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MEASURES DEFINED BY GAGES 

Dedicated to the memory of Professor E. J. McShane 

WASHEK F. PFEFFER AND BRIAN S. THOMSON 

ABSTRACT. Using ideas of McShane ([4, Example 3]), a detailed development of 
the Riemann integral in a locally compact Hausdorff space X was presented in [1]. 
There the Riemann integral is derived from a finitely additive volume v defined on 
a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, 
Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to 
the volume v was carefully investigated in [1, Section 7]. 

In the present paper, we use the same setting as in [1] but produce the measure 
directly without introducing the Riemann integral. Specifically, we define an outer 
measure by means of gages and introduce a very intuitive concept of gage measur-
ability that is different from the usual Carathéodory définition. We prove that if the 
outer measure is er-finite, the resulting measure space is identical to that defined by 
means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the 
outer measure is not <7-finite, we investigate the gage measurability of Carathéodory 
measurable sets that are <7-finite. Somewhat surprisingly, it turns out that this depends 
on the axioms of set theory. 

1. Preliminaries. Throughout this paper, X is a locally compact Hausdorff space. 
If A C X, we denote by A~ and A° the closure and interior of A, respectively. If £ and J 
are families of subsets of X, we say that £ refines T whenever each E G £ is contained 
in some F G 7. 

We fix a family S of subsets of X that satisfies the following conditions. 
1. If A, B G 5, then AC\B G S and there are disjoint sets C\,..., Cn in S such that 

A - B = U?=1 Q. 
2. If A G 5, then A~ is compact. 
3. For each x G X the collection S(x) = {A G S : x G A°} is a neighborhood base at x. 
The following lemma, which was proved in [5, Section 1], summarizes some useful 

properties of the family S. 

LEMMA 1.1. The following statements are true. 
1. Each collection {Ai,.. . ,Am} C S is refined by a disjoint collection 

{Bu...,Bn}cS with U;=1 Bj = U£i Ah 

2. For each AGS and each collection {A \,..., Am } C S there is a disjoint collection 
{BU. . , 4 } C 5 with U;=1 Bj=A- U"i At. 

3. If A G 5, then each open cover U of A~ is refined by a disjoint collection 
{Au...,Am}cSwithA = [J?=lAi. 
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A partition is a collection (possibly empty) P = {(Ai, JCI ) , . . . , (Apixp)} where 
A i , . . . , A p are disjoint sets from S and jq, . . . , JCP are points of X. We say that P is 
anchored in a set £ C X if {x\,..., xp} C £. If A G 5 and P is anchored in A~, then 
P is called a partition in A or of A according to whether |J?=1 A/ C A or (J?=1 Ai = A, 
respectively. 

A gage in a set £ C X is a map 7 that to each x G E assigns an open neighborhood 
l(x) of x in X. If 7 is a gage in E C X, then a partition {(Aj, JCI), . . . , (Ap, xp)} anchored 
in E is called 7-/rce whenever A, C 7fe) for / = 1,...,/?. 

The next simple lemma, proved in [1, Lemma 2.2], is of critical importance. 

LEMMA 1.2. If A G S, then a 7-fine partition of A exists for every gage 7 in A~. 

Throughout this paper, we assume that on S is defined a nonnegative real-valued 
function v, called volume, such that 

v(A) = f>(A,) 

for each A G S and each disjoint collection {A\,..., An} C S for which (J/Li A/ = A. 

EXAMPLE 1.3. A canonical example of the situation described above is obtained by 
letting 

1. X = R where R is the set of all real numbers with its usual topology; 
2. S={[a,b):a,beR,a<b}; 
3. V([A, b)) = a(b) — a(a) where a: R -—• R is an increasing function. 

If 8 is a positive real-valued function defined on a set E C R, then the map 7: x i—> 
(JC — <5U), x + <5(x)) is a gage in £. 

Iff is a real-valued function defined on a set £ C X, we let 

a(f,P) = J2f(xl)v(Ai) 
i=i 

for each partition P = {(Aj, JCI), . . . , (Apj xp)} anchored in E. 

