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Abstract

In this paper, we complete the proof of the conjecture of Gross and Zagier concerning algebraicity of higher
Green functions at a single CM point on the product of modular curves. The new ingredient is an analogue of the
incoherent Eisenstein series over a real quadratic field, which is constructed as the Doi-Naganuma theta lift of a
deformed theta integral on hyperbolic 1-space.
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1. Introduction

Just over half a century ago, Doi and Naganuma discovered a Hecke-equivariant lifting map from to
weight k elliptic modular forms to weight (k, k) Hilbert modular forms for a real quadratic field F
[DN70]. This is a special case of cyclic base change [JL.70], which has now become a basic and useful
tool in the theory of automorphic forms and automorphic representations. By the exceptional isogeny

0(2,2) NRCSF/Q SL2, (11)

the Doi-Naganuma lifting is also an instance of a theta lifting from SL; to O(2,2) [Kud78].

1.1. A problem posed by Gross and Zagier

In the seminal paper [GZ86], Gross and Zagier proved their formula relating the central derivative of
some Rankin-Selberg L-function attached to a weight 2 level N newform f and the Néron-Tate height
pairing of f-isopytic components of Heegner points in the Jacobian of the modular curve Xo(N). This
was extended in [GKZ87] to describe the positions of these Heegner points in the Jacobian using Fourier
coefficients of modular forms. In the degenerate case N = 1, the Gross-Zagier formula yields a beautiful
factorization formula of the norm of differences of singular moduli [GZ85].

To calculate the archimedean contribution to the height pairings, one requires the automorphic Green
function

2
GI;O(N)(Z],ZZ) ) Z Qs—l(l + M , R(s) > 1,
yero(v) 23(z)3(rz2) (12)

Qs-1(1) —/ (t+ lcosh(u)) Sdu

on Xo(N) x Xo(N). It is an eigenfunction with respect to the Laplacians in z; and z, with eigenvalue
s(1—s5). The function vanishes when one of the z; approaches the cusps and has a logarithmic singularity
along the diagonal. In fact, these properties characterize it uniquely. Using Hecke operators acting on
either z; or z;, we can define

GLoN Mz 20) = Z Gy (z21,722)
Y€LO(N)\RN, det(y)=m (1.3)

=G M (21,22) | Tey = G2 (21,22) | T

where Ry := {(. %) : a,b,c,d € Z}. Then GoM)-™ has a logarithmic singularity along the m-th
Hecke correspondence 7, € Xo(N)? (see (1.2) in Chapter II of [GZ86]).

For integral parameters s = r + 1 € Ny,, these functions are called higher Green functions. In
Section V.1 of [GKZ87], two problems about these functions were raised. The first one was to give an
interpretation of their values at Heegner points as archimedean contributions of certain higher weight
height pairings. This was answered by Zhang in [Zha97] (see also [Xue10]), where the Néron-Tate height
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pairing of Heegner points is replaced by the arithmetic intersection of Heegner cycles on Kuga-Sato
varieties.

The second problem dealt with the algebraicity of higher Green functions at a single CM point. Let
Ml;: (T'o(N)) be the space of weakly holomorphic modular forms for I'g(N) of weight —2r < 0 with
poles only at the cusp infinity (see (2.27)). Given f = },,,»_o c(m)g™ € M!_’;:(FO(N)), we call the
following linear combination of higher Green functions

G2 (21,22) 1= . e(=m)m” G 2N (21, 25) (1.4)

r+l
meN

the principal higher Green function associated to f. Along the divisor

Zs = Z Tons
m>1, ¢(-m)#0

the function G FO(IN) has a logarithmic singularity. Using Serre duality, this function is the same as the
higher Green function defined via relations in Section V.4 of [GZ86] (see Remark 2.5). We say that it is
rational when f has rational Fourier coefficients at the cusp infinity. Even though the theory of complex
multiplication does not directly apply as in the case of automorphic Green functions, the value of a
rational, principal higher Green function GFO(A}) at a single CM point on Xo(N) X Xo(N) should be
algebraic in nature, predicted by the following conjecture (see, for example, [Mel08] and [Vial 1]).

Conjecture 1.1. Suppose [ € Ml; (To(N)) has rational Fourier coefficients at the cusp infinity.
Then for any CM point (z1,22) € XO(N)Z\Zf with z; having discriminant d; < 0, there exists
a = a(z1,22) € Q C C such that

G2 (21, 22) = |dida| " log Jal.

Over the years, there have been a lot of partial results toward this conjecture. When dd; is a perfect
square, this conjecture was proved in [Zha97] conditional on the nondegeneracy of the height pairing
of CM cycles. Using regularized theta liftings, an analytic proof was given in [Vial 1] with restrictions
on N,d; and later in full generality in [BEY21]. When d;d> is not a perfect square, less was known
before. For N = 1, z; =i and r = 1, Mellit proved the conjecture in his thesis [MelO8] using an algebraic
approach. When one averages over the full Galois orbit of the CM point (z1, z2), the conjecture follows
from [GKZ87] for r even. More partial results are available when one averages over different Galois
orbits [[Li22, BEY21] when N = 1.

Motivated by Conjecture 1.1, the first and third author, together with S. Ehlen, considered its
generalization to the setting of orthogonal Shimura varieties in [BEY21]. More precisely, let V be a
rational quadratic space of signature (n,2) with n > 1, and Xk be the Shimura variety associated to
Hy := GSpin(V) and a compact open subgroup K ¢ Hy(Q). For a nonnegative integer r and a vector-
valued harmonic Maass form f of weight 1 —n/2—2r, denote by @', its regularized theta lift (see [Bru02]
or equation (2.41)). This function is an eigenfunction of the Laplacian on X and has a logarithmic
singularity along the special divisor Zy associated to f (see (2.42)). We call it a higher Green function
on Xg and say that it is principal, resp. rational, if f is weakly holomorphic, resp. has rational principal
part Fourier coefficients. When V = M,(Q) and Xx = Xo(N)?, the function dD} becomes G:i(ll\;) (see
Corollary 2.4).

For a totally real field F of degree d and an F-quadratic space W = E with E/F a quadratic CM
extension, suppose there is an isometric embedding

Wq :=RespjoW — V, (1.5)
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which in particular implies that n + 2 > 2d. Then we obtain a CM cycle Z(W) on Xk from a torus Ty
in Hy (see section 2.4 for details). Note that Z(W) is defined over F and is the big CM cycle Z(W, 7y)
in [BKY12]. We denote by Z(W)g the union of the F-conjugates of Z(W). If F is quadratic, we write
Z(W)g = Z(W) U Z(W)'.

In [Li23], the second author studied the algebraicity of the difference of a rational, principal (D} at
two CM points in Z(W) and was able to verify the analogue of Conjecture 1.1 in that setting. This opens
up the possibility of proving Conjecture 1.1 when one proves an algebraicity result for the averaged
value (D} (Z(W)). In this paper, we complete this step by proving the following result complementary
to [Li23].

Theorem 1.2 (Algebraicity and factorization). Let <I>;c be a rational, principal higher Green function on

Xk. Suppose that E |Q is a biquadratic CM number field with the real quadratic subfield F = Q(\D),
and Z(W) 0 Zy = 0. Then there exists a positive integer k and a1, a» € F* such that

1
O, (Z(W)) = ;(10g|a1| + \/510g|a2|). (1.6)
For any prime p of F, the value «! ordy(a;) is given in (5.6). When n = 2, we have a; = 1 for
j =r mod 2.

Remark 1.3. The denominator « appears as a consequence of our matching of sections (see Proposi-
tions 4.7 and 4.11) and only depends on Z(W) and r when f has integral Fourier coefficients.

Remark 1.4. Theorem 1.2 also applies to the case r = 0 when f has zero constant term, in which case
CD(} = @ is the regularized Borcherds lift of f and we have a; = 1.

Combining Theorem 1.2 with the main result in [Li23], we deduce the algebraicity of a rational,
principal higher Green function at a single CM point when E /Q is biquadratic — hence, Conjecture 1.1
in particular.

Theorem 1.5. In the setting of Theorem 1.2, there exists k € N and Galois equivariant maps ay, @, :
Tw (Q) — E®® such that

@ (120, h]) = ~ (log las (1) + VD log [ ()
K

for all [zo, h] € Z(W). Furthermore, for n = 2, we can choose aj(h) = 1 for j = r mod 2; that is, there
exists a Galois-equivariant map « : Ty (Q) — E® such that

@ ([0, ]) = ﬁ log (A

for all h € Ty (Q). In particular, Conjecture 1.1 is true.

1.2. Comparison to previous works

There has been an extensive literature on the CM-value of regularized theta lifts. When r = 0,n = 2
and f is weakly holomorphic, the CM-value @ (Z(W)q) was the subject of the classical work of
Gross-Zagier on singular moduli [GZ85] and generalizations by the first and third author [BY06]. More
generally for arbitrary n, totally real field F' and harmonic Maass form f, the value ® s (Z(W)q) is the
archimedean contribution of the derivative of a Rankin-Selberg L-function involving the shadow &( f)
at s =0 [BY09, BKY12, AGHMPI18].
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A crucial ingredient in these works is a real-analytic Hilbert Eisenstein series E* of parallel weight 1
over F. It is an incoherent Eisenstein series in the sense of the Kudla program [Kud97]. The arithmetic
Siegel-Weil formula predicts that the Fourier coefficients of its derivative, E*’, are arithmetic degrees
of special cycles [HY 11, HY 12], which are logarithms of rational numbers.

Using suitable weight 1 harmonic Maass forms in place of incoherent Eisenstein series, the first and
third author, together with S. Ehlen, could prove the algebraicity result for higher Green function at a
partially averaged CM cycle and deduce the Gross-Zagier conjecture for Xx = Xo(1)> when the class
group of one of the imaginary quadratic fields in E is an elementary 2 group [BEY21, Theorem 1.2].
However, the factorization of the ideal generated by the algebraic numbers is not explicitly given.

Our main result in Theorem 1.2 goes far beyond these aforementioned works in an essential way
by studying the regularized theta lifts at the partially averaged CM cycle Z(W), which is in general
only half of Z(W)q and a priori defined over F. For r = 0 and f weakly holomorphic, this means that
@ ¢ (Z(W)) is the logarithm of a number in the real quadratic field F and therefore cannot be related to
the Fourier coefficients of incoherent Eisenstein series!

Furthermore, this partial average is quite different, yet more natural, than the one studied in [BEY21].
Instead of using the weight 1 harmonic Maass form loc. cit., which is an elliptic modular form, we
explicitly construct a Hilbert modular form Z, serving as a companion and substitute for the incoherent
Eisenstein series, and obtain precise information concerning its Fourier coefficients. This is the main
innovation of the paper and allows us to prove the exact factorization formula for the ideal generated by
the algebraic numbers in the spirit of [GZ85], which was not possible in [BEY21]. Most importantly,
we are able to achieve this for arbitrary open compact subgroup K, just as in [Li23] for the difference
of two CM-values, whereas the ingredients in [BEY21] could only handle the level 1 case. This enables
us to prove Theorem 1.5 for arbitrary level K, which encompasses the case in Conjecture 1.1. In that
sense, this paper is the complement to [Li23], both in results and methods, for biquadratic E.

