.

On the other hand, in the case of constant magnetic fields, Avron-
Herbst-Simon [4] gave a necessary condition for the finiteness of the discrete
spectrum of the atomic Hamiltonians, and Vugal'ter-Zhislin [16] proved that it is
also sufficient. In fact, Avron-Herbst-Simon [4] only proved that once negatively
charged ion has infinitely many bound states. It seems to be natural that any neut-
ral atom and any positively charged ion also have infinitely many bound states.
This is not trivial but easily seen.

TueoreM 0.2 ([41,[16]). The number of the discrete spectrum of Hy ,(b,) is finite
ifand only if Z < N — 1.

Here b,(y) = (0,0, B/2) X y(y € R®, B is a positive constant). This gives
the constant magnetic field V X b, = (0,0, B), which we have only to consider by
the change of coordinates. We remark that, comparing Theorem 0.2 with Theorem
0.1, the difference between the presence and the absence of constant magnetic
fields appears only in the delicate case Z = N — 1.

Then our concern is the case of non-constant magnetic fields. There are not
many works about this problem both for atomic Hamiltonians and for many-body
Schrédinger operators with short-range scalar potentials (for example Zhislin
[19]). Some different phenomena are expected to occur in non-constant magnetic
fields. This is true. In fact, we have the following theorems, which are our main
results of this paper.

THEOREM 1.1. For any positive number €, theve exists a vector potential b, €
C'(R®?, which gives a perturbed constant magnetic field and which is independent of
N and Z, such that the number of the discrete spectrum of Hy ,(b,) is finite for N =
2and Z 2 ¢.

In other words, any atomic system has only finitely many bound states, cor-
responding to the discrete spectrum, in a suitable magnetic field. Also the finite-
ness or the infiniteness of the number of bound states generically depends on
magnetic fields.

As stated as above we construct the vector potential b, in Theorem 1.1 as a
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perturbation of constant magnetic fields. Not adhering to it, we can extend the re-
sult to the case N = 1.

THEOREM 1.2. For any positive number €, there exists a vector potential b; €
C'R®?®, which is independent of N and Z, such that the wumber of the discrete spec-
trum of Hy ,(b,) is finite for N2 1 and Z 2 e.

For studying the above problem, geometric methods, that make explicit use of
the geometry of the phase space, have been used effectively. Agmon [2] developed
geometric methods for studying the exponential decay of eigenfunctions of
Schrédinger operators with non-isotropic potentials. In the lecture note [2] (see
also [1]) he characterized the infimum of the essential spectrum and constructed
Agmon’s K-function which is useful to show the HVZ theorem. In §2 by using this
function we prove the HVZ theorem for many-body Schrédinger operators with
perturbed constant magnetic fields. In relation to Agmon’s works, Evans-
Lewis-Saito [7] gave a sufficient condition, which are represented by Agmon’s
function, for the finiteness and the infiniteness of the discrete spectrum of those
operators. In addition, they also reprove Theorem 0.1 except the -case
Z = N — 1 by using this result ([8]). In §3 we extend Evans-Lewis-Saito’s result
to the general magnetic case. We do it in the same but slightly simplified way as
in [7]. In §4 we introduce some magnetic vector potentials, which are used in the
proof of Theorem 1.1, and study the essential spectrum of the atomic Hamiltonians
with these vector potentials. At the end, in §5 we prove our main results
Theorems 1.1 and 1.2.

2. Preliminaries

In this section we prepare the IMS-localization formula, the HVZ theorem and
related facts, which play a basic role in the proof of Theorems 1.1 and 1.2.
We consider the following operator:

(2.1) H=H, = f) (T, + V,&N + X V(& —=2)
j=1

1<i<i<N
. 2 3N
in L'(R™), where we assume

2.2 {V,,ELTOC(Ra), V@) = 0as |yl =0 (0<i<j<N)
' Vo) S0QA<;<N), V,(» 200 <i<j<N).

The operator Hy ;(b) in §1 is defined by (2.1) with
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(2.3) Vo,(y)=—]—j—[(15j£N),V,-,-(y)=]%[(1£i<j£N).

We denote the spectrum, the discrete spectrum, the essential spectrum of H by
o(H), o,(H), o,(H), respectively, and the cardinal number of a set Y by #7Y.
At first we define the quadratic form
N _— —
alg, 91 = = [ TpTgdr+ [ Vo,
i=1 YRV RV
aylol = q,l¢, @]

for ¢, ¢ € Cy(R™), where

(2.4) V@ = SV, + T V@ — 2.
j=1 1<i<j<N
Let
(2.5) A(H) = inflgy[¢]; ¢ € CTR™), I ¢ =1},
(2.6) S(H) = L Sup inflg[¢]; ¢ € CTR™M\E), | ¢ ],. = 1}.

We remark that under the assumption (2.2) the scalar potential V(x) (especially
the negative part V_(x) = max{— V(x), 0}) is Zjil sz—form bounded with the
bound zero. In fact, V(x) is in the Kato class (see §3) and the functions in the
Kato class have the above property (Lemma 3.1 in §3, [5] (Chap. 1) and [12]
(Chap. 9)). Also we remark that each Voj(xj) is Tiz—form bounded with the bound
zero. So A(H) > — o follows. Then we can show the following lemma in the
same way as in [1] (Theorem 1.6) or [2] (Chap. 3).

LEMMA 2.1.
A(H) = inf 6(H) and 2(H) = inf 0,(H).

The following formula holds as in the case without magnetic fields.

LeMMA 2.2 (IMS-localization formula). For a smooth partition of unity {]B}B
such that 22, ]52 (x) = 1, the following equality holds:
H=2X (H],—1V], 1) in the form semse,
8

that is,

aal$] = Z (@lU59) — AV, o, 9 for g € CoR™).
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Furthermore, let £ be an open subset in RY. Then
N N
[AZIT9F +VIgPrar= 3 [(ZITT0F +VIJglar—3 [ 7], Fllde
2 =1 B Y8 j=1 s YR
for ¢ € CTR™).

One can show the above lemma in the same way as in the case that 5 = 0 ([5]
(p.28), [7], [13]) because of the fact that the commutator

[T, 1 = — i(V,¢), for ¢ € C'(R?),

is independent of b.
Next we define Agmon’'s K-function to derive the HVZ theorem for some
cases. We note that the HVZ theorem for the case of constant magnetic fields is

shown in [14].

DeriNiTION (Agmon’s K-function). Let

S ={w= (..., ") eRY;|w|=1}.

3N-1

For a subset U C S (U # @) and for positive numbers R and §, we put

U, = {we S dist(w, U) <),

I'U, R) ={x€R";z/| x| € U, | z| > R},

2.7 KW, R; H) =inflgylg) ;¢ € C (U, B)), ¢l =11,
KU ; H) = lim lim K(U,, R ; H),

5LORT e

M=MN ={we S " Kw;H = inf Kw;HI,

weSiN-1

where K(w; H) = K({w} ; H).

Here the set function K(-; H) and the set M are called Agmon’s K- function
and the minimizing set jor H, respectively. The following properties of K can be
shown in the same way as in the case that b = 0 ([1] (§5,6), [2] (Chap. 2) and [7}).

Lemva 2.3, The function K has the following properiies.

(i) The value of K(U ; H) is the same vegavdless of the ovder of the limils.
(ii) The function K(w; H) is lower semi-continuous on S°° .
(ii)) 22(H) = min,cgv-1 K(w ; H).