DEFINITION 1.4. A real-valued function/ defined on the closure of A G S is called 
integrable in A if there is a real number / such that given e > 0, we can find a gage 7 in 
A" such that \a(f, P) — I\ < e for each 7-fine partition P of A. 

In view of Lemma 1.2, the number / of Definition 1.4 is uniquely determined by the 
function/. It is called the integral off over A, denoted by JAf. For the basic properties 
of the integral we refer to [1, Sections 3-6]. 

2. The outer measure. Let £ be a subset of X. If 7 is a gage in E, we let 

p 

v7(E) = sup £v(A|) 
i=i 
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where the supremum is taken over all partitions {(Ai,xi),..., (Ap,xp)} anchored in E 
that are 7-fine. The number 

v*(£) = infv7(£) 
7 

where the infimum is taken over all gages 7 in £ is called the outer measure of E. Our 
first task is to show that the map v*: E >—• v*(£) is an outer measure in X in the usual 
sense. 

PROPOSITION 2.1. The following statements are true: 
L v*(0) = O; 
2. ifEcFc X, then v*(£) < v\F); 
3. if{En} is a sequence of subsets ofXf then 

(
OO x OO 

U£„)<£v*(£„) ; 
yn=\ 7 n=l 

4. ifE and F are subsets ofX contained in disjoint open subsets ofX, then 

v*(£UF) = v*(£) + v*(F)-

PROOF. The first statement is correct because only the empty partition P = 0 is used 
in the definition of v*(0). 

Let E C F C X and let 7 be a gage in F. The restriction of 7 to £, still denoted by 7, 
is a gage in E and we have 

v*(£) < v7(£) < v7(F)-

The second statement follows from the arbitrariness of 7. 
In the third claim, assume first that the sets En are disjoint. If ln is a gage in En, define 

a gage 7 in E = |J^i En by letting 70) = 7„(x) whenever x G En. If P = {(A{, JCI) , . . . , 
(Ap,xp)} is a partition anchored in £ that is 7-fine, then {(A/, xt) : */ G £„} is a partition 
anchored in En that is 7n-fine, and consequently 

p oo oo 

E V(A<) = E E V(A,) < E M£«)-

This and the arbitrariness of P implies 

oo 

v*(£)<v 7 (£)<£v 7 „(£„) . 
n=\ 

As in is an arbitrary gage in En, the desired inequality follows. Now if En are any subsets 
of X, the previous result and the second statement yield 

n-\ 

\jEn) = v* Ufe-U^*) 
n=\ / ln=l V k=\ J 

oo / n—1 x oo 

< E v * [ E n - \jEk)<Zv*(En). 
«=] V k=l ' n=\ 
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Finally, let E and F be subsets of X contained in disjoint open subsets of X, and 
let 7 be a gage in E U F. We can find gages a and (3 in E and F, respectively, so 
that a(jc) C 7(x),f3(y) C 7(y), and a(x) H (3(y) = 0 for each x G E and y G F. Let 
P = {(£I,JCI), .. ,,(Ep,Xp)} and g = {(F\,y\),.. .,(Fq,yq)} be partitions anchored in E 
and F that are a- and /3-fine, respectively. Then P U Q is a partition anchored in E U F 
that is 7-fine. Thus 

i=i j=\ 

and by the arbitrariness of P and Q, 

v*(£) + v*(F) < va(E) + v/3(F) < v7(£UF). 

The arbitrariness of 7 implies 

v*(£) + v*(F) < v*(£UF), 

and applying the third statement completes the proof. 

PROPOSITION 2.2. IfK is a compact subset ofX, then 

v*(J0 = inf ][>(*,•) 
7=1 

where the infimum is taken over all disjoint collections {B\ Bn} C S for which 

K C (UjL, Bj)°. 