Besides the analytic approach to Conjecture 1.1, which originated from the work of Viazovska for
F =Q@&Q [Vial 1], there is also an algebraic approach in [Zha97, Mel08]. However, one must overcome
serious obstacles to prove Theorem 1.5 via this approach. For F = Q & Q, one needs to assume
in an essential way the nondegeneracy of the restriction of the Gillet-Soulé height pairing, which is
defined on Kuga-Sato varieties, to the subgroup of the Chow group spanned by CM cycles [Zha97,
Theorem 5.2.2]. The nondegeneracy of this height pairing on a slightly larger subgroup is conjectured
by Beilinson [Bei87] and Bloch [Blo84] (see Conjecture 1.3.1 in [Zha97]). For real quadratic F, one
needs to find a substitute for the Kuga-Sato variety, construct canonical models, and define suitable
cycles and arithmetic intersections such that the archimedean contribution is given by the CM-values of
higher Green functions.! Assuming that the conjecture of Beilinson and Bloch holds in this case, one
can then deduce the result in Theorem 1.5. For n = 2 and concrete families of CM points, it is possible
verify Conjecture 1.1 by explicit constructions of cycles and calculations (see [Mel08]). In general, it is
not clear at all how to construct suitable cycles, not to mention remove the nondegeneracy assumption.
However, it would be very interesting to see if Theorem 1.5, which is proved via the analytic approach,
can be used to prove the conjectural nondegeneracy when restricted to the above subgroup of the Chow
group in [Zha97].

1.3. Proof strategy

For simplicity, we focus on the case n = 2, from which the general case is not hard to derive (see
Section 5 for details). Applying the strategy in [Kud03] and the Rankin-Cohen operator, one can express
CD; (Zz(W)) + (—1)’613? (Z(W)’) as an F-linear combination of Fourier coefficients of the holomorphic
part of E*’, which are logarithms of rational numbers. This is a standard procedure involving the
Siegel-Weil formula and Stokes’ Theorem (see, for example, the proof of Theorem 3.5 in [Li21]).

1An idea is to consider powers of the Kuga-Satake abelian scheme over an integral model of Xk , though the dimension of such
an abelian scheme is 2"*! and the fiber product becomes untractable quickly.
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A crucial property of the incoherent Eisenstein series is the following differential equation: (see [BKY 12,
Lemma 4.3])

2(Ly + Lo)E™'(g,0,01D) = E*(g,0, 71 + E*(g,0, 011, (1.7)

Here, L ; are lowering operators in the j-th variable, and olae) = ¥ ®CI><(,0E 1€) are Siegel-Weil sections
in the degenerate principal series (0, y) with y = yg/r being the quadratic Hecke character of F
associated to E /F (see Section 2.6 for details). In particular, E*(g, 0, ®(€~€)) is a coherent Eisenstein
series of weight (€, —¢) for € = +1. To prove Theorem 1.2, it suffices to understand dD} (Z(W)) —
(—1)’<I>’f (Z(W)’), which means we need a substitute of £*’ on the left-hand side of (1.7) such that the
right-hand side is E*(g,0, ®~1) — E*(g,0, 1),

To obtain this minus sign, we apply the exceptional isogeny in (1.1) and view the coherent Eisenstein
series as modular forms on the group Hyp := SO(V}) for the quadratic space V; of signature (2, 2) defined
in Section 3.1. Since E /Q is biquadratic, there is an odd character o = oy - sgn of [F N=F 1\AllF such
that y = o o Nm™ (see Remark 2.1). By viewing ¢ as an automorphic form on H; := SO(V)) for the
quadratic space V| = (F,Nm), we can consider its theta lift following the diagram

4638w, (1.8)

where G = SL;. The first map lifts ¢ to a weight one holomorphic cusp form #(g’, ¢7, 0) on G, which
was first studied by Hecke. Here, 7 is a Schwartz function on Vi (A) whose archimedean component ¢,
is the Schwartz function in V| (R) defined in (2.65). Then the second map lifts it to a coherent Eisenstein
series and is an instance of the Rallis tower property ([Ral84]).? From this, 8y o 6 gives us the equation

+1.F ’ +1,¥1 ;7 - ’
Z(g. o™V, 0) :=/ 0o(g’ 8. 05" "9, o7, 0)dg
G(Q\G(A) (1.9)

3 _
— —E*(g, O’(D(il,+l))’
T

where 6 is a theta kernel for the quadratic space Vo, ¢ 1% = go(()il’ﬂ) ® ¢ is a Schwartz function

on V(A) with V := Vo @ V; and @*1-¥) = F,, , is the section defined in (3.37). Our first main result
is Theorem 3.3, which ensures that all coherent Eisenstein series can be realized as such lifts. This is
reduced to the corresponding local problem and solved in Section 3.5.

To construct Z, we first modify the character o to the function g on H;(A) defined in (2.76). It
is a preimage of o under the first order invariant differential operator t% on Hi(R) = RX, and hence
not a classical automorphic form on Hy. We call its lift #(g’, 7, c) to G a deformed theta integral,
since the archimedean component of ¢ is essentially log # and comes from the first term in the Laurent
expansion of #° at s = 0. This deformed theta integral was first studied in [CL20]. It satisfies the following
important property (see Theorem 2.7):

LI(g', ¢7, 0c) = (g, ¢7, 0) +error. (1.10)

Here, L is the lowering operator on G, and error is the special value of the theta kernel on V.
We now define Z(g) = Z(g, ¢V, 5¢) in (4.2) using the theta kernel 6y(g’, g, 90(()1’1)) with the
archimedean component of (p(()l’l) being the Schwartz function <p(()1;i) defined in (4.1) (the integral is

similar to (1.9)). A key observation is that there is an identity between the actions of the universal

2By a change of integration order, we can also rewrite the map as

4 Pullback
G —>H — H),

where H = SO(V') contains Hy X Hj.
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enveloping algebras of Hy and G, which gives in this special case (see (4.7) and Lemma 4.1)

’ 1,1 ’ 1,-1 ’ -1,
(L1 +L2)6o(g’, 8. 0 ))=L00(g,g,<pé ))—Lﬁo(g,g,saé ), (1.11)

where Ly, Ly, resp. L, are differential operators for the variable g € Hy, resp. g’ € G. Putting these
together, we see that Z satisfies the following property (see the proof of Proposition 4.2 with » = 0 for
details):

—(Ly + Lz)f(g) =E*(g,0, d)(l’_l)) - E*(g,0, d>(_1’1)) + error’.

Up to this the term error’, which is a manifestation of the error term in (1.10), we have constructed the
Hilbert modular form satisfying the desired analogue of the differential equation (1.7).

In addition to satisfying the differential equation, we still need to better understand the Fourier
coefficients of Z and compare them to those of E*’. This is done in Section 4.2, where we show that
they are logarithms of algebraic numbers and give precise factorization information. To achieve this,
we introduce a new local section with an s-variable in (3.54) and match it with the standard section
involving the s-variable up to an error of O (s™) for any positive integer m. This builds upon the results in
Section 3.5 and is accomplished in Theorem 3.14. These new local sections are of independent interest,
as they do not come from pullback of the standard section on H = SO(3, 3). In fact, they do not even
tensor together to form a global section with an s-variable.

Finally, we still need to handle the term arising from the error on the right-hand side in (1.10). This
boils down to proving the rationality of a Millson theta lift, which is given in Proposition 4.9. For
this, we need the Fourier expansion of such a lift computed in [ANS18], and to choose the matching
section with a suitable invariance property. Proceeding essentially as in [GKZ87] or [BEY21], with E*’
replaced by its sum with Z, we complete the proof of Theorem 1.2.

1.4. Outlook and organization

The factorization of the algebraic numbers appearing in the Fourier coefficients of Z are very closely
related to the Fourier coefficients of E*’, which suggests that they should reflect the non-archimedean
part of the arithmetic intersection between integral versions of Zy and Z(W) defined over the ring
of integers of F. It would be very interesting to relate this arithmetic intersection to special values of
derivatives of L-functions as in [BKY 12] by applying and refining the results in [AGHMP18].

It would be interesting to investigate the analogues of Theorems 1.2 and 1.5 for other CM, étale
Q-algebras E/Q. When E/Q has degree 4, there are four cases

1. E/Q is biquadratic,

2. E/Qis a product of imaginary quadratic fields,
3. E/Qis cyclic,

4. E/Q is a non-Galois, quartic extension.

The CM points Z (W) have a moduli interpretation as abelian surfaces with CM by the reflex CM algebra
E*. The present paper treats case (1). In cases (2) and (3), the reflex algebras E* are quartic, abelian
field extensions of Q, and the CM cycle Z(W) is already defined over Q. In the last case, E*/Q is a
quartic, non-Galois field, and Z(W) is defined over a real quadratic field. We plan to extend the ideas
and techniques in this paper to prove the analogue of Theorem 1.5 in cases (2)—(4). One difficulty that
arises is that the quadratic space of signature (3, 3) will have Witt rank less than 3, making it impossible
to apply the Siegel-Weil formula to identify the theta integral with an Eisenstein series. Instead, one
could try to add a twist to the theta integral (see [Lil6]), compute its Fourier expansion and match it
with that of an Eisenstein series. When E/Q is a field of degree greater than 4, the Hilbert Eisenstein
series are over totally real fields of degree greater than 2 and hence do not arise from theta integral of
elliptic modular forms. For such cases, one would need some new ideas.
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In addition, there are other applications of these expected results. For cases (2) and (3), by combining
the analogue of Theorem 1.2 and the idea in [Li21], we hope to obtain a non-existence result of genus
2 curves with CM Jacobian and having everywhere good reduction in certain families, generalizing the
main result in [HP17]. In the last case, we expect a variation of our construction to lead to a proof of
the factorization conjecture of CM-values of twisted Borcherds product in [BY07].

The paper is organized in the following way. Section 2 contains preliminaries. Most of these are
standard, except for Section 2.8, which contains the adelic version of the results in [CL20]. Section 3
matches the coherent Eisenstein series with the Doi-Naganuma lift of Hecke’s cusp form. Section 4
defines 7 and studies its various properties. Finally, we give the proofs of Theorems 1.2 and 1.5 in the
last section.

2. Preliminaries

In this section, we introduce some preliminary notions, most of which are standard from the literature.
The only material not easily found in the literature are in Sections 2.7 and 2.8 concerning the weight
one cusp forms of Hecke in the adelic language, which are translated from the results in [CL20] in the
classical language.