(iv) K(U; H) = K(U; H) = inf,.5 K(w; H) for U< S
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As is clear from the proof in [1], [2], [7], Lemmas 2.1, 2.2, 2.3 hold also for
the operator

N
(2.8) H=2T +V,
j=1
where T, = — i, — b,(z’), b, € C'(R®)® which is real-valued (1 <j < N).
For the statement of the HVZ theorem we usually use the subsystem of H.
For w = (0,..., @) € S let
y 2 . 2 3N
(2.9) H,=2XT,b)"+ V,in L'(R™) and
j=1
V,(m) = X V,(z) + z V@ —z").
=0 0= 1 <i<j<N

This operator H,, is called the subsystem of H with respect to w € D

o __ o0 __ R
xr = w = 0, we can write

V() = 2 V@ —z').

w'=0’ 0<i<i<N

. Letting

Now we shall show the HVZ theorem only in the case that

b(y) = by(y) + b,(»),
(2.10) by(®) = f(O) (— ¥z 4, 0),
b,(y), divh,(y) = 0 as [y |— oo,

where ¥ = (4, 4, ¥) €ER®, 3= (y,, ,) and f(3) € C'(R®). We notice that
(2.10) includes both the case without magnetic fields and the case of constant
magnetic fields. Also we remark that

(211) S(T,(b,)") = AT, (b)Y A <F<N).

In this case we have to modify the subsystem of H as follows.

DerFviTiON,.  For w = (0',. .., @) € S™ 7" let
(2.12) H= % T,(0°+ = T,(by* + V, () in L'(R™).
w'=0 @' £0

Note that in the case that b, = O the modified subsystem H? is equal to the
usual subsystem H,. Then the HVZ theorem for the case of (2.10) is stated as fol-
lows.

THEOREM 2.4 (HVZ theorem). For the case of (2.10) , we have
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(2.13) S(H) = min AH®).

wesN-1

Before going into the proof of Theorem 2.4, we prepare several lemmas.

LemMa 2.5. Let H, and H” be as in (2.9) and (2.12), respectively. Then

Kw;H = Kw;H) = Kw;H*) frowe S*™.

3N-1

Proof of Lemma 2.5. Letw = (&',..., @") € S and 2° = @’ = 0. Then

H-—H,= > Vv, —z).

w'ta 0<i<i<N

Let w, be the neighbourhood of {w}. If £ € I'(w;, R), then |z’ /| x| — ' | <&
for 1 <7 < N, which implies

|2’ —2'| > (o — o' | —20) | z|if 0 # &

Let

1 . j i
al—z min |a)—wl.
W't 0<i<i<N

Then for 6 < a, it follows that |2’ — z'| > 2a,R if ' # . This implies that
V@' —z)—0as R— oo if w' # o
Hence for any &, > O there exists R, > 0 such that
0, (8] — eoll ¢ Iz < ) < g 8] + &0 6 11
for 6 < a;, R > R,and ¢ € C, (I'(w;, R)), which implies
Kw;H = Kw;H,).
Next we show the second equality. By a simple calculation,

H®—H,= 3 (T,(0)* = T;(b)) = = (2b, - T;(by) — i div, (@) — | b,(z)) ).

Letting
B@ =- Z G divh,(z’) + | b, P,
we have
| 94e[6] = 4y 811 < Z e 1 Tl + &7 15,N o 1) + Bp, 9.
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< e fgglgl — Z (I T, ¢l + (Voy@) g, ¢)12))
+(er Z10,@) [+ P9, )

w'£0

for any ¢, > 0 and ¢ € CSO(RSN)A Here we have used the positivity of V,;. By us-
ing the fact that Vy; is T}-form bounded with the bound zero (stated as before in
this section, see also §3), we have

(= V@), 9 < I L0+ C gl Q<< N)
for some positive constant C,. So,
| guol9] = gy [91 ] < &,q5.[9] + 6,Co | ¢ |72 + (B, (D@, B)se,

where

B@ = &' = |b,@) [+ A@ and €, = 3 C,.

@' #0

Now let € I'(w;, R) and & < ming,,| @/|/4 = @, Then | 2’| = 2a,R if o’ #
0, which implies 8(x) — 0, B (x) — 0 as R — © by (2.10). Hence we obtain

(1—-e)Kw;H®) —¢C, < Kw;H,) <1+¢e)Klw;H®) + ¢,C,
which implies
Klw;H®) = K(w;H,). ]
Lemma 2.6, Forw = (o, ..., @) € S™7" such that o’ = (0,0, 2) (1 <
< N), the following equalities hold.

Kw;H =Kw;H") = 2(H") = A(H").

Proof of Lemma 2.6. For the above w € S*¥ it is easy to see by (2.10) that

Vw(;p + ta)_) =V,(@),
bz’ + t) = b(2) if 0’ =0,
b, (@ +t) =b,(&)if #FO0ER, z= ',..., ") e rR™).

Hence, for any ¢ € Co(R™), letting ¢,(x) = ¢(x + tw) (t € R), we have
qu[¢] = qu[¢[] (t € R)y

which implies

Kw;H®) = 2(H") = A(H”)
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by the same method as in [1] (§6) or [2] (Chap. 4). Here we use Lemmas 2.1 and
2.3. U

Lemua 2.7. For any @ € S0 there exists w, = (wl, ..., wy) € S such
that

W =0,0,2) Q<;<N) and H> = H"".

Proof of Lemma 2.7. Letting @ = (0',..., @), we define
Z=0ifw' =0.
Picking up 4, € {1,..., NN\ {i; 0 = 0} (+ ), we define
Z=1ifo = o"
If we can pick up 3, € {1,..., M\ {i;0 = 0or W= '}, we define
Z=2if 0 ="

If it is not the case, this operation ends. Continue this operation till the end, and

let
o= (@,..,a")eRY, &=1(0,027) Q<;<N
and
w,=a/ale S
This w, satisfies H* = H*". L]

LemMMmA 2.8, Recall (2.7). If w € M, then

SH) = Kw;:;H = Kw; H®) = Z(H®) = A(H®).

Proof of Lemma 2.8 By Lemmas 2.1, 2.3 and 2.5 it is easy to see that

(214) Kw; H) =Kw;H* > min Kw;H") = Z(H") > AH").

(L)'ESSN—I
For w € M, picking up w, in Lemma 2.7, we have

K(w; H) = 2(H) = min, g1 K(w ; H)
< K(w,; H) = K(w,; H*) = Z(H®*) = AH*) = AH®).
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Here we have used Lemmas 2.3 and 2.6. Summing up, we have desired equalities.

]

Combining these lemmas, we prove the HVZ theorem.

Proof of Theorem 2.4. By (2.14) and Lemma 2.3,

>(H) 2 min AH®).

wes3N-1

Now we define the set M by

(2.15) M=MN) ={we S¥ " ;AHY) = min AH).

wes3N1
For w € M, pick up w, € M in Lemma 2.7. Then

min A(H®) = A(H*) = K(w,; H) = 2(H)

wes3N1
by Lemmas 2.3 and 2.6. Summing up we obtain

2(H) = min AH®). U

wes3N-1

Next we study the minimizing set M. We remark that M is a closed set in
S™™ because of the lower semi-continuity of K(w;H). The following lemma

asserts the relation between M and M.
LEMMA 2.9, M C M.

Proof of Lemma 2.9. For w € M, it follows from (2.14) that
2(H) = K(w; H) = A(H?).

Hence by using the HVZ theorem we have w € M. ]

From now on we consider Hy defined by (2.1), where V,; and V; are assumed
that
V@) = Vo) A<j<N), V) = Vi) 1 <i<j<N),

and to satisfy the condition (2.2). We note that (2.3) satisfies this assumption. In
this case we have the following proposition, roughly characterizing M (and M)
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ProposiTION 2.10. Let N>k + 1= 2 and 0,(Hy_,) + 0. Then

(2.16) MN) € M(N) C u M,

3
where

M, ,={lo=(,...,d)eS" o =0i¢1,..., i)}

RACASMAAE eSS Rt AL A A N S o iy
Then # {i;w # 0} = k + 1. Therefore we can assume without loss of generality
that

o #E0p=1,...,D, 0" =00p=1+1,...,N),1=k+1.
Then
! 2 N 2 N » ;
H= X T,b)*+ X T, + X V) + V(& —z)
p=1 p=1+1 p=1+1 wi=w!

> IB+1QH,_,

in the form sense, where B = /1(Tj(bM)2) which is independent of j, and we have
dropped V,(x’ —z") for 1 <i<p or 1 <j < p. From the above inequality it
follows that
AH®) 2 IB+ AHy_)
=(U—1DB+AT(b,)*®1+1RQH,_).