PROOF. Denote by c the right side of the equation we want to establish. 
If v*(K) < c, then v1(K) < c for a gage 7 in K. Given z G AT, find a neighborhood 

£/z G 5 of z in X with Uz C 7(z). Since K is compact, there are z\,..., zn in A' such 
that {U°Zx,.. .,U°Zn} covers K. According to Lemma 1.1, the collection {£/-.,,..., UZn} 
is refined by a disjoint collection {Aj , . . . , Ap} C 5 for which \J?={ Ai = UJ=i UZj. For 
/ = 1 , . . . , p, let xt = Zj where j is an integer with 1 <j<n and A, C Uz. It is clear that 
{(Ai, JCI), . . . , (Ap, JC^)} is a partition anchored in K that is 7-fine, and that 

n , n x o f p xo 

y=l >1 7 \=1 7 

Thus c < Ef=1 v(A/) < v7(AT), a contradiction. 
Conversely, if c < v*(AT), we can find a disjoint collection [B\,..., Bn} C 5 so that 

AT C (U"=I BJ)° and £?=1 v(Bj) < v*(K). There is a gage 7 in ^ with 7(JC) C U/Li #7 f ° r 

each JC G A'. If {(AI7JCI), . . . , (Ap,xp)} is a partition anchored in K that is 7-fine, then 
ULi ^i C UjLi Bj. An easy application of Lemma 1.1 shows that £?=1 v(A,) < £?=1 v(P7), 
and consequently 

V * ( « < V ^ < t v ( f i ; ) . 
7=1 

This contradiction proves the proposition. 
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PROPOSITION 2.3. If G is an open subset ofX, then 

v*(G) = supv*(/0 
K 

where the supremum is taken over all compact sets K C G. 

PROOF. If c denotes the right side of the equation we want to establish, then c < v*(G) 
according to Proposition 2.1. There is a gage 7 in G such that l(x)~ C G for each x G G. 
Let {(Ai, x\ ) , . . . , (Ap, xp)} be a partition anchored in G that is 7-fine. We select a gage 
(3 in the set K = U?=1 A,~, which is a compact subset of G. Using Lemma 1.2, find /3-fine 
partitions Pt = {(A, ,^) , . . . ,(A^,x^)} of A/,/ = 1,...,/?, and observe thai P = U?=1 />,• 
is a partition anchored in AT that is /3-fine. Thus 

EKA,) = e£KAj)<v^(/0 
1=1 1=1 j=\ 

and as (3 is arbitrary, 

f>(A,) < v*(*Q < c. 
I=I 

The arbitrariness of {(A\, JCJ), . . . , (Ap, J ^ )} implies that v*(G) < v7(G) < c. 

COROLLARY 2.4. /f A /s r/^ wmo/i of a disjoint collection {Ai, . . . , A*} C 5, ?/z£« 

v*(A°) < 2>(A,) < v*(A"). 
/=i 

PROOF. If A' is a compact subset of A°, then v*(K) < E?=1 v(A,-) by Proposition 2.2. 
The inequality v*(A°) < ;c*=1 v(A£-) follows from Proposition 2.3. 

Observe that the volume v has a unique additive extension w to the ring of sets 
generated by S. If {B\,.. .,£„} C 5 is a disjoint collection with A" C (UJLi #/)°, then 

£ v(A/) = w(A) = J2w(An Bj) < J2 v(^/), 
1=1 y=i ;=i 

and the corollary follows from Proposition 2.2. 

EXAMPLE 2.5. In the context of Example 1.3, it is easy to show that 

v*([a,b)) = a(b-)-a(a-) 

where a(c—) = lim*-^- a(x) for each c G R. Since a(c-) < a(c), we see that for an 
A G 5, there is no direct relationship between v(A) and v*(A). 

PROPOSITION 2.6. IfE c X, then 

v*(£) = infv*(G) 
G 

where the infimum is taken over all open sets G C X containing E. 
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PROOF. If c denotes the right side of the equation we want to establish, then v*(£) < 
c according to Proposition 2.1, 2. Proceeding towards a contradiction, assume that 
v*(E) < c and select a gage r\ in E for which vv(E) < c. If G = (JJCGE ^C*)0» then there 
is a gage 7 in G such that l(x)~ C G for each x G G and 70) C 7/(JC) whenever 
JC G E. Let F = {(Ai, jq), . . . , (Ap,xp)} be a partition anchored in G that is 7-fine, and 
fix an integer / with 1 < i < p. Since A[ C 70/)~ C G, we can find a disjoint 
collection {A'n . . . , A

l
p.} C S which refines {rj(x)° : x e E} and such that A; = (P j Aj 

(Lemma 1.1,3). For y = 1,...,/?/, choose an jtj G £ with A' C ^(V) and observe that 

{ ( 4 * < ) : . / = l , . . . , W / = l , . . . , / ? } 

is a partition anchored in £ that is ?7-fine. Consequently 

év(A,) = f:f>(Ap<vr/(£). 