Let N denote the set of positive integers and Ny := N U {0}. For a number field E, let Ag be its ring
of adeles, E the finite adeles and A = Ag with ¢ = ¢ its usual additive character. For an algebraic
group G over E, denote [G] = G(E)\G(Ag). As usual, let G = SL, with standard Borel B= MN C G.
Denote also

m(a):(aaq) €M,n(b)=(”f) €N, w=(1’1) €q,
and
T(R) ={t(a) = (%) :a € R} c GLy(R).

Throughout the paper, F will be a real quadratic field (unless stated otherwise). Let » € Gal(F/Q) be the
nontrivial element. It induces an automorphism of A, Af, and F), := F ® Q,, for each prime p < oo, If
p is a finite prime that splits in F' (resp. is the infinite place), then F has two embeddings into Q,, (resp.
R), and F), is a 2-dimensional vector space over Q,, (resp. R). For A € F, let A1, A, denote the images
under those embeddings. We will also sometimes use A to represent the pair (11, A7) in Q%, (resp. R?),
and A" would represent (13, 11). We have the incomplete Gamma function

F(s,x)z/ e dr.

2.1. Differential operators

For a real-analytic function f on G (R), the Lie algebra s1,(C) acts via

A(f)(g) := 0, f(ge"™) li=0, A € sIr(C). 2.1)

We define the raising and lowering operator

IRV A T VA
T ) -

If f is right K,-equivariant of weight &, then we have

(k-2)

VPR (g2) = Rese (W Flge))s W L) (ge) = Les (W ¥ f(g2),s
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where R; ; and L, i are the usual raising and lowering operators given by
, k .2
Ri g =2i0: + —, Lk 1= -2iv-0s. 2.3)
v

We say that f is holomorphic, resp. anti-holomorphic, if L(f) = 0, resp. R(f) = 0.
For r € Ny and ki, k» € $Z, define

- k-1 ky—1

O i (X)X +7) @9
~ _ 90 X, Y)(X+Y
Qr(Xs Y) L X+(_1)rY

in Q[X,Y]. We omit (ki, k;) from the notation when it is (1, 1), in which case

0,(X,Y)=(X+Y)'P xX-y
r s - r X+Y ’
with P, (x) the r-th Legendre polynomial given explicitly by
" (r\? L ro—r—1/2\(r—ro—1/2 )
P =27 Y[ ey = Y [ Jre s
s ro—§ s
s=0 s=0

where rg := |r/2]. The second identity comes from (3.133) on page 38 of [Gou72] and direct calculation.

We thank Zhiwei Sun for pointing us to this reference.
From the differential equation satisfied by P,, we have

(Ox 0y )(Qr (X, Y)(X +Y)) = (r + 1)(9x +0y)Qr (X, Y). (2.6)
For A € s15(C), denote

A =(A,0), A2 =(0,4) 2.7)

in s15(C)?. Then we have two operators
RC, (4 k) = (—471) " Q; 4y 1o (R1, R2), RC, = (=47) " 0, (R1, R2) (2.8)
on real-analytic functions on G(R)2. If f : G(R)> — C is holomorphic and right K2 -equivariant of
weight (ki, k2), then RC,. (x, ) (/)2 : G(R) — C is holomorphic and right K -equivariant of weight
ki + ko +2r, and the operator RC is usually called the Rankin-Cohen operator. Here, f*(g) := f(g®) =

f(g,g) is the restriction of f to the diagonal G(R) c G(R)2. In fact, we have (see [BvdGHZ08,
Proposition 19])

RCr,(kl,kz)(f)A (gz) = (Zﬂi)_r (Qr (511, azz)f(gzwga)) |21:Zz:Z .

For example, if f(g;,,8z,) = e(miz; + myzz), then

RC, . (ky.52) (F)2(82) = Or (k) k) (M1, ma)e((my +m2)z). (2.9)
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(r3k1,k2)

From Lemma 2.2 in [Li23], we know that there are unique constants ¢ p

€ Q such that

(4m) (R )Y = > el 1) (4m) T RTIRC, 1y oy (1) (2.10)
=0

whenever ki + ko +2r < 2.

2.2. Quadratic space associated to real quadratic field

Let F = Q(VD) be a real quadratic field, which becomes a Q-quadratic space of signature (1, 1) with
respect to the quadratic form

04(2) :=aNm(1), 1€ F
for any a € Q*. We denote this quadratic space by V,, and identify

ta 1 Va(R) = F ®y R = R?

(2.11)
(A1, 22) = (41, sgn(a)A2)]al.

This is an isometry, where the quadratic form on R? is given by Q((x1,x2)) = x;x5. The special
orthogonal group H, := SO(V,) satisfies
Ha(Q) = F'(= F*/Q),
where F! := {1 € F : Nm(u) = 1} acts on V via multiplication. Furthermore, we identify
H,(R) = R*,

wherer € R*actson V,(R) = F®gR = R? via (x1,x2) — (tx1, 1 'x2). Note that the invariant measure
on H(R) = R* is 4¢. We have a character sgn : H,(R) = RX — {x1}. Denote

It
H,(R)* := ker(sgn) = Rsq
its kernel, which is the connected component of H,(R) containing the identity. We also denote

Ho(Q)" == Ha(R)" N Ha(Q) (2.12)

which is an index 2 subgroup of H,(Q).
Remark 2.1. Let y = yg/r be a Hecke character associated to a quadratic extension E/F. Suppose
E/Q is biquadratic. Then y |ax is trivial and y factors through the map Nm™ : A% — H,(A); that is,
there exists 0 = og/r : Ha(A) — {%1} such that

oo Nm™ = y. (2.13)
Note that o is odd if and only if E is totally imaginary. We also denote the compact subgroup

K, = Ha(Z) Nker(p). (2.14)

Note that H,, (Q)\HQ(Q)/KQ is a finite set.
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2.3. The Weil representation and theta functions

Let (V, Q) be a rational quadratic space of signature (p, ¢), and Hy := SO(V). For a subfield E c C,
we denote S (17; E), resp. S(Vp; E), to denote the space of Schwartz functions on Vo= V(Q), resp.
V, = V(Qp), with values in E, which is an E-vector space. We omit £ from the notation if it is Q.
However, we write S(V(R)) and S(V(A)) for the space of Schwartz function on V(R) and V(A) valued
in C, respectively.

For a lattice> L c V, we denote L C V its dual lattice, L := L ® Z, L.V := LY ® Z and

Lyy={1€L+u:Q() =m} (2.15)
form € Q,u € LY /L. The finite dimensional E-subspace
S(L;E) :={¢ € S(V;E) : ¢ is L-invariant with support on L'} c S(V; E), (2.16)
is spanned by {¢ 1+, : p € LY/L = LY /L} with
¢r+y = Char(L + ) € S(V). (2.17)
For full sublattices M Cc L C V, it is clear that
S(L;E) c S(M;E) c S(V;E). (2.18)
As above, we also denote S(L) := S(L; Q). Furthermore, since

swm= | sw.

LcV lattice

we have S(V; E) = S(V) ®q E for any subfield E c C.

Suppose V = V| & V, is a decomposition of rational quadratic spaces. For any lattice L; c V;, we
have S(L; @ Ly;E) = S(L1;E) ® S(L2; E) € S(Vi;E) ® S(Va; E) via the natural restriction map.
This also gives us

S(V;E)=S(Vi;E) @ S(V1;E) = EB S(Li;E)® S(Ly; E). (2.19)

L,cVy, L,cV; lattices

Combining with equation (2.18), we see that for any given ¢ € S(V;E), we can find a lattice L =
L, ® L, c Vsuchthat L; c V; and

¢ e€S(LE) =S(L1:E) ® S(Ly E). (2.20)

Let G(A) := Mp,(A) be the metaplectic cover of G(A). The group G (A) x Hy (A) acts on S(V(A))
via the Weil representation w = wy  (see [Kud94, section 5] for explicit formula). For each prime
p < oo, we also have the local Weil representation w, of G(Q) acting on S(V(Q,);C). Then
Wy = ®p<coWwp gives a representation of G(Q) on S(V;C).

For any lattice L C V, the subspace S(L;C) defined in (2.16) is a K -invariant subspace with
Ky = G (Z). It has a unitary pairing (, ) with the vector space C[LY /L] := ®,erv/1Cey given by

1, =u’,
(€ By} 1= (0pur BurdL :={ H=H 2.21)

0, otherwise.

3Lattices will be even and integral throughout the paper.
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More generally, if L = L; & Ly, we have LY/L = L}/Ly ® LY/Ly and C[LY/L] = C[L{/L{] ®
C[L}/Ls]. Therefore, we can extend the pairing above to

(., : CI[LY/L] X 8(L2;C) — C[L{/L1], (01 ® 02,¢) — (02, $)v; (2.22)
with v; € C[L;/L;] and ¢ € S(L,;C).

With respect to the perfect pairing in (2.21), the unitary dual of wy is the representation p; on
C[LY/L] given by

pr(n(1))(ey) = e(Q(u))ey,

e(—=(p—-q)/8) ,
e -q)/8) (= (s 1))y
7L ,,e;/f Sl

pr(w)(e,) = 2.23)

where (p, g) is the signature of V(R). This is the Weil representation on finite quadratic modules used by
Borcherds in [Bor98]. If we identify S(L; C) and C[L" /L] with CILY/L1 yia the bases {u:pe LY/L}
and {e, : u € LY/L}, respectively, then ws = pr = pil. For full sublattices M C L, the following
trace map

Trk, : C[LY/L] — C[M"/M], ¢ en (2.24)

u —
[L:M]
heMV /M, h=u mod L

intertwines the Weil representation and is compatible with the inclusion in (2.18) in the sense that

(Trh; (), ¢)mr = (e, $)1 (2.25)

forany v € C[LY/L], ¢ € S(L;C).
The following result will be very useful for us later.

Lemma 2.2. For any prime p, the local Weil representation w, descends to S(V(Qp); Q({p=)) with

Qpe) = | Qg c@® (2.26)

nxl
the maximal abelian extension of Q ramified only at p.