Since T,(6,)° ® 1 + 1 ® H,_, acting on R*"™"*" is one of the modified subsys-
tem of Hy_,,,, we have by HVZ theorem

IB+AHy.)) = (— 1B+ S(Hy_,.)
= (I— 1B+ A(Hy_,,)
> . 2 kB+X(H,_).

Now, if 0,(Hy_,) # @, that is A(Hy_,) < 2(Hy_,), then

AH®) > kB+ AH,_) > ...
> B+ A(Hy_) = A(T)(b)* @1+ 1R Hy_),

where 7 is a suitable number. Since T,(by)* ® 1 + 1 & Hy_, is one of the mod-
ified subsystem of Hy with respect to w € U ?,:1 M, it follows that
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AH®) > 2(H),

which implies, by the HVZ theorem, w & M. Thus we obtain (2.16). ]

Remark 2.11. From the proof of Proposition 2.10, it follows that

(2.17) NB>(N—1DB+AWH) > ...2B+ AH,_).

3N-1

forwe S , there exists a number [ € {1,..., N} such that

A(HY) = IB+ A(H,_).
Here let Hy,(H, with » = 0) = 0. Hence, by (2.17) and HVZ theorem,

2 (Hy) = min AHY) 2 B+ A(Hy_).

wessN-1

Since B + A(Hy_,) = AHY) for o € UY, M,, we have

N .
(2.18) UM cM,

1=1

in other words,

(2.19) 2(Hy) =B+ AH,_ )(£kB+ AH,_),1 <k <N).

3. Finiteness of discrete spectrum

In [7] Evans-Lewis-Saito give a sufficient condition for the finiteness of the
discrete spectrum of Schrodinger operators with non-isotropic scalar potentials
and without magnetic fields. In this section we extend their result to the case that
b # 0, that is useful to derive the finiteness of the discrete spectrum in the proof
of Theorems 1.1 and 1.2.

To state the theorem we make some preparations. Let

KR = {fe Ll (R";lm sup

_ .0
71 0 2%R” lz—2°% <

| f@ [z — 2’ ["dz = 0} (n = 3),
which is called the Kato class (see [2](Chap. 0), [5] (Chap. 1), [7], [8]). We remark

that V() in (2.4) and V,(y) in (2.2) belong to HR™) and X (RY), respectively.
Only in this section we consider the operator:

31) H=3 T,()*+ Vin L'R™,
i=1

including (1.1) and (2.1), where T,(b) is defined by (1.2) for b € C' (R and
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= 1 3N
3.2) {V L,.(R™) and

V_(z) = max{— V(2), 0} € #R™).
DEFINITION.  We recall (2.7). For given § > 0 and R > 0, let
A=A, R) = I'M;, R)\I'(M;,,, 2R)

and x, be a characteristic function of 4, where M is the minimizing set of H de-
fined by (2.7) and M, is U in (2.7) with U = M. Then we define the operator, for
a >0,

(3.3) H,=H— a|z|?x, in L’R™.

In addition, we define the quadratic form

N —_— —_
4l 91 = 2 fR T$ - Tde + fR  Voddz,
qH[¢] = qH[¢v ¢]y
for ¢, ¢ € C:(Rw).

We remark that the self-adjointness of H and H, is guaranteed in [11] (Chap.
X) or [12] (Chap. 8 and 9), by using the following property of the Kato class.

Lemva 3.1 (2] (Chap. 0), [12] (Chap. 9)). Iff € HX®R™), then f is T},
Tf— Jorm bounded with the bound zervo. Namely, for any € > O there exists a positive
constant C, such that

N
(flg, P < > 17,615+ C.l @15 fr ¢ € CTR™.

For a quadratic form ¢ on Cy (R*), we denote its closure in L*(R*) by 4,
and for an essentially self-adjoint operator A on C:(Rw) we denote its self-
adjoint extension in L*R™) by the same notation A. We remark that H is associ-
ated with ¢.

Now our aim in this section is to prove the following theorem, which is in the
same form of Evans-Lewis-Saito’s result in [7].

THEOREM 3.2 (The case that b # 0). Recall (2.6) and (2.7). Suppose that there

3N-1

exist 0o > 0, Ry > 0 and a > 0 such that M; # S and
(3.4) K(M;, Ry; H) = 2(H).
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Then

#{0,(BD) N (— 00, S(H)} < + oo.
Remark 3.3. Also for (3.1) Lemmas 2.1, 2.2 and 2.3 hold.

Remark 3.4. For any self-adjoint operator H’ in L*(R*) such that H, =
H', it K(M,, R,; H) = 2.(H), then K(M,, R,; H,) = 2.(H). Hence, we can
replace H, in (3.4) by H’ in Theorem 3.2, for example,

H =H- «af Il_ZXB(Dc.

Here B(») = {x € RMT’; lz| < », BO°=R*"\B®» (> 0) and Xp denotes
the characteristic function of a set D.

Now we go into the proof of Theorem 3.2, which is in the same but slightly
simplified way as in [7]. Also the structure of the proof is due to [7]. At first, sup-
pose that M; # St (0, is in Theorem 3.2). We prepare two partitions of unity
in order to define the weight function w(x) and the related operator. The follow-
ing lemma is shown in [7].

Lemma 3.5 ([7]). For M, 8,, R, in Theorem 3.2, theve exist two partitions of un-
ity o, Ji, Jo} and {1}, L} satisfying
J,€CC®R™,0<,<1mRY 1=0,1,2),
2\ 2 N
2] @=1 @eR"),
1=0
1 suppJ, < B(1), supp/, < I'(M,, 1/2)
supp/, © (I'(M;,,, 0) U B(1/2))",

J, and J, are homogeneous of degree zero in B(1)°,

and

I, and I, ave functions of | zl,
LeECTR™M,0<L<1mRY (G=1,2),

2

I =1 (xR,

i=1

suppl, € B(R,)‘, suppl, € B(2R,).

By using Lemma 3.5 we define
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(3.5) w= (5 + L]+ )",
which satisfies

0<w<1onRY,
(3.6) w =0 on I'(M;_,, 2R,),

w=1on R \I'(M,, R).

DeriNiTION.  Using the above partitions of unity, we define the quadratic form

Qg gl = [ T T Tgdz

|zl <Ry =1
.1 + [ TTLLg - TLA + T TILPds + (Vieg, g
Qlgl = Qlg, ¢] for ¢, ¢ € Cy (R™).

For the sake of convenience we put

N 2 N 2 2
3.8 gl = [ ZIT,¢|dx+fixi>R S AT LI+ T /¢ Pdz.

[ZI<Ry j=1 j=1

Then

(3.9) Qlgl = clgl + (Vuwg, we) .

LEmMA 3.6.  The following equality holds.

(3.10) Q[‘]S’ ¢l = qHU0¢1 Jo) + qulL] ¢, 1,],¢] +qH[]2¢r J.91
- Av, P+ vy, P+ 1v], D eow’dx

|z|<R

for ¢, ¢ € CTR™).

Proof of Lemma 3.6. As is easily seen, for ¢, ¢ € Cy R™),

(#) = q,UU,0, 1,0 + @11, LI, +a,l),0, T4

= Qle. 91 = <R %qu&  Typde
[ E Wi Tip+ Thig - ThI + T - Thhde.

Since I,=1, w=1 on B(R) and JZ + J.+J =1 on R¥ by a straightfor-
ward calculation we have
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TiJob * Top + T,L1L¢ * TLLg + Tiud - T
= s + L +IDTip - T + (VI + VI + 1V, P g

— 02V i+ T HTD TP+ i/2V,GE+ T2+ TD - (T4 ¢
=T¢-T,¢ + (V][ +|VLI+ V], P gdw’

on B(R,). Hence we have
(#) = Qlg, ¢1 + f.| (VI E+ 1V +17, P édutde,
which implies (3.10). L]

LEMMA 3.7. The quddmtic Jorm @ is densely defined, bounded below and clos-
able in L*(R*™ ; w’dx) .