This and the arbitrariness of P imply 

c<v\G) <v1(G)<v11(E), 

a contradiction. 

3. Gage measurability. The following definition, which follows the spirit of Defi­
nition 1.4, closely reflects our intuition that a measurable set should not be too entangled 
with its complement. 

DEFINITION 3.1. A set E C X is called gage measurable if given e > 0, there is a 
gage 7 in X such that 

£f>(A,n/?,)<£ 

for each 7-fine partitions! (A I,JCI), . . . , (Ap,xp)} and {(#i,_yi),..., (Z^,)^)} anchored in 
E and X — E, respectively. 

The family of all gage measurable subsets of X, denoted by 5*, is generally incompa­
rable with the original semiring 5. 

EXAMPLE 3.2. Let X = R, let 5 be the ring of all bounded subsets of R, and let 
v: S —+ [0, +oo) be a finitely additive extension of the Lebesgue measure in R (see [7, 
Chapter 10, Problem 21]). Under these conditions, it is easy to verify that S* is the 
cr-algebra of all Lebesgue measurable subsets of R. 

PROPOSITION 3.3. The following statements are true. 
1. If E C X is simultaneously closed and open or ifv*(E) = 0, then E G 5*. 
2. The family S* is an algebra in X. 
3. IfEES* and F C X — E is any set, then 

v*(EUF) = v*(£) + v*(F). 
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4. If H C X is the union of a disjoint sequence {Hn} in 5*, then 

oo 

v*W = Ev*( f t ) . 
n=\ 

PROOF. The first statement is obvious. In view of Proposition 2.1, it implies that 5* 
contains the empty set. By symmetry, S* is closed with respect to complementation. Thus 
to establish the second claim, it suffices to show that if two sets belong to 5*, then so 
does their union. 

Let £ , G G 5 * , £ > 0 , and let a and j3 be, respectively, gages in X associated with E and 
G and e according to Definition 3.1. Define a gage 7 in X by setting l(x) = a(x) n (5{x) 
for each x G X, and let {(AI,JCI), . . . , (Ap,xp)} and {(#i, j i ) , . . . , (2?^,)^)} be 7-fine 
partitions anchored in E U G and X — (£ U G), respectively. Then 

and we see that E U G E 5 * . 
If £ is as above and F C X — E is arbitrary, select a gage rj in EU F and define a 

gage 6 on £ U F by setting <S(jt) = a(x) n 77 (JC) for each x Ç £ U F . Let P = {(Ai, JCI ) , . . . , 
(Ap, xp)} and Q = {(B\, ji ) , . . . , (Bqi yq)} be partitions anchored in E and F respectively. 
Employing Lemma 1.1, an easy induction on p produces a partition 

R = {(Auxi),..., (Ap,xp), (D , , Z l ) , . . . , (DnZr)} 

such that {zi , . . . , zr} C {vi , . . . , yq}, Dk C Bj whenever Zk = yj, and 

(ÛÛ(^n^))u(Û^) = Û -̂
Ki=\j=\ 7 V £ = l J j=\ 

Thus if P and Q are <5-fine, then so is R and we see that 

v,(EUF) > v8(E\JF)>YJv{Al) + Yjv{Dk) 
i=\ k=\ 

= £ v(Ai) + £ v(Bj) - £ £ KA, n Bj) 
i'=l 7=1 i= l 7=1 

>Ev(A,-) + f]v(fly-)-f. 
1=1 7=1 

As P and <2 a r e arbitrary, we obtain 

v7](EUF) > vè(E) + v6(F) -£> v*(E) + v*(F) - e, 

and since 77 and £ are arbitrary, this implies 

v*(£UF)> v*(£) + v*(F). 
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Now the third statement follows from Proposition 2.1. 
Extending the third claim by induction and using Proposition 2.1 yields 

£v*(//„) = v*(Ù//n) <v*(H) 
n=\ Kn=\ ' 

for k = 1,2, — Thus E ^ v*(Hn) < v*(//) and another application of Proposition 2.1 
completes the proof. 