Proof. Via L'/L = ®,L},/L, with L, := L ® Zp,, we can write p;, = ®ppp with p,, the Weil
representation associated to the finite quadratic module L),/L , and identify w), = p;,l . It is well-known
that any finite quadratic module can be written in the form M’ /M for an even integral lattice M [Nik79].
Therefore, it suffices to prove the claim with w,, replaced by pas for an even integral lattice M with
quadratic form valued in Z[ 1/ p]. This follows then directly from formula (2.23) and Milgram’s formula
[Bor98, Corollary 4.2]. |

As usual, we let Hy 1. (T') denote the space of harmonic Maass forms valued in C[LY /L] of weight
k e IZ and representation pr. onacongruence subgroup I' € SL;(Z) (see [BF04, section 3]). It contains
the subspace M kL (") of vector-valued weakly holomorphic modular forms. Post-composing with Tr% v
in (2.24) induces a map Hi . (I') — Hy am(I'), which preserves holomorphicity and rationality of
holomorphic part Fourier coefficients. If LY /L is trivial (resp. I' = SL,(Z)), then we drop L (resp. I')
from the above notations. Furthermore, we let

M;("x’ (') :={f € M,!( (T') : f is holomorphic away from the cusp oo} (2.27)

https://doi.org/10.1017/fms.2024.139 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.139

Forum of Mathematics, Sigma 13

and denote for f(7) = X,,eq, perv/r ¢(m, 1)q"e, € M,!( L

prin(f) := Z c(m, p)q™"e, (2.28)

meQg, ueLV/L

the principal part of f.

In [McGO3, Theorem 4.3], McGraw extended the representation py to the metaplectic cover of GL,.
To simplify the notation, we recall it here for lattices with even rank, in which case this extension factors
through GL,. Using the short exact sequence

1-SL,—GL, 8 G, — 1,

we can identify GLy = SL, <T. Then w extends to a Q-linear action of GL, (Q) = GL,(Q)GL1(Z) on
S(V; Q™) via
(wr (8,1(a)$)(x) = (wr (8)oa($))(x) = Ta((wy (1(a) " gt(a)) () (x)) (2.29)

for g € SL(Q),a € O%, ¢ € S(V;Q%), where o, € Gal(Q*/Q) satisfies o7, (s (a’)) =y (aa’) for
all a,a’ € Q* and acts on S(V; Q™) via its action on Q*°. This gives us

S(V) =SV Q)7 @), (2.30)

For each p < oo, this gives an extension of w, to a Q-linear action of GL»(Q,) on S(V,; Q({p~)),
which satisfies

S(Vp) = S(Vp; Q(¢pe)) T Er). 2.31)

For ¢ € S(V(A)), we have the theta function

Ov(g.he)i= ), (@(@)e)(h %) (2.32)
xeV(Q)

for (g, h) € (G X Hy)(A) as usual. For a lattice L c V, we also denote

OL(T, ) = v PN 0y (gr, h, ) b (2.33)
MeLV/L

the vector-valued theta function with ¢ the Gaussian.

2.4. CM points and higher Green functions

We follow [BKY12] and [BEY21] to recall CM points and higher Green functions. Let (V, Q) be a
rational quadratic space of signature (n,2), and H = Hy := GSpin(V). For an open compact subgroup
K c H(Q), we have the associated Shimura variety Xx, whose C-points are given by

Xk (C) = HQ\(D x H(Q)/K).

Here, D = D* U D™ is the symmetric space associated to V(R). For m € Q and ¢ € S(V;C), one can
define the special divisor Z(m, ¢) on Xk (see, for example, [BEY21, section 2]).

The CM points on Xg can be described as follows. For a totally real field F' of degree d with real
embeddings 0,1 < j < d, denote a; := o;(«a) for @ € F. Suppose a;, < 0 for some jo and a; > 0
when j # jo. Then a CM quadratic extension E/F becomes an F-quadratic space W = W, = E with
respect to the quadratic form Q, := aNmg,r. Suppose there is an isometric embedding as in (1.5).
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Then the subspace W ®f o, R C V(R) is a negative 2-plane and determines a point z5 € D* with a
choice of orientation. For convenience, we denote

20 = Zp. (2.34)

The group Resp;q(SO(W)) is contained in SO(V), whose preimage in Hy is a torus denoted by Ty .
Note that Ty (Q) = EX/F'. We denote the CM cycle on X associated to Ty by

Z(W) = Tw (Q\({z5} x Tw (Q)/Kw) € Xk (2.35)
with Ky := K N Tyw (Q). It is defined over F, and its Galois conjugates are the CM cycles Z(W(}))
with 1 < j < d, where W(j) is the neighborhood F-quadratic spaces at o; of admissible incoherent
Ap-quadratic space W associated to W (see [BY 11, BKY12] for details). Note that W(j) = W) for
some a(j) € F* and a(jo) = a. For totally positive ¢ € F, we define the ‘Diff” set

Dift(W,t) := {p : W, does not represent ¢} (2.36)

following [Kud97]. Note that this set is finite and odd (see [ Y'Y 19, Proposition 2.7]).
When F is real quadratic (i.e. d = 2), for @ € F* with Nm(«a) < 0, we set

@’ = a(2) e FX. (2.37)

Then (a")Y = a. Note that " is not necessarily the Galois conjugate of a!
Denote

(2.38)

N =

oo =

NN

Let L C V be an even integral lattice such that K stabilizes L. For u € LY/L and m € Z + Q(u), we
write Z(m, ) := Z(m, ¢,). The automorphic Green function on Xg \Z(m, ) is defined by

m

Q(/lz*)

I'(s+09)

T(2s) (2.39)

s+0(
D, (2, b, 5) =2 ) F(s+0'0,s—0'0,2s;

( m
AR (Lo ) (1)
for Re(s) > og + 1, where F(a, b, c; z) is the Gauss hypergeometric function [AS64, Chapter 15]. At
Z(m, u), the function ®,, , has logarithmic singularity.

Ats = o9 + 1 +r with r € N, the function ®,, ,(z, i, s) is called a higher Green function. For a
harmonic Maass form f = 3, , c(m, )g "¢, + O(1) € Hx_ay 1, With k := =207, define

dD; (z,h) :==7! Z c(m, ym" @p, y(z, h,o0+1+71) (2.40)
m>0, pel’|L

to be the associated higher Green function. Following from the work of Borcherds [Bor98] and gener-
alization by Bruinier [Bru02] (also see [BEY21, Proposition 4.7]), the function dD} has the following
integral representation:

O ) = (40" fim [ (R f (). 8Lz ()
) (2.41)
= (-am) Jim [ (7(0). RO (roz (o).
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where Fr is the truncated fundamental domain of SL,(Z)\H at height 7 > 1 and du is the invariant
measure given in (3.20). It has logarithmic singularity along the special divisor

Zs = Z c(—m, u)Z(m, u) (2.42)
m>0, uelV/L

on X . Note that [z, h] € Z(W) N Z; if and only if
(L) N 2 # 0 (2.43)

for some m, u with c(-m, u) # 0.

2.5. Product of modular curves as a Shimura variety

We follow and slightly modify [YY 19, section 3] to express Xo(N) X Xo(N) as O(2,2) orthogonal
Shimura variety. Consider (V, Q) = (M>(Q), det), and the lattice

a b
L= {(Nc d) .a,b,c,deZ} cV

for any N € N. Then the dual lattice LY is given by

LY ;:{(‘C’ bizN) :a,b,c,dez} cVv,

and LV /L = (Z/NZ)? is isomorphic to that of a scaled hyperbolic plane.
For g; € SL»(Q) and A € V(Q), the map

A g1Agy! (2.44)
gives SL, xSL, = Spin(V) and identifies Hy as a subgroup of GL; x GL, [YY19, section 3.1].
Let K(N) := K(I'o9(N)) c GL,(Z) be the open compact subgroup in [YY 19, section 3.1] and K :=
(K(N) x K(N)) N Hy(Q). Then the map
wiH> - DY, (z1,22) = RR(T 2L2) + RI(T 242) (2.45)
induces an isomorphism

Xo(N) X Xo(N) = Xk, (21,22) = [w(z1,22), 1] (2.46)

with Xg the Shimura variety for Hy.
Under the map (2.44), the inverse images of the discriminant kernel I', € SO(L) are

5 (N) = {(g1,82) € To(N)* : g1g2 € T1(N)} € To(N)?,
which contains I'j (N) x I'; (N) and is a normal subgroup of I'y(N)? satisfying
To(N)?/TH(N) = (Z/NZ)*, (% 1).(% 1))+ ayay mod N.
The group SO(LY/L) := SO(L)/T'y, = FO(N)z/FOA (N) = (Z/NZ)* acts on LY /L = (Z/NZ)? via
a-(b,c):=(ab,a"'c),

and the induced linear map on C[L" /L] intertwines the Weil representation py .
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Now given f e M ;{ (To(N)) for k € 2Z, we can lift it to a vector-valued modular form in M ,'c o1 via
the following map: )

!

WM To(N) = My, fo D0 (flenp) ™ e (2.47)
To(N)\SL2(Z)

This map and its generalizations are well-studied (see, for example, [Sch09]), whose properties are
summarized in the following result.

Lemma 2.3. When k < 0, we have
prin(vv(f)) = prin(f)eo. (2.48)

forall f € M]!(’W(FO(N)), on which space the map vv is an isomorphism with the inverse given by

2= ). &ty g (2.49)
peLY/L

Furthermore, it preserves the rationality of the Fourier expansion at the cusp infinity.

Proof. See Proposition 4.2 in [Sch09] and Proposition 6.12, Corollary 6.14 in [BHK+20]. O
As a consequence, we can relate the higher Green function GE‘;Y? from the introduction to one on
the Shimura variety Xk .
Corollary 2.4. Under the isomorphism (2.46), we have
To(N
G (z1,22) = =@ ([w(z1,22), 1) (2.50)

with Gl;‘jr(ll\}) the higher Green function defined in (1.4) for f € Ml; (To(N)) withr > 0.

Proof. Under (2.46), the divisor

Z(m,0) = To(N)*\{(z1,22) € H* : ((§ Z1),x) = 0 for some x € Ly, 0} (2.51)

-2

on Xk is simply the m-th Hecke correspondence T, on Xo(N) X Xo(N). Therefore, the two sides of
(2.50) have logarithmic singularity along the same divisor. Using Corollary 4.2 and Theorem 4.4 of
[BEY21], we see that their difference is a smooth function in L?>(Xo(N)?) and an eigenfunction of the
Laplacians in z; and z, with eigenvalue r(1 — r) < 0. By fixing z5, this difference is an eigenfunction
of the Laplacian on Xy(N) with negative eigenvalue, which vanishes identically. This holds for any
72 € Xo(N), and we obtain (2.50). O

Remark 2.5. Following Section V.4 of [GZ86], we call a set of integers {4,, : m € N} a relation for
S>_k (T (N)) if only finitely many A, are nonzero and

Z At =0

m>1

forall 3,51 amq™ € Sa—k(I'o(NV)). Since gg € So—i (I'n(N)) for all g € Sy_g, -, we have

{frog}=CT| D frugu|=0

HeELY/L

for fp = 3,1 Amg "¢o. By Serre duality [Bor99], there exists f € M]!c ;, With prin(f) = fp.
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Suppose Ej, E, are imaginary quadratic fields such that E = E E, is biquadratic containing a real
quadratic field F (i.e., E; # E3). Then for any CM points z; € E;, the point (z1,22) € H? is sent to
Z(Wq) U Z(Wqv) C Xk under the isomorphism in (2.46) (see Section 3.2 in [Y Y 19] for details).