Here we denote the weighted L*-space with the weight w” by L*(RY cw'do),
and its inner product and its norm are denoted by (-, -),z and || * ||,z respectively.

Proof of Lemma 3.7. First we show that @ is bounded below in LZ(R3N;
w’dx). By Lemma 3.1, for any g, € (0,1) there is a positive constant C, such
that

(311) (V_we, we) . = (V_Jo@, Jo) 2 + (V_L],§, L],$) 2 + (V_], 8, ].$) 2
N
<& 2 A Tl + 1 TLIg s + 1 Teg I} + C N L

for ¢ € C;(R*™). By the proof of Lemma 3.6
(3.12) S, (TJut P+ | L6 P+ | Tig P

<[ \1¢lde+d, [ |upldz,
B(R,)

B(Ry)

where d, = SquemRo){I v+ v P+ V), [} < 4+ . Combining (3.11) with
(3.12) we have

(3.13) (V_wp, wp) » < e,zlgl + (C, + dy) | w |2
for ¢ € C7(R*™). Hence we have

Qlg]

tlgl + (Vowg, we) : — (V_weg, we) -
> (1 —e)elgl + (V,ws, wp) 2 — (C,, + do) | we [}

https://doi.org/10.1017/50027763000006103 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006103

DISCRETE SPECTRUM OF SCHRODINGER OPERATORS I 45

= = (C, +dy | ¢l for ¢ € CTR™),

where V,(x) = max{V(x), 0}). Further there is a positive constant 7 =
7(¢g,) satisfying

(3.14) Qlel + 7ol > A — e)rlgl + (V,wg, wep) - + | ¢ |-

for ¢ € C7(R™). This implies the boundedness from below.
Next we show that @ is closable in L°(R*; w’dx). Suppose that ¢ €
CIR™), {9} ,en © Ccs®R*™) and ¢, — 0 strongly in L'(R*™; w’dx). Then

Jobs, L)1, J,¢;— 0 strongly in L'R™).

It easily follows that

fB IRGZA R A R Iz>w¢lv%dx|

1/2 172
2 2 2 2 2
< swp (VL[ + 17 P41V ){fmm | wp 'dz) [fB(R“)|w¢]| dz)
< (constant) * | ¢, “wz—’ 0.
Therefore, by (3.10) and an integration by parts,
Q[¢, Qb;] = (H]oﬁb’ ]0¢)])LZ + (le/1¢’ Iz]1¢j)L2 + (H]2¢» jz¢j)L2

— [ ATRE T 1P Pugugdr— 0 as j— .
This implies the closability of @. B

By Lemma 3.7 we can define the self-adjoint operator (denoted by P) in
L*RY™ ; wzdx), which is associated with the closure @, that is,

Qlg, ¢1 = (Pp, ¢),2 for ¢ € D(P), ¢ € D(Q).

Here we denote by D(+) the domain of an operator or a quadratic form. For 7 =
7(1/2) in (3.14) (¢, = 1/2) we define the inner product and the norm in D(Q):

@, ¢, = Qlg, ¢1 + 74, Pz, o1, = Qlgl + rlg 0"

then D(Q) is a Hilbert space with the above inner product and norm, and D(P) is
dense in D(Q).

LEmMmA 3.8, Let

I,=1P) =inf{QIgl ;0 C, (x| =2k, |ol.=1 (KkEN)
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and
I=1P) = 1{"2 I, = sup l,.
Then
inf g,(P) = 1.

Proof of Lemma 3.8. At first we prove that [/ <inf¢,(P). For any A €
0,(P) there is a sequence {¢,}, € D(P) such that || ¢, - = 1 and

¢, — 0 weakly, (P — AD ¢, — 0 strongly in L*(R* ; w’dx).
It follows that
(3.15) ¢,— 0 weakly in D(Q) and Q[¢,] — A.
In fact, for ¢ € D(Q),

(¢n7 ¢)r = (P¢nr ¢)w2 + T(¢nv ¢)w2
=((P—=AD¢,, §): + A+ N(P,, $),:—0as n— oo,

and
Qlg,) = (P —=AD¢,, ¢+ Al @, 22— 2 as n— oo,

Since Cy (R™) is dense in D(Q), there is a sequence {¢,}, < Cy (R*) such that
I ¢, — @, "7—’ 0 as n— 0. Hence by (3.15) we have

I ¢, lle— 1, QL#,] — 2 and
(3.16) ¢, — 0 weakly in D(&) as n— o0,
in paricular, ¢, — 0 weakly in L'®R™; w’dr) as n— oo,

Letting k = 2R, we pick up a function 6(x) € C, (B(k + 1)) such that # = 1 on
B(k) and 0 < 6 < 1. Then, by the definition of ,,

317D LU, e F 166, 1" < 1,10 — 06,1 < QLA = O)g,],

where we choose the sign in the left-hand side whether [, is positive or negative,
respectively. We estimate Q[(1 — 6)@,]. Notice that (1 — 6)* < 1, supp(1 —
6) < B(k), J,= 0 on supp (1 — 6) and

T,(1 — Qup = (1 — 0) Tug + i(V,0)ug for u € C'R™).
Then, for ¢ € C:(RSN),
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(3.18) QL1 — O] = 5 f AT0a-0LLgl +1T,0 - 6,6 dz

j=1 YB([Ry)

n Lw VI — 0w dx

<E [ A+8)a-0TLIF +] T
j=1 YB(Ry®
tE [ atanerluslat [ (V= vV.0 -0 uglds
=1 vYB(Ry® R3N
<S [ ATLGP+I1ThePds+ 6,5 [ AT L¢P+ Thgde
j=1vYBRy* j=1YBRY®

+ [ Viwg P+ V| wg Pz + C@) [ \wpldz
R3N B(k+1)

< QUgl +a,7lg] + [ V- lwgldz +CG) [ wplda,

where d,(€ (0,1)) is arbitrary, C(d,) is some positive constant depending on 0,
and p=1— (1 — 60> C(B(k +1)). Here we have used the positivity of

[ 114tz
B(Ry
We estimate the third term of the last line of (3.18) as follows. By (3.13),

(3.19) V_we, wp) 2 < (V_wg, wp)ys - (V_wng, wne) s
< (elg) + g B - (G elng) + (Coput o Inup )

for any 0, > 0 and some positive constant C,. Here the constant 062/4 + d,
appears in (3.13) and C, is independent of §, and J,. Since

| Tug P < 2InTugl +21Vn - lug " < 2] Tug I’ + di | ug [ uoon
for € C'(R™) and some positive constant d,, we have
(3.20) tlngl < 2¢[¢] + d, | wg lizperry-
By combining (3.19) with (3.20) we have

172

C
(3.21) V_we, we) 2 < 7”2L (zlp] + | we I

6 2 1/2
X {~2—2 T[¢] + C(62) ’/;(IH-I) | w¢ | dx} '
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where C(d,) is some positive constant depending on 8,. Now we recall (3.14) with
e =1/2:

(3.22) Ig = <lgl /2 + (V,wp, wg),: + | w |2
> (clp] + we 2 72 = «lp] /2.

By (3.21) and (3.22) we have

(323) (Vg up)s < CIo L[ N6 L+ CO) [ lwplazf .

By combining (3.18) with (3.23) and by using (3.22) again for the second
term of the last line of (3.18), we have

(324) QL - 0)6) < QL1+ 25,16+ ClslL {8,108+ C6) [ |uplaa)
+ C(5) -/I:(k+l) | we |*dx.