PROPOSITION 3.4. If {En} is a sequence in 5*, then E - |J£i En belongs to S* 
whenever v*(£) < +oo. 

PROOF. In view of Proposition 3.3, we may assume that the sets En are disjoint, and 
consequently that the series £ ^ j v*(En) converges. Thus given e > 0, there is a positive 
integer k such that E ^ + 1 v*(£„) < e. By Proposition 3.3, the set F = \Jk

nz=] En belongs 
to 5* and v*(E — F) < e. Choose a gage 7 in X associated with F and e according 
to Definition 3.1 so that v7(£ - F) < e. If {(A\,x\),.. .,(Ap,xp)} and {(B\,y\),..., 
(#4, _ŷ )} are 7-fine partitions anchored in E and X — £, respectively, then 

EX>(A,n£,) < EiviAiHBj)* E J2v(AinBj) 
i=\ j=\ xteFj=\ xteE-Fj=\ 

<£+ E v(At) < £ + v 7 ( £ - F ) < 2 ^ , 
XjEE-F 

and the measurability of E is established. 

The characteristic function of a set E C X is a function XE on X such that XEW = 1 
if x G £ and XEOO = 0 if x G X — £. The next proposition relates gage measurability to 
the integrability introduced in Definition 1.4. 

PROPOSITION 3.5. Let A G S and E C A°. Then E is gage measurable if and only if 
\E is integrable in A, in which case v*(E) = JA XE-

PROOF. Assume that E G 5*, choose an e > 0, and find a gage in X associated 
with E and e/2 according to Definition 3.1. If {(AI,JCI), . . . , (An,xn)} and {(A\,y\),..., 
(An,yn)} are 7-fine partitions in A, then 

{(A,-,**) : xt G £} and {(Ai,yd : ̂  G £} 

are 7-fine partitions anchored in E, while 

{(Aj,xj) :XjeX-E} and {(Aj,yj) : » G X - E} 

are 7-fine partitions anchored in X — E. Thus 

E IXEte) - XE^OIVCA,) = E{KA/) : x, G £ j / 6 X - E} 

+ E{v(A,) : # € £ , * , G * - £ } = £ E KA;nA7) 

+ E E v(A,nAj)<£, 
y,e£.v,ex-£ 

https://doi.org/10.4153/CJM-1992-078-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-078-2


MEASURES DEFINED BY GAGES 1311 

and XE is integrable in A by [1, Proposition 3.8]. 
Conversely, assume that \E is integrable in A, choose an e > 0, and use [1, Proposi­

tion 3.8] to find a gage 6 in A~ so that 

n 

E \XE(Xi) - XE(yÙ\v(Ai) < £ 
i=l 

for all partitions {(AI,JCI), . . . , (An,xn)} and {(Ai, _yi),... ,(A„,yn)} in A that are <5-fine. 
Let r\ be a gage in X such that r){x) C 6(x) if Jt G A~, 77 (JC) C X — A if x G X — A~, and 
r\(x) C A ifx G E. Select 77-finepartitionsP = {(2?i,fi),.. . , ( ^ , ^ ) } and Q = {(Ci,zi), 
. . . , (Cq, z^)} anchored in £ and X—E, respectively. Since B( H C}• = 0 whenever Zj fi A~, 
we may assume that Q is anchored in A~ — E. By the choice of 77, the families {(5/DC,, //)} 
and {(Bt D Cy, zy)}, where / = 1,...,/? and y = 1 , . . . , q, are <5-fine partitions in A. Hence 

Ê £ v(^ n Q) = £ È Ix^i) - XEizjMBi n c,-) < e 
1=1 y=i 1=1 y=i 

and we see that £ G 5*. 
To establish the equation v* (F) = JA \E, let 7 be a gage in E such that v1(E) < v*(E)+£. 