2.6. Eisenstein series

We recall coherent and incoherent Eisenstein series for the group G = SL, following [BKY12]. Let F
be a totally real field of degree d and discriminant D, E /F be a quadratic CM extension with absolute
discriminant Dg and ¥ = Yg/F = ®y<woXv the associated Hecke character. For a standard section
d € I(s, y) with

1(s, ) =dS 87 (| ) = R L (s, x0)s Lo, x) =IdS (|- B y), (252)
(AF) (Fy)

V<o

we can form the Eisenstein series

E*(g,s,®) :=A(s+1,x)E(g,s,®), E(g,s,®) := Z D(yg,s),
yeB\SLy(F)

where A(s, y) is the completed L-function for y (see equation (4.6) in [BKY12]). When ® = ®,®,,,
the Eisenstein series E (g, s, @) has the Fourier expansion

E*(g,s,®) = Ey(g,s,P) + Z E; (g,s, D),

teFX

and for t € F*,

E;k(g’ S, q)) = n Wt*,v (g7 S, (Dv)»
v
where W[ |, is the normalized local Whittaker function defined by

Wi (gv, 5, @) = [Dg/Drly VP L(s + 1,XV)/ @, (wn(b)gy, )Y (~tb)db. (2.53)
Fv

For simplicity, we denote

Wi (@) = Wr, (1,0,@,), Wy (@) = 3sWr, (1,5, @) |s=0 - (2.54)

v

We will be interested in the case when @ is a Siegel-Weil section.

Given a € F*, we view W, = E as an F-quadratic space with quadratic form Q,(z) := @zZ. Denote
w, the associated Weil representation. We have an SLj-equivariant map 1, : S(Wo(Afp)) — 1(0, x)
given by

1a(9)(8) = (wa(8)$)(0). (2.55)

At each place v, there are local versions of w, and 1, as well, denoted by w,,, and 1,,,. When
D = A,(¢), resp. @, = A4, (¢y), we replace @, resp. @,,, from the notations above by @, resp. @, .

Let Z(W,) be the CM points on Xk as in Section 2.4 and W, o C V the rational quadratic space as
in (1.5). A special case of the Siegel-Weil formula (see [BKY 12, Theorem 4.5]) gives us

0(g,.Z(Wo),¢) = C-E(g*,0,9) (2.56)

forany ¢ € S(We,0(A)) = S(Wo(Ar)). Here, C = deg(Z(W,))/2.
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Suppose only the j-th real embedding of a is negative. Denote 1 := (1,...,1) and 1(j) :=
(1,...,-1,...,1) with —1 at the j-th slot. The sections ®(j) = A4, s (¢) ®(I>110(j) and® = A, ¢ ()DL
are coherent and incoherent, respectively. For all ¢ € S(W, (F); C), the Eisenstein series E*(g, s, ®(}))
is holomorphic of weight 1(;) at s = 0 and

E*(1,¢,1(j)) := Nm(v)"2E* (g, 0, ®())) (2.57)

is called a coherent Eisenstein series. However, the Eisenstein series E*(g, s, @) vanishes at s = 0, and
its derivative

E*'(1,¢) := d;Nm(v) " ?E*(g7,5,®) |s=0 (2.58)

is called an incoherent Eisenstein series, which is related to the coherent Eisenstein series via the
differential equation [BKY 12, Lemma 4.3]

2LTjE*”(T, ¢) = E*(1,0,1())) (2.59)
for all 1 < j < d. Furthermore, it has the Fourier expansion
E*'(7,9) = E(1,¢) + p(0)A(0, x) logNm(v) + £ (7, ¢), (2.60)

where £* (7, ¢) has exponential decay near the cusp infinity and

E(r.¢)=a(@)+ D a(d)e(Tr(rr)).

teF, t>0

Here, ag(¢) is an explicit constant (see (2.24) in [YY 19]) and

s dx . . _
0c(d) = {( )1Wi(4)logNm(p), if Diff Wa.1) = (b, 260)
0, otherwise.
The coefficient W; (¢) is given by (see [Y'Y 19, Proposition 2.7])
W () = 20 e 90 [ 1w (s0) o) (2.62)
() =2 g NGy o '

when Diff (W, 1) = {p}

2.7. Hecke’s cusp form

Denote w, = wy,,, the Weil representation and 6, := y,, the theta function as in (2.32). For a bounded,
integrable function p : H,(Q)\H,(A)/K — C, consider the following theta lift:

(g, 0, p) = /[ . fale oo i) (2.63)

The measure dh is the product measure of the local measures dh,, where dh,, is normalized such that
the maximal compact subgroup in H,(Q),) has volume 1. Such integral was first considered by Hecke
in [Hec27] when p = o is an odd, continuous character — that is,

o(h) =sgn(he)oy (hy) (2.64)
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with o a continuous character on H, (Q) and ¢ = ¢t r with
+ — —(x%+x2) 2
P (X1,x2) = (x1 £ x2)e” "1 € S(RY). (2.65)

Notice that ¢ satisfies o= (—x1, —x2) = —pZ (x1,x2).
In this case, the m-th Fourier coefficient of 9, is given by

W6, 0)(g) = /[ | a6, 0w (-

for m € Q. To evaluate it, we apply the usual unfolding trick

Won(0.0)(2) = /[N] /[ Y @) Do) ()

eV, (Q)

- /[ LY @u@p o vetan

A€Va,m(Q)

- > (@a@)@) (i~ Do (h)dh.
A€HG (Q\Vam(Q) ¥ Hat (D\Ha (8)

When m = 0, we have A = 0 since V,, is anisotropic and ¢(0) = ¢3,(0)¢ s (0) = 0. When Q. (1) =m # 0,
the group H, , is trivial. We can then write g = g-g¢ with g = n(u)m(y/v) € G(R) and g¢ € G(Q)
and obtain

dt
Win(o, = (805 (17 (ta (1) — h) (wa W' A)dh.
(e 0)(8) AeHa(@Z\Va,m(@/Rx(w e N [ ortwatenen o'y

The group H,(Q) acts on V,_,,(Q) transitively. The archimedean integral can be evaluated as

dt o0 v (- dt

/ (0alg0)e2) (™ (a(W) YL = 2e(mu)—— / (741  sgn(a)rdy)e” A 41

RX t Vla| Jo t
Hdt
"

= 2ve(mu)sgn(/11)\/|m|/ '+ sgn(m)t)e*HVIml(ﬂw
0

This is 0 if +sgn(m) < 0 by the change of variable ¢ + 1/t and can be otherwise evaluated using the
lemma below.

Lemma 2.6. For any 8 > 0, we have

00 -2
0

t VB

Therefore, we have
Wi (9*, 0)((g7,8r)) = 2Vve(mu)e(|m|iv)sgn(a;) /H & of (W) (wa(gf)es)(h~' A)dh, (2.66)

when +m > 0 and A € V, ,,(Q). Otherwise, it is 0. The integral in (2.66) can be evaluated locally.
Notice that it always converges as ¢ ¢ (h~'2) has compact support as a function of & € H,(Q).
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2.8. The Deformed theta integral

We recall the real-analytic modular form of weight one constructed in [CL20] using the notations of
Section 2.7. Let o be an odd, continuous character as in (2.64), and K, C H,(Z) the open compact
subgroup defined in (2.14). The intersection H,(Q)* N K,, where H,(Q)* := H,(Q) N Hy(R)*, is a
cyclic subgroup

To=(gp) 80> 1>6,>0 (2.67)
of the totally positive units in O. Then we have

Ho(8) = | | Ho(QHa(R)*K o, (2.68)
&eC

where C ¢ H,(Q) is a finite subset of elements representing H,(Q)*\H,(Q) /Ko. So given h =
(hf,he), wecanfind @ € H,(Q),t € Hy(R)*, k1 € K,, ¢ € C all depending on % such that

h = (aki&, at), (2.69)

though the choice is not unique. This gives us the identification

Ho(Q\Ha(8)/Ko = | | To\Ha(R)¢ (2.70)

£eC

by sending h = (ak&,at) € H,(A) as in (2.69) to t € H,(R)* in the £&-component. Just like the
decomposition (2.68), this isomorphism depends on the choice of the set of representatives C. Similarly,
we have

Ho(Q)/K, = | | To\Ha(@)¢. 271

&eC

Using the Fourier coefficient W,,, in (2.66) and the decomposition in (2.71), we can write

9a (8, 9%, 0) = vol(Ko) ). 0(£) >, (@a(@¢"NE'P) (2.72)
feC Belo\Va(Q), £04(8)>0
for g € G(Q) x B(R), where ¢* = Yr s, With or € S(V,) being K o-invariant and

" = 0okt @ (x1,x2) = sgn(xy)e TN, (2.73)

Although (pgg,i is not a Schwartz function on R?, the sum above still converges absolutely. For g € B(R),
the quantity a)a(g)f,of,)gi is defined with the usual formula of the Weil representation, and ¥ (g, ¢*, 0)
is right SO, (R)-equivariant with weight +1. We also have a left G(Q)-invariant function

Ol )= [ Bule.heDo(dh=vol(Ky) Y 0@balz ™) (274)
H,(Q)\H,(Q) £eC

on G(A) for ¢ € S(V,(A)), which is independent of the choice of C.
We now define a function 1g- : H,(Q)\H,(A)/K, — [0, 1) by

lgc((akié, at)) :=2loge, - {logt/loge,},
1 (2.75)
{a} =a- liir%)z(l_a +e|+|a-c€]).
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Note that {0} = % Unlike the function considered by Hecke, 1g~ cannot be written as the product of
functions on H,(Q) and H,(R). Denote

Oc =1gc-0: Ha(Q\Ha(A)/K, — C. (2.76)

Given ¢ = @59 € S(V,(A)) for some K,-invariant ¢y € S (V,;C), the deformed theta integral
%4 (g, ¢, 0c), where 9, is defined in (2.63), was studied in [CL.20], To describe its Fourier expansion,

denote
0ie0r.0)= [ o) Y (@al@)e™) (B
Hy(Q*\Ha(Q) BET,\Va (Q)
Q(l(ﬁ)<()

= —vol(K)V7 Y 0€) Y. (walgr)es) (€ )sen(B)e(Qa(B)DIT (0, 471Qu(B)IV).
feC BEQFQ(\[;;G ((()Q)

for g = (g5.87) € G(A) with ™" = g1 Q" and
<pg;,*(x1,x2) = —sgn(x;)e 1% (0, 47|x 1 x2 ). (2.77)

Note that ¢4}, is not necessarily left-G (Q) invariant. But it is modular after applying the lowering operator
as

L(9(g,¢5,0)) =a(g, ¢, 0).