Now we shall prove

(3.25) L Vg, l'dz—0 and | 6, I, 0 as n— oo
B(k+1)

As is easily seen,
“ VJ¢ "iz(B(k+l)) g 2(“ I‘ld) ”iz(B(k+1)) + " b(xj)d) ”lz.z(B(k-l-l))) for (/) € C:(RgN)'
Hence, by using the fact that || o, ||, < + o0, we have
" fo¢n "?il(B(k+1)) + ” sz1¢n |I§11(B(k+1)) + ” fz¢n ”ZI(B(k+1))
N N
<[ 2T I T8, + 1 T08, D + @ Z16@) P+ D g, [ dz
B(k+1) j=1 j=1
< 27[¢,] + (constant) - || ¢, |22 < + oo

Hence there is a subsequence {¢,}; < {@,} such that

{]O¢n, - @0’ I?]1¢n,‘—) @lr ]2¢n,_) ¢2
strongly in L*(B(k + 1)),

where @,(j = 0,1,2) is some function in L*(B(k + 1)). By (3.16)
0< fzzl 2, tzdx < f w2| 2, ‘zdx = (D3, DyX prs1)) w2
Bk+1)

B+D
= 1lim (,$,, PoXpusn)w = 0,

jooo
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which implies

[ 174, Pdz—0as n— oo,
B(k+1)

In the same way as above we have

f | o, 'dz— 0, f | LJ¢, "dz— 0 as n— o0,
B(k+1) B(k+1)

Summing up we have (3.25).
By (3.24) with ¢ = ¢, (3.16), (3.17) and (3.25), letting #— >, we have

[, <2+ 20,2+ + C,Qa+ po,Q + N
Since d; and 0§, are arbitrary, this implies / < A. Thus we obtain
! <info,(P).

Next we show the reverse inequality in the same way as in [6] (Theorem 10).
Taking ¢ < inf ¢,(P), we can put

(—oo, ) No@) = {4} or 0.

If (—oo,u) N o(P)= @, then it is clear that [ = inf 6,(P). We assume (— o
@) N o(P) = {4}.; and we denote by {¢;})-, the orthonormal eigenfunctions cor-

responding to {A,}7_,. Let E, denote the spectral projection of P. Then for ¢ €
D(P),

+o0

(3.26) Qlp] = Zx (@, ¢yl + Ad(E,$, }),

m

252,16, 9l +ﬂ||¢||wz—u[md<Ex¢, P

i
M§ u

A, = w1 (g, ¢l + 1l ¢ I

1

.
U

By the definition of /,, there exists {¢,}, © C;(R™) such that
(3.27) supp¢, Nsupp ¢, = @ ifj#* k, || ¢, ], = 1 and Q[¢,] — [.
y (3.26) with ¢ = ¢, and (3.27), letting ¢— °°, we have [ = g which implies

[ 2 inf 0,(P). ]

Lemva 3.9, Forz € R™ and R > 0, we put
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Ap(z  H) = inflgylp) ;0 € CT B ;R), | ¢l =13,

where B(x;R) = {y € R |y — 2| <R}. Then, for amy € >0 there exists
R(e) > 0 such that

gulgl > fRSN (Ag(x s H) — &) | ¢ Pdx for R = R(e) and ¢ € Cq R™).
One can show the above lemma in the same way as in [2] (p 33).

LemmA 3.10. The following inequality holds.

(3.28) K(S* '\ M, ,4; ) < inf o, (P).

Proof of Lemma 3.10. By Lemma 3.9, for any € > 0 there exists 7, = R(e) >
0 such that

Q) = g (L9 + ulUg) = [ (A, @i D) = o) |ug ['da
for p € C; (B(2R,)°). For k > 2R,

I > inf{jf;w A, (x; H) —¢) lwg Pdz;pe Co(zl =K, |wel,:= 1}
2 inf{A, (x ; H) ;x € suppw N B(k)} — e.

Hence there exists a sequence {x,}, C supp w N B(k)® such that

(3.29) I, 2 A, (x,; H) — 2¢ for k = 2R,.

Since {z, /| z, |}, © SBN‘I\M,,O/Z, there are k;(= 2R,) and a sequence {R,}, € R
such that

(3.30) B, ;r) € I(S™ '\ M, ., R)) for k = k,

and R, T o as k— o (for example R, =|x, | — 7, k >> 1). Hence, by (3.29)
and (3.30),

l, > K(S™ '\ M, ., R; H) — 2¢ for k > k,.
By letting k — + o, we have
1> K(S™ T\ M, ,,; H) — 2,

which implies that
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12 K(S*™ '\ M,,.; B.
By Lemma 3.8 we obtain (3.28).

O

Now we estimate the error term in the localization formula, which is obtained
by the lemma on {J,, /1, J»} and {I}, I} in [7].

DEFINITION.

For two partitions of unity {J,, J;, J,} and {I,, I,} in Lemm
3.6, we define

A@ = (Z| W) @/Nz) B 4@ = (5] 7D @ B
i=1 j=1

The following lemma appears in Evans-Lewis-Saito [7].

Lemma 3.11 ([7)). For sufficiently small € > O there is a positive constant C,,
satisfying

U MN

V@[ < €@ + Ci @) | 274,

N

1

\VI(x) |° < (I} + C.I} (@) | x| %A, ()
for x| = 1.

Then, by using the above lemma, we have the following one, which is the
estimation of the error of the localization.

Lemma 3.12. For sufficiently small & > 0 there exist positive constants
C(&") and C, such that

VAL P+ IV P+ IVELE < CeLT 275, + CEOw | 2] xpirye
for| x| = 1, where C, is independent of € .

Proof of Lemma 3.12. We note that w= (IJJ2+JH"* on |z| =1 and
supp{V (w*)} = A (4 appears in the definition of H,). By a simple inequality,

V) P <22V P+ JEIVEL) x,

\vag) P <2Uzivi )+ JHvL Py,
Summing up and using Lemma 3.11, we have
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VAL P 1V P+ VL <20V P+ VL + E(VEE + VLD,
<@+ CD 124, + 2R + CoID | 21 A) x4
< CELT 2 [xy + CEOw* | 21K piaye.

Here we have used J = (I’ + I})J? and C, = 2sup,gsv(4,(x) + A,(2)), which

is independent of €', and

C() =2 sup ((¢ + CHA,(x) + C.A,(2). O

ZERSN

Lemma 3.13. For a in (3.4) there exists a positive constant C,, such that the fol-
lowing mequality holds.

(331)  gulg]l = (D | 1),8 [ + QL] —fm L Calzl™|wp 'z

[

for ¢ € Cy R™).

Remark 3.14 The above inequality holds for ¢ € D(qgy) by a limiting
method, that is,

(32 Glg) = WD ILSp s+ Qlgl — [ C 1zl wplde

0

for ¢ € D(gy) < D(Q).

Proof of Lemma 3.13. By using Lemmas 2.2 with 2 = B(R,)® and by Lemma
3.12, for ¢ € C;(R™) and sufficiently small & > 0, we have

N , )
gul8] = Qlg] +L(R)c§(| TLJo "+ V| I Pdx
= [ V@R P+ V@) P41V, |6 P

N
2T ¢+ VIL$1)dx

0 ¢ j=1

> Qlg] + f .
— Coe' | 2%, | 1), ¢ Pdx — f C@) | z|™?| we [Pdz,
B(Ry®

B(Ry®

where C(¢’) is a positive constant in Lemma 3.12. Choosing ¢ < a/C, and using
the fact that I,/,¢ € C:(I’(M,,o, R)), we have

4141 = QU] + KM, R; H) I Lo — [ ol g dz,
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where C, = C(¢'). By the hypothesis of Theorem 3.2, that is, K(M,, R,; H,) =
2. (H), we obtain (3.31). 0

LemMA 3.15  We define quadratic forms:
vlgl = — fm . Cal 2™ w Pz ana Q191 = QI + 0lg] (¢ = CTR™)),
then we have the self-adjomt operator in LR ; w’dx) (denoted by P’), which is

associated with Q’ , and

(3.33) inf o,(P) = inf 0,(P").

Proof of Lemma 3.15. The first part is easily seen. We show only (3.33). Let
V' =V = Col x| A pigye-

Then it is easy to see that (V")_ € X (R™), so Lemma 3.8 holds also for P’ and
@’. The following inequality is easily obtained:

lk(P) = lk(P,) = lk(P) - Cak‘z.

Letting £ — o0, we have [(P) = [(P’) which implies (3.33). J
Now, by using lemmas prepared in this section, we prove Theorem 3.2.