The gage 7 can be extended to a gage in A~, still denoted by 7, so that \CT(XE, P)~SAXE\ < 
£ for each 7-fine partition P of A. If {(Aj, JCI ) , . . . , (Ap, xp)} is a 7-fine partition of A, then 

ixE~e< X) v(A/)< / * £ + £ 

and consequently 
/ \E- E < v^(E) < l XE + £. 

JA JA 

We conclude that | v*(£) — X4 x#| < 2e and the proposition follows from the arbitrariness 
ofe. 

COROLLARY 3.6. £#c/z compact subset ofX is gage measurable. 

PROOF. Let K be a compact subset of X and assume first that K C A° for an A C 5. 
Since XA: is upper semicontinuous, K G 5* by Proposition 3.5 and [1, Corollary 5.7]. If 
K is arbitrary and x G AT, choose neighborhoods (/*, V* G 5 of x in X so that U~ dV°x. 
Then AT is covered by a collection {£/*,,..., UXn], and each KDU~ belongs to 5* by the 
first part of the proof. An application of Proposition 3.3 completes the argument. 

REMARK 3.7. It is easy to prove Corollary 3.6 directly without referring to the integral 
(cf. Remark 4.3). 

THEOREM 3.8. IfGcX is open and v*(G) < +00, then G G S*. 

PROOF. It follows from Proposition 2.3 that there is a a-compact set K C G with 
v*(K) = v*(G). Since AT G 5* by Corollary 3.6 and Proposition 3.4, an application of 
Proposition 3.3 shows that G G S*. 
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COROLLARY 3.9. Let E G 5* and v*(£) < +oo. Then £ H G G 5* for each open set 
G CX. 

PROOF. By Proposition 2.6, there is an open set U C X such that E C U and 
v*(U) < +oo. If G C X is open, then E H G = E n (G H £/) and the corollary follows 
from Theorem 3.8 and Propositions 3.3. 

The next example shows that the family 5* need notbe closed with respect to countable 
unions. 

EXAMPLE 3.10. Let Y be an uncountable discrete space and let Z = {0} U {2 n : 
n = 1, 2, . . .} be topologized as a subspace of R. By w we denote a weighted counting 
measure in X = f x Z such that w({(y, z)}) = z for each (y, z) G X. Let 5 be the ring 
generated by the sets 

{(y, 2"")} and {(y, 0)} U {(y, 2"*) : k = n,n + 1,...} 

where n = 1,2,..., and let v be the restriction of w to 5. 
Under this setting, it follows from Proposition 3.3 that for each integer n > 1, the set 

En = Y x {2~n} belongs to 5*. Yet, it is easy to show that the union USi En is not gage 
measurable. 

4. Measurable sets. The Borel a-algebra in X is the cr-algebra in X generated by 
all open subsets of X; its members are called Borel sets. Let !A£ be a <j-algebra in X 
containing all Borel sets, and let v be a measure on fAt such that z/(/<0 < +°o for each 
compact set K dX. We recall a few standard definitions. 
A set E G 9£ is called 

1. v-a-finite if £ = UÏSi £n where En e 9t and i / ^ ) < +oo for « = 1,2,...; 
2. v-outer regular if i/(£) = info i/(G) where the infimum is taken over all open sets 

G C X containing E; 
3. v-Radon if v(E) = supKv(K) where the supremum is taken over all compact 

subsets of E. 
We say that the measure v is 

1. a-finite if X is i/-cr-finite; 
2. Radon if each E G !A£ is i/-Radon; 
3. regular (or /?/esz) if each open set G C X is i/-Radon and each £ G fA£ is //-outer 

regular; 
4. complete if fA£ contains all subsets of each set E G !A£ with z/(£) = 0; 
5. saturated if !A£ contains all sets E C X such that £ D F G fA£ for every £ G !A£ with 

z/(£) < +oo; 
6. diffused if K{x}) = 0 for each JC G X. 
Throughout this section, M denotes the cr-algebra of all subsets of X that are v*-

measurable in the Carathéodory sense, and /i denotes the measure on <M that is the 
restriction of the outer measure v*. In view of Propositions 2.1, 2.3, and 2.6, standard 
arguments reveal that /i is a complete saturated and regular measure (see [6, Exercises 
(13-7) through (13-10)]). 
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REMARK 4.1. It follows from Proposition 2.2, [1, Proposition 7.1], and [6, Corol­
lary (9.10)] that the measure space (X, ftf, /x) coincides with the measure space (X, fA£, v) 
of [1, Section 7]. 