Similarly for € € H, (Q), define

0,(8.6.07) = > (0a(@¢NE'D= D (Walgr)er) (€ D(walgr)p) )

eV, (Q) eV (Q)
_1..sgn(A; —sgn(a)dy) 1 v
v Y (walgp)en) & )E £ e(Qu(D)DT (5. (41— sgn(a)d2)?).
NG 2" Jal
eV (Q)
(2.78)
Here, we have employed the rapidly decaying function
1
©*(x1,x2) 1= —e 212500 (x; —xz)F(E,ﬂ(xl —xz)z), (2.79)
where B(R) € G(R) acts via w, and SO, (R) acts with weight 1. Also, we denote
0,,c(8 ¢, 0) =vol(K,) Z 0(£)0,(8.¢.05). (2.80)
&eC
which depends on the choice of C and satisfies
LO, (g ¢f,0) =04(g, ¢ ,0). (2.81)

We recall some results.
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Theorem 2.7. Let 5¢c be as in (2.76) and ¢ €V, (@) a right-K , invariant function. Then the integral
Pa(g, ", 0c) defines a G(Q)-invariant function in g € G(A) of weight 1 with respect to SO, (R).
Furthermore, it has the Fourier expansion

Ba(8, 9", 0c) = 9,(g. 5, 0) +10oge,0;, (g, ¢r,0)
+vol(Kp) D ac(ENBIBEN @@ NE' D, (150

&eC
Belo\Va(Q)
Qa(B)>0

where ¢"* = ¢ f ¢pg;,+ is defined in (2.73), and satisfies

Lﬁa(g, (,0+, @C) = ﬂa(ga 90_, Q) + log"':g@a(& 90_9 Q) (283)

Proof. This follows essentially from Proposition 5.5 in [CL20]. For completeness, we include a different
(and slightly shorter) proof here. As in the evaluation of 9,(g, ¢, 0) in (2.72), we have

Wi, 60)(g7) = vol(Kp)e(mu) ¥ >’ > op (€7 BI(B.v),
£€C BeTp\Vam(Q)

« logt | dt
J(B,v) =21 i (g { g }
(B0 = 2logey [ 007 GBIV |25
~2togesgning) [ o8 ()| Bl 4 SEEBELSL
©

To verify (2.83), we start with
L.e(mu)J(B,v) = e(mT)v26V (eZ”mVJ(,B, v))

® sgn(m — logt 11 | dt
= e(m7)2log £5gn(mf) / V26,2 G2 (il (1,1 1)){ gt 1615 '}_
1%

2 loge, t
—sgn(m iy Jogr 11 2
= ve(m)sgn(mp) oge, [ a6 (Tl ‘)){ L, elE,,
0 2 loge,

gel,

= —ve(mu)(sgn(mﬁ) / B (Vimlv (1, 1 1))— ~loge, ) somoa(,es)))

= ve(mu)(6m<osgn(ﬁ) +loge, Z tp;(La(,BS))).

c€l,

Substituting this into the left-hand side of (2.83) proves it.
Now to calculate the Fourier expansion, it suffices prove the claim

lim 2™ J(B,v) = sgn(B) lgc ((1,VIB/B')). (2.84)

V—00

For each B € I'y\V,(Q), we choose the unique representative gy € I'p8 such that |Bo/B| € [1, si,).
We can then write J(8,v) = J1(Bo, v) + J2(Bo, V), where

D) =2 [ gV ogr T

Ja(p ) = ~2oge, [ et 7 GtV | En |2

loge,
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For J,, we have

, , , “ .. dt
}E}E}o e2anJ1 (BO,V) — log |,30//30|Sgn(m,30) }E}E}o e27rmv‘/0 (picg)n(m)( /|m|v(t,t 1))7
= log |Bo/Bylsgn(Bo)dm>o-
For J3, the limit vanishes unless |Bo/B(| = 1, in which case

1
, _1, dt
M Wiy ) =

)

lim e2™™ J,(Bo, v) = 2log gosgn(mpPp) lim e2rmy /
V—00 V—00 &
=log £,5gn(80)Im>0.
Putting these together proves claim (2.84). O

Finally, we record a result as a direct consequence of Theorem 4.5 in [CL20] (see also Section 5 in
[LS22]).

Proposition 2.8. For any ¢ € S(V1;C), there exists a real-analytic modular form ©, c(g, ¢, 0) =

(:); c(g& v, 0+ @’; (& 97, 0) such that LO,c = 0O, and \/V(:)Z c &z, 97, 0) is holomorphic in T
with Fourier coefficients in Q(¢y ).

3. Doi-Naganuma lift of Hecke’s cusp form

In this section, we are interested in computing the O(2, 2) theta lift of Hecke’s cusp form from Section 2.7
and realize it as coherent Hilbert Eisenstein series from 2.6 over real quadratic fields. The main result of
this section is the global matching Theorem 3.3, where we show that any coherent Eisenstein series can
be realized as such a theta lift. This global statement follows from its local counterpart in Theorem 3.10,
which is improved further in Theorem 3.14 to allow matching deformed local sections. This last result
will be crucial for us in proving the factorization result in Proposition 4.7 later.

3.1. Quadratic spaces

Let V. be as in Section 2.2, £*, £~ be isotropic lines such that £* & ¢ is a hyperbolic plane and denote
V=VyeV,V=(et oV, 3.1)
We can realize
Vo(Q) = {A e My(F): A" =N}

@b (3]
with det as the quadratic form and furthermore write
0 -1
Vo = Voo ® Up., Voo := Vo N M2(Q), Up := VDQ 1 o) =(Q0bp), (3.2)

where Qp (x) = Dx?. So V has Witt rank 3 and admits the isotropic decomposition

V=Vr+V , VE =5+ (Vo + V), (Vo +VDE(Q) = {(A4,21) : A € F} (3.3)
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with V* maximal totally isotropic subspaces. For a Q-algebra R (e.g., R € {Q,Qp, R, Q, A}), we will use
(a,b,A,u) e V(R), a,b e R,LA€RQF =V_j(R),uc€ RQF = V|(R) 3.4

to represent elements in V(R). Define elements fj *eVby

fi=(1,0,0,0), f7 :=(0,1,0,0), £ :=(0,0,1/2,1/2), f; = (0,0,1/2,-1/2),

35
fi =(0,0,¥D/2,YD/2), f; :=(0,0,1/(2VD),~1/(2VD)). G-)

Then {fji :J = 1,2,3} c V* is a Q-basis of V*. With respect to the ordered basis

(5 55 1555 f5 £+ /3 ), the Gram matrix of Q is ( 103 g ) For i = 1,2, 3, the following linear transfor-
mations

+ I ifi=,
wilfE) =177 . (3.6)
’ fj , otherwise
are easily checked to be in O(V). The unimodular lattice
Vzi={(a,b,A,0) €V(@QN(Z*x (0)?) :A-peOp}cV 3.7

provides V with an integral structure. Similarly for ? € {00, 0, 1}, the lattice Vo 7 := Vz N V5 in V> gives
it with an integral structure.
For ? € {00,0,1,—1,0}, we write

Hy = GSpin(Vy), Hy := SO(V»), 3.8)

which are subgroups of H and H, respectively, by acting trivially on V?L and have the following exact
sequence:

1> G, » H — H)— 1. 3.9)

For any commutative ring R, we have explicitly
¢t : GSpin(Vy z)(R) = {y € GL,(O ®z R) : det(y) € R*}, (3.10)

via the action of ¥ € GL2(O ®z R) on Vz0(R)
A — det(y) 'y Ay (3.11)

For any Q-algebra R, we also have Hy(R) = GSpin(V»z)(R) for ? € {00,0, 1, 0}. Therefore, through ¢,
we have

Gy = Spin(Vo) = Gp = ResF/Q(G), Gy == Spin(Voo) = G, Hy = PGL, (3.12)

https://doi.org/10.1017/fms.2024.139 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.139

Forum of Mathematics, Sigma 25

and will represent elements in Hy by their preimages in Gr. Denote Ty := «~'(T) < Hpy Then the
relations among these groups can be visualized in the following diagram:

Goo > Go © > Hy <— Tp
SL, © l > Gr © l > GLy/r <—>l‘ﬂ T (3.13)
Hoo < > Ho < > Ho

Here, the horizontal and vertical arrows are natural inclusions and surjections of algebraic groups,
respectively, and the diagonal arrows are induced by ¢. Let Br C G F be the standard parabolic subgroup,
and By := t"'(Br) C Gy. They can be visualized as

By ——— Gy
E/ 7 (3.14)
B — GrF
which gives us
Bo(Q\Go(Q) = BF(Q\GFr(Q) = B(F)\G(F) (3.15)
via t. We also denote
T® c T x T, c GL, x H (3.16)

the diagonal, which will play a crucial role in the local matching result in Section 3.5.

Now let P C H be the Siegel parabolic stabilizing V*, whose Levi factor is isomorphic to GL(V*).
Then Py := P N Hy C H is the subgroup stabilizing the line £* and acting trivially on V;. The preimage
of PoH_; C Hy in Hy is given by ByTp. Combining with (3.15), we obtain

(PoH-1)(Q)\Ho(Q) = (BoTo)(Q)\Ho(Q) = Bo(Q)\Go(Q) = B(F)\G(F). (3.17)
For a € FX, 8 € F, we then have m(a),n(8) € Go(Q) c H(Q). It is easy to check that

(w(m(a))¢)(a,b,v,A) =p(aaa’,aa’b,a’v/a, ),
(w(n(lg))Qo)(a’ b’ v, /l) = (,D(Cl —ﬂV _ﬁlv/ +Bﬂ’b’ ﬁ’ 4 _:Bb’/l)

for a Schwartz function ¢ € S(V(A)).