Proof of Theorem 3.2. Lemmas 3.10 and 3.15 imply
S(H) < K™ '\ M, ,,; H) <info,(P) = inf 0,(P").
Hence we have
#(0,(P) N (— 0, 22(H))) < + oo,

Let £, = {¢,,..., ¢,,} (m < + o) be orthonormal eigenfunctions corresponding
to the eigenvalues {g,(P") N (— o0, S(H)}. Let E, = {w’¢,,..., w’p,). i ¢ €
D(qy) satisfies ¢ L E, in L*(R*™), then ¢ € D(Q") and ¢ L E, in L*R*";
w’dx). Hence we have

(3.34)  Qlpl = S | ¢ 22 for ¢ € D(g;) satisfying ¢ L E, in L*R™).
By Remark 3.14 and (3.34), we have
dalgl = ZE) | 1J,¢ 7 + QL) = Z(H) | ¢ 72
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for ¢ € D(gy) satisfying ¢ L E, in L*(R*). This implies

# (o,(H) N (= o0, 2:(H))) < + oo, 1

4. Some vector potentials

In this section we introduce some magnetic vector potentials, which are used
in the proof of Theorem 1.1.
For a € (0,1), we define a function f € C'([0, ©©)) by

1724+ Q—a)7's™ (s = 2),
A1) fl)=11/2+ C—a) 727" 4+ 2as —as?) 1 <s<2),
172+ @2—-a7 274 +a) 0<s<1).

Furthermore, letting

(4.2) fils) = t7f(s/ D)

for a parameter ¢ > 1, we consider a vector potential:
(4.3) b(y) = f,(0) (= 4, 4, 0),

where ¥y = (y,, ¥, ¥5) € R?, 5 = (y,, y,) and o =|@|. This gives a perturbed
constant magnetic field. The following lemma, which also follows from Theorem
2.9 in [3], appears in [9].

Lemvma 4.1 (19]). In the case that b(y) = gy)(— y,, y,, 0), where g €
C'(RY), the following inequality holds:

0
z gy 2 —g+ :
(4.4) (T®’¢, P g fm {p 30 & 2g(y)] | ¢1°dx
for ¢ € Cg (R®), where T(b) = — iV, — b(y).
By an elementary manipulation, using (4.1), we have
0 - . -a
pﬁﬁﬁ + 2f, 2t + min{c,®, ,(Dp

for some positive constants ¢,(#) and c¢,(f) depending on ¢ Therefore by Lemma
4.1 we have the following lemma.

Lemma 4.2 (key inequality).
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4.5)  (T®)’¢, ®)egs =t 1 ¢ legs, + j; Jmin{e, (8, ¢,;(o™} | ¢ [dy

for ¢ € Co(RY).
Now letting

(4.6) H, = T®)" - 1% in L*(RY),

we study the essential spectrum of H, and Hy ,(b,). First we want to show the fol-
lowing proposition.

Provosition 4.3. 0,(H,) = [t7%, o).
To prove Proposition 4.3, we prepare the following two lemmas.
LEMMA 4.4, For fixed t > 1, let
(4.7) Po(B) = Be™ " exp(— Lpft(s)sds>
= Bht + )" exp(— [ £(5)sds) meN),

where By, is a normalizing constant in LZ(R%) and we use the polar coordinate
(o, O in (y,, y,)-space. Then the following equality holds.

(4.8) Pl = (T — (— d°/oyd)) ¢h, = 2£,(0) + fl0)p} s, (m EN).

Proof of Lemma 4.4. Let V, = (0/0y,, 0/0y,). We remark that divd, =0

and
09,
_% =m/p0— £,(0)0) P,
0 .
35 = imb

By the equality
P,=—V, V,+ 2ib,-V,+ idivh, + | b,
= —V,V,+2ib-V,+ | b

and by a straightforward calculation, we easily obtain (4.8). Ul
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LEMMA 4.5. For any R > 0 there is a positive constant C,la, which is independent
of m, such that

(4.9) (B < CLR™™™Y (m € N).

Proof of Lemma 4.5. Letting g,(s) = £,(s) — ¢t 2/2, by the definition of B,,
we have

4+ 0
B = 27rf o exp(— t—zpz/Z)exp(- 2 f g,(s)sds)dp
0 0
40
> 27rf o exp{— (72 /2 + 7,()}dp
R
for some constant 7,(f) = 0. Then, putting
t +oe 2,,—2 -1
C,= (27rf exp{— o (7772 + Tl(t))}dp) ,
R
we obtain (4.9). O
Now we go into the proof of Proposition 4.3.

Proof of Proposition 4.3. Since S (H,) = S(T(b)>) = t™* by Lemma 2.1 and
(4.5), it suffices to show that
[t7, ) C o,(H).
Picking up 7, € C:(l < |y31 < 2) normalized as | Mo "LZ(RI) =1, we define

1

Ny = m™*n,(y,/m) (m € N)

and
oL @) =1, e" "¢, () meN, 1=0,t>1).

Since supp ¢, € {y € R®; | y| = m}, it is easy to see that

Z t . 2 3
(4.10) T ¢,,— 0 strongly in L"(R") as m~— o,
By a straightforward calculation,

2
(4.11) <% + /12) @' — 0 strongly in L’(R%) as m— .
Ys
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Letting
k(o) = 2(f,(0) — t72/2) + f/(o)p,
we will show that
(4.12) h,(0) ¢, — O strongly in L*(R’) as m— oo,
If this is proved, we have by (4.8), (4.10) and (4.11)
{H, — % + RZ)MJ;,-—* 0 strongly in L*(R% as m— o,

which implies > + A* € ¢,(H)), hence [t™*, ©) < ¢,(H,).
We will show (4.12) to complete the proof. It easily follows from (4.1) and
(4.2) that for any & > 0 there exists R() > 0 such that

| h,(0) > < ¢ for o= R(®,

so we have

f | 1, (0) I | ¢, Pdy < .
R(t)

0>

On the other hand,
[ i@l ay< sup In@ [ 1 ldy
o<R() 0<p<R(®) PSRt

R(t) o
<awe@E)’ [ o exo{—2 [ f(s)sds)do
< 27d, (0 (B,)"R(D*"*d, (8)

where

R(t) 0
d,® = sup |h(o)|°and d,(® =j; exp{— Zfo f,(s)sds}dp.

0<p<R()
By using Lemma 4.5 with R = 2R (¢), we have
BLRO™ >0 as m— o,
Thus we have (4.10). U
Next we study the essential spectrum of Hy ,(b,). For the sake of conveni-

ence, we denote Hy ,(b,) and T;(b,) by Hy and T}, respectively, for fixed Z > 0
and fixed ¢ > 1. Now we want to prove the following proposition.
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ProPOSITION 4.6,
(4.13) o, (Hy) = [2(H,), ©).
Before the proof of the above proposition we prepare the following lemma.
LemMa 4.7 (uncertainty principle lemma). Let T(b) = — iV, — b(y) fr b €
C'(R®?® which is real-valued, and let k € R®. Then we have the following inequality:
(T®$, ) pwn 2 1/40y = k|79, §) 2y for 6 € C7RY).

We have only to show it in the case kK = 0. The proof of Lemma 4.7 is omitted
since we can show it in the same way as in the case that b = 0 ([11] p. 169).
Now we prove Proposition 4.6.

Proof of Proposition 4.6. We recall (2.19): S (Hy) = A(Hy_,) + A(Ty). Here
Tyis T; with j = N. From (2.11) and Proposition 4.3 it follows that
(4.14) S(Hy) = AHy ) + Z(TH) = A(Hy_) + 7
We consider the following two cases separated.
(I) The case that A(Hy_,) < 2(Hy_,).

Let = (z’, z") € R¥. In this case there is a normalized eigenfunction
n(x’) € D(H,_,) satisfying

(4.15) Hy_n = AH,_)nin CR™™).
(I) The case that A(Hy_,) = 2(H,_,).