The primary goal of this section is to clarify the relationship between the families 5* 
and M. The following lemma is our main tool. 

LEMMA 4.2. A set E <Z X is gage measurable if and only if for each e > 0 there is an 
open set G C X and a closed set F C X such that 

F C F C G and fi(G - F) < e. 

PROOF. Let E e S* and e > 0. Select a gage 7 in X associated with E and e according 
to Définition 3.1, and let 

G= | J 7 W andF = X - (J 7(JC). 
xeE xex-E 

If K C G — F is a compact set, then it follows from Lemma 1.1 that there are 7-fine 
partitions {{A\, JCI), . . . , (Ap, JCP)} and {{B\, y i ) , . . . , (2?̂ , >^)} anchored in E and X — Ey 

respectively, and such that 

G
p \ o / q NO / / > ? x o 

J At) n([jBj) c(UU(A,nB ;)j . 
Now by Proposition 2.2, 

li(K)<YJJ2v{AinBj)<e. 

Consequently [i(G — F) < e, since // is regular and G — F is open. 
Conversely, let G and F satisfy the conditions of the lemma for a given e > 0. Choose 

a gage 7 in X so that l(x)~ C G for every x e E and 70) C X — F for every x G X — E. 
If {(Ai, ; t i ) , . . . , (Ap, xp)} and {(Z?i, v i ) , . . . , (5^, >^)} are 7-fine partitions anchored in E 
and X - £, respectively, then K = [fi=] U?=1(A/ H £/)- is a subset of G - F. Thus by 
Corollary 2.4, 

JziviAiHBj) < v\K) <v(G-F)<e 
i = l 7=1 

and the gage measurability of F is established. 

REMARK 4.3. An immediate consequence of Lemma 4.2 ancl Proposition 2.6 is that 
each compact subset of X is gage measurable (cf Remark 3.7). 

THEOREM 4.4. IfE e S*, then E e <M and E is \i-Radon. 

PROOF. Given F G 5*, use Lemma 4.2 to find open sets Gn C X and closed sets 
Fn C X such that 

Fn C F CGn and /i(G„ - Fn) < -
n 
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for n = 1, 2 , . . . . The sets G = f|^i Gn and F = \J?=l Fn belong t o ! ) K , F c £ c G , and 
fi(G — F) = 0. Since \i is complete, E £ M. 

If c < /x(£), then c+\/n < /JL(E) < /x(G„) for a positive integer rc, and we can find a 
compact set K C Gn so that c + 1 jn < n{K). Now K n Fn is a compact subset of £ and 

fi(KnFn) = fi(K) -v(K-Fn)>c+-- /x(G„ - Fn) > c. 
n 

It follows that E is /x-Radon and the theorem is proved. 

PROPOSITION 4.5. IfE G M and /JL(E) < +oo, then E G 5*. 

PROOF. By [6, Lemma (9.2)], the set E is /i-Radon. Since it is also //-outer regular, 
we can readily verify that it satisfies the condition of Lemma 4.2. 

COROLLARY 4.6. AsetEcX belongs to M if and only ifEH F G S* for each F G S* 
with /x(F) < +oo. 

PROOF. Since \x is saturated and 5* C M, the corollary is a direct consequence of 
Proposition 4.5. 

THEOREM 4.7. If [i is G-finite, then 5* = M. 

PROOF. It follows from Propositions 2.6, 2.3, and 2.1 thatZ = NU Y where fi(N) = 0 
and Y is cr-compact. As Y is paracompact, it can be covered by a sequence {Un} of open 
subsets of X such that each U~ is compact and each x G F has a neighborhood that meets 
only finitely many Un H Y. If £ G fM", then all sets £„ = EH UnHY belong to 5* according 
to Proposition 4.5. Choose an e > 0, and using Lemma 4.2, find open sets Gn C X and 
closed sets Fn C X such that 

FndEnC Gn and /x(Gw - Fn) < e2~n 

for n = 1,2, Since {(/„ H 7} is an open locally finite cover of Y, it is easy to 
verify that (JJ£i F„ is a relatively closed subset of Y. Hence there is a closed set F C X 
with F H y = UJÏi *V Select an open set G0 C X so that N G G0 and /i(G0) < e. If 
G = U^o Gn, then F c f U i V c G a n d 

oo 

li(G-F)< /x(Go) + E M(G„ - Fn) < 2e. 