3.2. Theta integral

Let 60(g, g1, ¢o) denote the theta function on [G X Hy] associated to ¢p € S(Vo(A)). Suppose g, is
in the polynomial Fock space S(Vp(R)) (see Section 4.1). Using S(Vp(R)) = S(Voo(R)) ® S(Up (R)),
we can then restrict 6y to the subgroup [G X Hyg], view it as a function on [G X Gg], and write

60(g, oo, wo) = Z 600(8g> 800> ©00,7)0D (&, D, j)> (3.18)
el

where o = 2. ey ¢00,j¢D.; With o0,; € S(Voo(A)) and ¢p ; € S(Up(A)).
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‘We now define
To(ho, 90, f) = /[ _ ol o) (e)ds (3.19)

for f a bounded, integrable function on [G]. Note that the measure dg is normalized so that [G] has
volume 1. In particular, for a right G (Z)-invariant function ¢ on [G], we have

dudv

3
/ o(g)dg = > / 6(g0)du(r), du(t) = (3.20)
[G] T JSLy(2)\H

When f(g) = 3(g, ¢1, p) for a bounded, integrable function p on H;(Q)\H, (A), the integral I above
becomes

I(hog.p) = / 1((hos ), @)p(hn)dhy = To(ho, 0,91 (- 1. 9)),
LH] (3.21)
I(h ) = /[G] 0(g. h. ¢)dg

with ¢ = @9 ® ¢.
For our purpose, p = ¢ will be an odd, continuous character as in (2.64), and ¢ = ¢ go(()f’ff) for
€ = =1 with

o) =0l @ gy,
. (3.22)

08 (@, bviova) = (€ia+b) + (vi = vy))e @)

and ¢ defined in (2.65). Here, we have identified V(R) = R> @ V{(R) @ V_;(R) = (R?)®3 via (2.11).
For any 6 € R, € = +1, we have
w(x(0)e & = &7 k(0) = (36, 519) € SOL(R) € G(R),

sin 6 cos 6

where w is the Weil representation of G (R) on V(R). However, for 2(0) = (x(0), 1), h’(6) = (1,«(0)) €
Hy(R) with any 0 € R, it is easy to check that

a)(h(H))go(E =€) _ Eiesac(:’_E), w(h/(g))¢£:,—f) — —510%(; —6)

So goéf =) s equivariant of weight (€, —e) with respect to the connected component SO, (R) x SO, (R)
of the maximal compact of Hyp(R). Later, we will also consider the following integral

T (hos 9. 0) = / o) / 0(g, (o, ), @)dgdh. (3.23)
H{ (Q)\H,(Q) [G]

which is similar to Z(hg, ¢, 0) and well-defined as
Q(_hl)g(ga (h09 _h1)7 90) = Q(hl)g(g, (h()’ hl)’ ‘P)
for all g, ho, hy and ¢ € S(V). When ¢ = ¢o ® ¢, we have

Ty (ho, @, 0) = Io(ho, ©0,01 (-, @1, 0)), (3.24)

where O, (with a = 1) is defined in (2.74).
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3.3. Fourier transform and Siegel-Weil formula

We follow [GQT 14] to recall the Siegel-Weil formula needed for our purpose, which goes from the split
orthogonal group to the symplectic group. The range we need is in the 1st term range, and was originally
proved in [KR94]. Let ¢ = ooy € S(V(A)) with ¢ as in (3.22) above. For (g, h) € G(A) x H(A),
we have the theta function 6(g, i, ¢) and are interested in the value of the convergent integral 1(%, ¢)
defined in (3.21).

For a rational quadratic space (V, (, )y ), suppose V = U* + U~ + V, with U, U~ complementary
totally isotropic subspaces and V, = (U* + U™)*. Let W = X + Y denote the symplectic space of rank
2 over Q with the symplectic pairing {, )y . The rational vector space W := V ® W is then a symplectic
space with respect to the pairing

V1 ®wi,va ® wayw = (vi, v2)v (Wi, wa)w . (3.25)

From this, we have the Fourier transform Fy+ : S(V(A)) —» S(((U~ @ W) + V,)(A)) defined by
Fotp o= [ vy (326)
U+

with = (171,172) € (U7)*(A) = (U~ @ W)(A) and 5; € U~ (A). Here, du™ is the Usual Haar measure
on U*(A) = A. Note that we have (u*,n1,v,) € (Ut ® X +U~ ® X +V,)(A) = V(A). Note that on
S((U” ® W+V,)(A)), the Weil representation w acts as

(w(g, DP) (1, vo) = wv, (8)¢(ng,vo), 8 € G(A),
(w(1,a)$)(n,v.) = | det(a)|¢(a™'n,v).a € GL(U)(A), (3.27)
(w(L,u)$)(m,ve) =y (u(n),n)/2)¢(1,vo),u € N(U)(A) € Homg (U™, U")(A),
which makes g+ an intertwining map.
For V in (3.1), we can take U* = V* and V, trivial with V* defined in (3.3). Another possibility is to

take U* = ¢* and V, = V| @ V_;, which will be used in calculating the Fourier expansion of the theta
integral Iy in (3.19). To simplify notations, we write

F = gv+, 3‘71 = gﬁ (328)

and use them to represent the Fourier transform at the finite and infinite places as well. For example,
is given by

F1(@)(Ma12), v, ) = fA (b, v, ) (bny)db (3.29)

for o € S(V(A)). As F acts as F @ id on S(V(A)) = S(Vo(A)) ® S(Vi(A)), we will abuse notation
and write #; = &/, which acts on S(Vy(A)).
For a place v < oo of Q and corresponding local field k = Q,,, recall we have the Siegel-Weil section

@, : S((V- @ W)(k)) — I (0)
¢y = (h = (wy(h)¢y)(0)),

where I‘{J (s) = Indg((,f)) (] - |¥) is the degenerate principal series. The image of @, is a submodule of

I (0) denoted by R, (W). When v < oo, it is known that (see [GQT 14, Proposition 5.2(ii)])

I7(0) = R, (W) @ (R, (W) ® dety).
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It is clear that

D, (w(g)py) =Dy (o)) (3.30)

for any g € G (k).
Given any ¢ = ®,¢, € S((V~ ® W)(A)), we denote ®;(¢) € I (s) the standard section satisfying
Dy(¢) = ®, D, (¢,,). We can then form the Eisenstein series

Ef(s, )= > Op)yh),
yeP(Q\H (Q)

which has meromorphic continuation to s € C and is holomorphic at s = 0. The regularized Siegel-Weil
formula by Kudla-Rallis gives then the following equality (see [GQT 14, Theorem 7.3(ii)]):

21(h, ) = ER (0, F (¢))(h). (3.31)

As a special case of the proposition in Section 2 of [Meg97], following an argument in [GPSR87], we
have the following lemma.

Lemma 3.1. For any h € H(A), we have

Ef (s.¢)(h) = > @, () ((v0, 71)h). (3.32)
YEB(F)\G(F), y1€H(Q)

Proof. We will show that P(Q)\H(Q) = (B(F)\G(F)) x H1(Q) with the map induced by (3.11).
First, we have P(Q)\H(Q) = (P N (Hy X H1))(Q)\(Ho X H1)(Q). Let H_; C H denote the image of

SO(V_1), which is isomorphic to H, and Py := P N Hy. Then P N (Hy x H,) = PyP% with P} = H|
the image of the diagonal embedding of H; into H_; X H;. From this, we obtain

(P 0 (Ho x H1))(Q\(Ho x H)(Q) = (PoP})(Q)\(Ho x H1)(Q) = (((PoH-1)\Ho) X H)(Q).
Equation (3.17) then finishes the proof. O
Suppose 0 = ®<w 0, is an odd character of H (A)/H;(Q) and
X = 00NmM™ = ®y <oy (3.33)

a totally odd character of A% /F*, which can be viewed as a character on By(A). Denote
G — Go(4) 7G _ Go(Qp)
170 (x) = Indg 7 x 1p° (xp) o= Ind ) P xps xp = ® Xv- (3.34)

From (3.14), we see that

19(x) = 100, x), 1" O¢p) = Q) 10(0, 1) (3.35)
vip

with I(s, y) and I, (s, x,) defined in (2.52). Using the formula (3.31) and Lemma 3.1, we can rewrite
the function Z(go, ¢, 0) in (3.21) as

27(g0, ¢, ) = CTs=0 / o(h)Ef (s, F (¢))(g0, ) dhy = EG°(0, Fy o) (g0),

[Hi]

https://doi.org/10.1017/fms.2024.139 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.139

Forum of Mathematics, Sigma 29

for go € Go(A), where E g‘)’ (s’, Fy,0) is the Eisenstein series for the standard section associated to

Gy

Fy,0(80) := Fy,0.0(g0) € Ind’ x,

0

(3.36)
Fyps(g0) = /H L, ©(F @0, o).

Note that Fy, , ¢ is not a standard section (i.e., it depends on s when restricted to any open compact
subgroup of Go(Q)).
If 0 = ®p<co0p and ¢ = ®p<0pp, then F, , ; is a product of local integrals.

Fy,.0p.5(80.p) := /H © )q’x(g(%))(go,p,hl)Q(hl)dhl, Fy,0p =Fp,.0,0€lop(xp). (3.37)
1 P

Recall that dh; is normalized so that the maximal compact subgroup of H;(Q),) has volume 1. We have
explicitly

Fyp oo (8) = / e (g 1)~ (%, 0,4, 1)) 0 (Yl dA diy (338)
Hl(Qp)XFpXQp

with dA the self-dual measure on F,, such that fOp dd = |D| 117/ % From this, we see that
P

1/2 1/2
o (ID1}Fg,.0,(8) = 1D For (.00 (8)s Foprop(t08) = Fy 0, (8) (3.39)

forall a € le, and tg € To(Zp,). At all but finitely many cases, the function F,
as follows.

».0p.s 18 given explicitly

Lemma 3.2. Suppose p is unramified in E and ¢, is the characteristic function of the maximal lattice
Vz®Z, CVy. Then

Fopops(8p) = (1= p 22 [ [LU +5,xv) (3.40)
vip

forall g, € Go(Zp).

Proof. Since ¢, is Go(Z,)-invariant, we can suppose g, = 1.
If p is inert in F, then

O (F (¢p))(1, 1) = Do(F (¢p)) (1, h1) = 1 = o(h1)

forall hy € H(Q,) = Hi(Z,) = O € OF ,and Fy,0,.6(8p) = [y 2, A1 = 1.

If p is split in F, we have F), = %,, Hi(Qp) = {(a,a™) € Fp:ace Q;} = Q; and y, = y,risa
character of Q;. Straightforward (though involved) calculations show that

O (F (¢p)) (1, h1) = Po(F (¢p)) (1, hy) min{| Ay, | Ayl }.

For hy = (a, @) with o(@) = m, we have

Oo(F (¢p))(1, 1) = /? Char(Z5)(a,0, 21, A2, ' A1, ady)dadd, dA,
Qb

=/ d/l]/ dd, =p_|m|.
pmax((],m}Zp pmax{(),—m)Zp
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Since p is unramified in E, we have o, ((a,a™!)) = €°(® with € := 0p((p, ™)) = xu(P) = xv (P).
Putting these together then gives us

Fapapors() = [ mindlaly.a”'}p) '€ lal;
P
(3.42)
= D€ p M) = L1 45,0 L1+ 5, x0) (1= p 7272,

mez

This finishes the proof. O

3.4. Matching global sections
The function Z(go, ¢*¥), 0) is a Hilbert modular form of weight (k, k). We want to suitably choose
o and ¢ and compare this function to a coherent Eisenstein series.

Let ¥ = x£/r be a Hecke character associated to a quadratic extension £ /F with E/Q biquadratic,

and o : AX/F* — C* the character satisfying (2.13), whose kernel in H| (Z) is denoted by K o- Let

a € F*, W, be the same as in Section 2.6. For our purpose, we will choose ¢£f’k/) € S(Wo(F®R)) to
be eigenfunctions of K., = SL,(R)? with weight (k, k") and normalized to have

k. k'
K0y = 1.