In this case there exists a sequence of orthonormal function {n,(z")}, C
D(H,_,) such that

(4.16) (Hy_, — A(Hy_))n,— 0 strongly in L*(R* ™) as [— oo
We only consider the case (II), since the case (I) can be treated similarly. For any

AZ0 let u= A By the proof of Proposition 4.3, there exists a sequence of
functions {¢,, (™)}, € C*(R® N D(TY) such that

I ¢ lizgsy =1 m € N), (@), ) 2gs =0 G # k),
(4.17) supp ¢,, < {z" ;12" | = m} (m & N) and
(T — 1) ¢, — O strongly in L*(R®) as m— .
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Let ¢, (@) = 1,(x)¢,x") € D(H,) (m, | €N) and remark that || ¢, [l =1
(m, I € N) and

(@, h) e =0ifm+#m or [# I,
Then, by using the equality

N-1
Hy=Hy_ + Ty— Z_ 4 1

| 2"

j=1 lxj — xN |’
we have
(4.18) Hygh = (A(Hy_ ) + ) ¢h, + {((Hy_, — AHy_ ) 1,@)}é,, &)

YT = @) — —2 g+ Nf—l——,v—l ol

| 2" | 2 —

By (4.16) and (4.17), as is easily seen, the second, third and fourth terms in the
right-hand side of (4.18) strongly converge to zero in L*(R*™) as I and m tend to
infinity. We estimate the last term. By (4.17), we have

1 ! 12 —2( 1 2 -2
—_— dx < 4m dxr < 4m "— 0 as m— o,
»[z'«[z"u/z |2’ — 2" | ¢ 1 1<lz¥| /2 ]

On the other hand, from Lemma 4.7 it follows that

1
'[1;3 J,r] — xN ,2 I ¢m lzd‘rN < 4(T13¢ma ¢m)L2<R3) = 4:”‘ t1<+
for large m. Using this fact,

1 12 1 Y
gt [ — gt
-/l‘lezlz”l/zl‘r]—-xNF'('bm' IJJQm/leJ_lezlgbml

< (4u+1)f |n, @) Pde’— 0 as m— oo,
|z’ | =m/2

Hence we have

1
ﬁ gb:,, — 0 strongly in L*(R*) as m— o (for any fixed ).
r —=zx
Summing up and using (4.18), we can find m = m(l) satisfying
(Hy — (A(Hy_,)) + 1)) ¢y = 0 strongly in L*(R*) as [— oo,

which implies A(Hy_) + ¢ € 0,(Hy), so we obtain (4.13). L]
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5. Proof of theorems

In this section we prove Theorems 1.1 and 1.2. We want to use Theorem 3.2
in order to derive the finiteness of discrete spectrum. Before going into the proof,
we prepare the following proposition, from which it follows that, by virtue of
Proposition 2.10, M= M(N) # S*™" holds. We denote Hy ,(b) by Hy(b) for
short.

ProrosiTioN 5.1.  Let b,(y) be defined by (4.3). Let € be arbitvary positive number
and Z = ¢. Then there exists t(e) > 1, which depends only on €, such that
(5.1) A(H, (b)) < 2Z(H, (b)),
that is, 0,(H,(b,.))) + 0.

Proof of Proposition 5.1. We can pick up two real-valued functions ¢,(5) €

Colo <1) and n,(yy) € Cy(ly,] < 1) normalized as || @ Iz = I 70 |2, =
1, where y = (4, 4, ) €R’, 6= (y,, y,) and p = | 3]. Letting

$:(8) = t'¢, 3/ and n,(y) = £y (y,/ 1)
for t > 1, we define
¢, = ¢,@Bn,(y) € C;RY) (¢ >1).
Then ¢, is real-valued, | ¢, "LZ(R3) =1 and
(5.2) supp ¢, C {(B,y) ER’;p <t |y| <8 ClyeR’;|y|l <V28.
Since ¢, is real-valued, we have
(TP D =1V, I + 1 0,6, 2,

where T, = — iV, — b,(y). By a change of variables and (5.2) it is easy to see
that

17p, I2: = t2 Voo Ieemey + I 10 Vo)) = dit ™,

low = [ 17G0/0 0| ¢, Fdx < dyt™

supp ¢,

for some positive constants d; and d, which are independent of f. Hence, by using
(5.2) again, we have
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2 zZ 2
(Hl(bt)¢t’ ¢t)L2 = (Tt ¢y Ql’t)L2 - Lupp(/} ml ¢'t| dy

<, +d)t?— %

Hence, for a sufficiently large ¢,
AH(5) < H (b) ¢y, ¢z <0 <75 = Z(H,(b)),

where we have used Proposition 4.3. Note that this { depends only on &. ]
Now we go into the proof of Theorem 1.1.

Proof of Theorem 1.1. Let N = 2. At first, for any ¢ > 0, we pick up
t(e) (being fixed) in Proposition 5.1. Also let Z = &. Now we show that the num-
ber of the discrete spectrum of Hy ,(b,.,) is finite, that is, we have only to put b,
= b, For the sake of convenience, we denote Hy ,(b,,)) by Hy and put B =
#(e) . From Propositions 5.1 and 2.10, it follows that M # S** ™", in particular,

(5.3) Mc U M,

_—oN-2
Let 6, =162 for the present. It is easy to show that

(M,)ao c U (Mil,.“,iN_l)do
C . U [{(Mily-win—l)l’o\( U Mil,..‘,il,,_z)éﬁ/z/z}] U ( U M’]v ‘-’N—z)‘sy2
C

hence the set (M"); is covered as follows:

N-1 _
(5.4) M), C (UM, U U A, (6) =M@,
i £=2 gy

where

Ail ,,,,, i,‘(éo) = (Mi, ..... i,,)a,,\ (Ui,,“.,i,‘_, M, ,..A,i,,_l)a,‘_ pk=2,..,N=1),
(5.5) /N __ ! !

5k—50 (k—l,,N_l)
Here we exchange 0, for such a small number that M(5,) # S We want to

show the following statement: there exist positive numbers R,(> 1) and a such
that
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(Hy —alz™¢, §pz ZH) 1 6]

for p € Co(I'4;, . (3, R))..... the case (I)
iy, b c{l,..,NLk=2,...,N— 1

and for ¢ € Co (F'((U,; M);, R))..... the case (II),

(5.6)

where « is in (4.1). For a while we admit the above statement and continue the
proof. We remark that (5.6) holds with R, replaced by R such that R = R,. Since
M(3,) is an open covering of Mj; ,, which is compact in S there exists a

partition of unity

{]1, ]il'“*ik; {il""’ Zk} C {1,..., N}, k = 2,. .y N_ 1} = {-[B}B
such that
N- . . -
2 .[i, ..... ik(w) +Ji (@) =1on M;,,.,
k=2 iq,iy
(5.7) 0 Sjil’._”,.k <1,05J], <1,

suppJ, © (U, M), , suppJ, , CA, (6.

We define J,(z) = J,(x/|z]) (x| = 1), then it is easy to see that
(5.8) (VI @ P <C@lzl” (z|l2D
for some positive constant C(J,) depending on d,. Then , for R = R, we have
(59) K(M50/2, R’ HN - a l x l_ZXB(l)”)
> inf{((Hy — alz|™) ¢, ;¢ € Co T (M; 5, R)), | ¢l = 1}
= inf(Z ((Hy — al 2, Js$)2 = (V1 L6, 9.9
¢ C:(F(Mé,o/zy R)), " ¢ "1_2 =1
> inf{%: ((Hy — al 2™V, i)+ (— #BC6) | 2|+ a(z]™ — | z]™)} ¢, ¢) 2

€ CoUU My, R, [ ¢l-=1)
= inf{%: {((HN -« l -Z'l—a)]5¢, ]ﬂ¢)L2} ;9 € C:(F(Mélo/z» R)), “ ¢ “Lz =1

= 2(Hy)

when R is sufficiently large. Here we have used Lemma 2.2, (5.6), (5.8) and the
fact @ < 1. It follows from Lemma 2.3 and (2.7) that

KM, R, Hy — | 2| x5000) < Z(Hy.