Now it follows from Lemma 4.2 and Proposition 3.1 that E G 5*. 

THEOREM 4.8. /f 5* = M, then /i « a-finite whenever it is diffused. 

PROOF. If 5* = fW, then the complete saturated and regular measure \i is also Radon 
by Theorem 4.4. It follows from [3, Section 2, (C)] that there is a disjoint family <D of 
nonempty compact subsets of X having the following properties: 

1. If G C X is open, then fi(D H G) > 0 for each D G <D with DOG^ÏÏ. 
2. I f F c X a n d D R F G M for each £> G D, then £ G fW. 
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3. If E G 96, then /i(£) = EDGD M # H £). 

In each D e CD select a point JCD. By 2, the set £ = {*# : D G £>} belongs to 96 and, 

assuming that // is diffused, p(E) = 0 by 3. Since E is //-outer regular, there is an open 

set G C X such that £ C G and //(G) < +oo. According to 1, we have p(D H G) > 0 

for each D G £>. In view of 3, this implies that *D is countable and consequently that \i is 

cr-finite. 

EXAMPLE 4.9. Let X be an uncountable discrete space, let S be the family of all finite 
subsets of X, and let v be the counting measure in X restricted to 5. Then /i is not cr-finite, 
and yet by Proposition 3.3, the family 5* contains all subsets of X; in particular, 5* = 96. 

Thus Theorem 4.8 is false when \i is not diffused. 

If [i is not cr-finite, then 96 contains a proper cr-ideal X consisting of all /i-cr-finite 
elements of 96. The natural question whether X is a subfamily of S* has interesting 
answers. 

LEMMA 4.10. A set E el, belongs to 5* if and only if for each e > 0 there is a closed 

set F C X such that F C E and p,(E — F) < e. 

PROOF. There are sets En G 96 such that E = U ^ i En and n(En) < +oo for n = 
1 ,2 , . . . . Find open sets G„ C I so that /x(G„ - £„) < £2'n, and let G = IJSi G*-
Clearly, G is an open subset of X containing £, and if the condition of the lemma is 
satisfied, then 

li(G-F) = IL(G - E) + ii(E - F) < 2e. 

Thus E G 5* by Lemma 4.2. The converse is an obvious consequence of Lemma 4.2. 

A family £ of subsets of X is called, respectively, point-finite ox point-count able if the 

set {E G £ : x G E} is finite or countable for each i G l We say that X is, respectively, 

metacompact or metalindelôf if each open cover of X has a point-finite or point-countable 

open refinement. 

The continuum hypothesis and Martin's axiom are abbreviated as CH and MA, re­

spectively. 

THEOREM 4.11. The inclusion X C 5* is implied by either of the conditions: 
1. X is metacompact; 

2. X is metalindelôf and MA + -< CH holds. 

PROOF. Let E G X and Y = E~. For a Borel set 5 C F, set A(5) = ^(BHE), and observe 
that by [6, Corollary (9.3)], À is a cr-finite Radon measure on the Borel cr-algebra in Y. 

As F is a closed subset of X, it follows from [2, Corollary 12.5 and Theorem 12.11] that 
either condition of the theorem implies the regularity of A. By Lemma 4.10, however, 
the A-outer regularity of Y — E is equivalent to E G 5*. 

It follows from [2, Example 12.7] that there is a nonmetalindelôf space X in which 

X is not a subfamily of 5*. Moreover, [2, Example 12.12] shows that under CH, there is 

a metalindelôf space X in which X is not a subfamily of 5*. Thus whether the inclusion 

X C 5* holds in all metalindelôf spaces cannot be decided within the usual universe of 

the Zermelo-Fraenkel set theory including the axiom of choice. 
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