Hence by Remark 3.4 the hypothesis of Theorem 3.2 is satisfied. Therefore put-
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ting b, = b,(,, by Theorem 3.2 and Proposition 4.6, we have
#o0,(Hy) <+ o0,
This b, is independent of N and Z.
It remains to show (5.6). First we show it for the case (II). Since {(M));}; is
disjoint, we have (U, M), = U,(M)), and
F((l;' M);, R) = L;J Ir'(M),, R) (R=1),

both of which are disjoint unions. So, for any ¢ € Cg (I'((U; M), , R)), we can
represent

=z

(510) ¢ = 1 ¢n ¢i = C:(r((Mz)ﬁl? R)) (l = 1y~ vy M'

Let us consider only the case 1 = N, since the other cases are similar. If £ = (x/,
RS I'((My);, R) (R = 1), then it follows from [8] (Appendix C) that

lz’ | <o |zl |2 |<o,lz] Q<;<N—=D, |2 =/1-8 |zl

Then
) 7 N-1 1
(HN¢v ¢)L2 = (HN—1¢) ¢)L2 + (TN¢» ¢)L2 + ((_ IxNI + E Ixj —xN ) ¢, ¢>L2

2 2 Z -
> AHy ) | ¢z + (Typ, )2 — (ﬁhﬂ ‘9, ¢>

L2

for ¢ € C;(N((My),, R)). Here Ty =T, with j=N. Recall B=A(Ty) =
>(Th = t(e) . By Lemma 4.2

(Tyg, §)z 2 Bl ¢ Iz + (minld,, d, | 277} ¢, §),2
2Bl + (d, 216, ¢
for ¢ € C; (I'((My),,, R)) when R is large. From the above two inequalities

(Hyp, )12 = AHy_) + B ¢l + (dy/21 219, @)y
2 2(HN) " 0] “iz + (d2/2 l X |—a¢v ¢)L2!

for ¢ € Cy (I'(My),,, R)) when R is sufficiently large, where we have used
(2.19) and a < 1. Hence there exists R, > 0 such that

(5.11) (Hy—d, /22 ¢, §)p 2 Z(H | ¢ 2 for ¢ € C; (T ((My),, R)).
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In the same way (5.11) holds for ¢ € C:(F((M,.)al, R)) t=1,..., N), hence,
by (5.10), also holds for ¢ € C, (I'((U, M);, R)).

Next we show (5.6) for the case (I). We consider only the case (i,,..., ) =
,...,k) 2<k<N-—1), since the other cases are similiar. If z= (z',.. .,
z*, 2) € I'4,, ,(0), B) (R > 1), then it follows that

(5.12) 2’| > /0, |z|/4 >0, lz|/4 G=1,..., k),

which we admit for a while. Then, by using the equality again that

N
Z+2 1

Hy=Hy , + T/ ——(+X——,
x| =2|x — 2’|

we can follow the similar way to the case (II). Hence there exists R, > 0 such that
(5.13) (Hy—d,/21z1™ ¢, #) 2= ZH | ¢ 22 for ¢ € C7 (I(Ay, (8, R,)).

At the end we show (5.12). Let z = (z',. .., z%, 2) € I'4,, ,(8,), R) and
let (@) = Z;:: | x’ Iz. Since dist(z/| xl, My, ) <0, it is easy to see that
2| <6, |zl 1f y@@) =0, thenz = (0,..., 0, 2", 2’) and

dist(z/|z]|, U M,

4d'3

_1)£|x/|x|—€|<26k<5k—1/2’

[FT Y

where £ = | z"|7(0,..., 0, 2%, 0,..., 0). By the definition of ra,, ,@,, Ry,
this is contradiction. Hence 7(zx) # 0. Now let w = y(x) ™*(’,..., 27 0,...,0)

€ M,, ,,. Since dist(x/|x|, M, ,_) =6,_,/2 =08,/2, we see that the ine-

quality
(5.14) lz/|x| —w|>0,/2
holds. By a simple manipulation
‘x’ 7 _lxl—r(.r)”2| | = |z’ [P+ 2" ™
‘J;l T(x)l/z |.Z'| 7’(.2:‘)1/2 ll‘l T(l')l/z(ll'l + ’)’(1')1/2)

G=1,..,k— 1.

Since (2’ P+ 2PV < |z| <|z| + 7@ we have
712 k2
PRI

|z | r@"*

j

‘x’ _
!J; T(-Z'l/z

2’| G=1,...,k—1).

Hence
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ezl —wf< S E 7 Pl T
(5.15) /x| —w| = -
mllel @yl 7 g 2P
lz’ |+ | 2" B
gz———z—sz(—2+5k).
|z ||

By the definition of 0,, it follows 1 — 85, = 1/2. Hence we have by (5.14) and
(5.15)

>4,/8 — 6, = 4,/16,

which implies
|z" | > 5, | z]/4.

Replacing 7(x) by Z;;l | z’ |2 — | z' ‘2 and following the same way, we have
(5.12). Thus the proof of Theorem 1.1 is complete. ]

Now we start the proof of Theorem 1.2. First we consider the other vector
potential. Recall (4.1) and let g(s) = f(s) — 1/2. We can follow the same argu-
ment as in §4 by replacing f(s) by g(s). Then letting

g.(s) =tg(s/t) (t>1),
(5.16) b, = £,(0) (— y,, ¥, 0)
W= (0 199 ER, 5= (, 9, 0= 18D,

we have the following results:

T(b)? = min{c, (1), ¢,(H) 0"} in the form sense,

(5.17) o,(H) = [0, ©) where H, = T(5,)* — Z/| y| in L’(R®),
0,(Hy(5)) = [Z(Hy,(6)), o).

The other lemmas and propositions in §4 and 85 also hold in the same form.

Furthermore, by using these facts, we can follow the same argument as in the
proof of Theorem 1.1. Hence we have

PROPOSITION 5.2. For any &€ > 0, there exists a vector potential b, of the above

form (5.16), which is independent of N and Z, such that the number of the discrete
spectrum ofHN,Z(b:) is finite for N = 2 and Z = ¢.
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Next we consider the case N = 1.
PrOPOSITION 5.3.  For any € > 0, we pick up the vector potential b:, of the form
(5.16) in Proposition 5.2. Then

#0,(H,,(8)) < + o forany Z > 0.
Proof of Proposition 5.3. By (5.17), it follows that
(Ty(8)°¢, )2 2 fR _min{e,(e), ¢,(e) | 2™} | ¢ ['dz for ¢ € C7(RY),
where ¢,(e) and ¢,(e) are some positive constants. For the sake of convenience, we

denote H, ,(b,), T,(8,), ¢,(e), ¢,(e) by H,, T}, ¢;, ¢, respectively. Letting

—a VA
W(x) = minfc,, ¢, | z|™} /2 — Tz]

we have
H, > T!/2 + W(z) in the form sense.

Since @ < 1, there exists a positive number R, such that W(z) = 0 for | x| = R,.
If we put W(z) = min{2W(x), 0}, then W has a compact support and 2W = W.
Hence

H, > (T} + W) /2 = H//2 in the form sense.

From the estimate of the number of negative eigenvalues in [3] (Theorem 2.15):
#{o,(H) N (= o, 0)} < (constant) * f3| W_(x) |"dr,
R

it follows that # g,(H)) < + co. Hence, by noting that 2 (H,) = 2 (H)) = 0, we
obtain

#0,(H) < + oo, ]

Combining Propositions 5.2 with 5.3, we have Theorem 1.2, which includes the
case N=1.

Remark 5.4. In particular, by Proposition 5.3 and the proof of Proposition
5.2 it follows that
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1< #0,(H, b)) <+ for Z>e.

Note Added in Proof. Recently the related work has done by Steven D.

Underwood (University of Alabama at Birmingham). He also studied the Agmon

function for magnetic vector potentials to get the other result which is extension

of Evans-Lewis-Saito’s results to the magnetic case. I am thankful to Professor

Yoshimi Saito for giving me this information.

Also I should have referred to the other works on the essential spectrum of

many body Schrédinger operators with magnetic fields. For example, B. Helffer, A.
Mohamed; Ann. Institut Fourier, 38 (1988), 95-113. I am grateful to Professor B.
Helffer for telling me many references.
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