The matching result we will prove is the following.

Theorem 3.3. For a € F* with Nm(a) < 0, given any ¢ € S(W,), there exists o € S(V; Q%)

such that wy (=1)oy = —@y for =1 € H(Q), it is invariant with respect to the compact subgroup
G(Z)T? (Z)K, € G(A) x H(A) and satisfies

2Py =200 Aa(9) € 10, ). (3.43)

Here, ¢ = ¢y ¢ &7 with € := sgn(ay) = —sgn(az) and =Y defined in (3.22), and ¢ = br plee.

In particular, we have the equality

32(8.4.0) = E'(3.9). (3.44)

Remark 3.4. The constants A(0, ) = A(1, x) = —"DHF;/DL(I,X) and VDg are in Q*.

Remark 3.5. For L ¢ W, (Q) a lattice and u € LY/L, suppose ¢, € S(V; Q™) satisfies (3.43) with
¢ = ¢r+u. Then it is easy to see that
D T(g eu 0)ey 1 H— CILY/L]

MeLY/L
is a (non-holomorphic) vector-valued modular form of weight 0 on SL;(Z) with representation pyr .
Remark 3.6. If we decompose Vy = U & U+ with U = ¢* + ¢~ the hyperbolic plane, then it is easy to
see that Ty ¢ SO(U) c Hy. Therefore, for any ¢ € S(V;Q%®)7* @) we can write it as

p= Z Pu.j @ PUL,j

JjeJ

such that ¢y ; € S(U; Qab)TA(z) and gy j € S(Ul;Qab)TA(Z) for all j € J. This in particular implies
that ¢y 1 ; is T(Z)-invariant (i.e., it is Q-valued by (2.30)).
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Proof of Theorem 3.3. Suppose ¢ = ®,<c0o¢),. By Theorem 3.10, there exists ¢, € S(V,;Q({p~))
invariant with respect to G(Z,)T*(Z,) and satisfying (3.52). Furthermore, ¢,, is the characteristic
function of the maximal lattice in V), for all but finitely many p. Therefore, ¢ = X p<co Pp is iN

S(V; Qab)(G'TA)(Z) and satisfies

Fyp0, = (7' L(L Y)VDE/DA(d5) = 6A(L, x)Aaldy).

Since o (=1) = sgn(=1) = -1, the function wy (-1)ps with -1 € H1(Q) also satisfies these con-
ditions, and we can replace ¢ by (¢5 —wys(=1)ps)/2 so that wy (—=1)¢s = —¢ . Furthermore, we
have Fo; (hyps.0p = Foyp,0, forall h € Ky, and can therefore average over K, to ensure that ¢ is
K ,-invariant.

To prove (3.44), it suffices to check that F"D(E,%) o (g) = ﬂ‘lxla(qﬁgf’_é))(g) for g = (8+4,,81)-
Using

oo (F (0557 (g, 1)

= F (@(8. s )(0) = / (@(8.095™) (@, 0,21, 42, A1, A2)dadA
RA

€,—€ -4 -4 -
=/1 s >(%vl_v2m,o,vm/v_vw V2o NPV, 71 A1, 15 | dadA das
R 1

—_ — 2 -1 2
:/ (V1) = vadg) (171 ) = 1Ag)e T (AT (UL g g
R2

— vivy

V1I+V2t_l V1I+V2t_1

_/ x2x+(t_1vz—tv1)ye_ 1 (x24viny?))  dxdy
RZ

t2

_ -1 3/2
=7 2(viv _
(viv2) TIERY:

where we have used the change of variable x = vid; —vads,y = t71 2 + 115, we obtain

°° dt ® tdt
F (e-c = Do (F (P I )— = _12 3/2/ S .
s 0@ = [ OuF T =2 [ v
However, we have
Aa(857) () = Voma.
This finishes the proof. O

The requirement that ¢ ¢ in Theorem 3.3 is invariant with respect to T4 (Z) will be important to
deduce important rationality results in Section 4.3. We give a taste of such results in the following
lemma.

Lemma 3.7. If ¢ € §(Vo; Q™) is invariant with respect to T®(Z) < (GLa x Hy)(Z), then F1(¢o) €
S(((€~ @ W) +V_1)(Q); Q™) sarisfies

Ta(F1(¢0) ((11,1m2),v)) = F1(¢0) (a1, 772), ) (3.45)
for any o, € Gal(Q®/Q) associated to a € 7* as in section 2.3. In particular, we have
F1(p0)((0,r),v) €Q (3.46)

forallreQ,veﬁ“.
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Proof. Using the expression for % in (3.29), we can write
a(F1 (00) (11.72).¥)) = aa( / eo(bo V)0 s (bnz)db) - / oa(go(bum1. V)0 5 (abma)db
Q Q
- /Q W ((1(a). 1) (0) (bs 11,V 7 (abrga)d = /Q (L, (1)) (00) (b1, V)0 (abi)db

- /Q go(ab,a™ ny, v (abma)db = F1 (p0) (a~'ms12), ).

For the second step, we moved o, inside the integral as ¢( is a Schwartz function and the integral is
a finite sum. The third and fourth steps used (2.29) and the invariance of ¢y under (z,(t)) € T*(2),
respectively. Equation (3.46) now follows from (3.45) via (2.29). |

3.5. Matching local sections 1

The goal of this section is to prove Theorem 3.10, the non-archimedean local counterpart of the
matching result 3.3. For this purpose, we fix a prime p < oo throughout this section. The main input to
Theorem 3.10 is the following surjectivity result.

Proposition 3.8. Let o, and x, be as in (3.33). Then the following map

B:S(V,;C)6E) ¢ S(V,;C) — I5°(xp)

(3.47)
Y F%Qp

is surjective. Furthermore, if ® € 11(7;0 (xp) is valued in Q({p~), then there exists ¢ €
S(Vps Q({,,oo))G(ZP) satisfying B(¢) = ®. Here, Q({p~) C Q2 is the subfield defined in (2.26).

Proof. Using (3.35), we can suppose ® = ®,,|,®, with ®, € I, (0, y,). Since Fu(g)g.0p = Fo.o, for
all g € G(Zp,) and ¢ € S(V,,; C), it suffices to prove the surjectivity of 8 on S(V,; C). To do this, we
will use the m-th Fourier coefficient of ®,, € I,,(0, x,) for m € F,,, which is defined by

Wi (@) :=/F O, (wn(b))y, (-mb)db (3.48)

with ¢, an additive character of F\,. For m = (m,,), |, € Fp, and ¢ € S(V,; C), we denote

Win(p) = 1_[ Wmv((Fgo,Qp)v)

vip

- / (wp (wn(b), h)F () (O p (—mb)op (hy)dhy db
FpxH (Qp)

(3.49)

with ¢, :=[1, |, ¥v. Now, the G(F,)-module 1, (0, ) can be written as

1, (0, xv) = ®gerx/NmE) R(We)

with R(W,,) the image of 4,,, and irreducible. So I, (0, y,) is irreducible if and only if x, is trivial.
Otherwise, it is the direct sum of two irreducible submodules. Furthermore, for ® € R(W,), the
coefficient W,, (®) is zero unless m/a € Ng, /r, E}'. We then have two cases to consider, depending on
whether y, = y,- is trivial or not.

When y, = y, is trivial, Lemma 3.12 gives us ¢ such that W, (¢) # O for some m € F}.

So for v | p, the restriction of im(B8) C 11(9;0 (xp) to G(F,) gives a nonzero section in I, (0, y,)
and generates a nontrivial, irreducible sub G(F,)-module. As I, (0, x,,) is irreducible, the map 8 is
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surjective. When y, = yx, is nontrivial, we again apply Lemma 3.12 to obtain a submodule R C
I,(0, xv) = R(Wy,) ® R(W,,) from im(/8) such that ; (R) is nontrivial with r; : I,,(0, x,) = R(Wy,)
the projection. As R(W,) is irreducible, we have 7;(R) = m;(1,(0, x,)). Consider R; := kerm; N R
as a submodule of the irreducible module ker ;. As R(W,,) and R(W,,) are not isomorphic [KR92,
Proposition 3.4], R; cannot be trivial for both i = 0, 1, otherwise, R = m;(R) = R(W,,). Thus,
R; =kern; C R for an i, which implies R = I,, (0, x,) and proves surjectivity.

When @ = ®,,®, has value in Q({,~), we apply the surjectivity of § and the discussion in
Section 2.3 to choose ¢; € S(V,; Q((,,w))G(ZN and c¢; € C such that

J
Y= chtpj € S(Vp;C)
J=1

satisfies (¢) = @ and J is minimal. Therefore, Fyy ,, = ij‘:l cjFy;. o, is valued in Q({p~). By the

minimality of J, the section F ¢;.0p iSTIOt identically zero for all j. Therefore, the set {1,¢,--- ,c;} c C
is linearly dependent over Q({,~). The minimality of J then implies that J = 1 and ¢; € Q({p~), and
hence, ¢ € S(V,,; Q(£p~))CZ0). o

Using this proposition, we can match any continuous function on Go(Z,) via the map 8. Furthermore,
we can incorporate Galois action to obtain the following result.

Proposition 3.9. In the setting of Proposition 3.8, given any continuous function ® : Go(Z,) — C
satisfying
@ (m(a)n(b)k) = x(a)®(k), (3.50)

for all m(a),n(b) € Bo(Zp), k € Go(Zp,), there exists ¢ € S(VP;C)G(ZP) such that Fy o, (g) = ®©(g)
forall g € Go(Zp). Furthermore, if ® takes values in Q({p~) and satisfies

oa(IDI," @15 g10) = DI, @ (g), (351
with ty = (t(a)) € I:IO(ZP),t(a) = (%)) €T c GLy(Zp) forall a € Z; and g € Go(Zp), then
peSV; Q(me))G(ZP) can be chosen to be T® (Zp)-invariant.

Proof. A continuous function ® on Go(Z,) satisfying (3.50) can be uniquely extended to a section

® € 15°(x,) by setting

®(g) = xp(a)@(k)

with g = m(a)n(b)k the Iwasawa decomposition of g. Therefore, the first claim is a direct consequence
of Proposition 3.8.
For the second claim, we take any ¢ € S(V,,; Q(£p~))?#») and observe that

pr(t,lo)tpp,gp (g) _ pr(t)‘/’pngp (gtO) _ FU'a(Sap)st (t_lgt()) _

1/2 1/2 - 1/2
D1}/ D}/ D)/
-1/2 — -1/2

= o, (ID[,' @ (15" g19)) = DI, *®(g)

F‘ppan (t_]gt))
1/2
DI/

for any (t,t9) € T* (Z2p) with t = t(a),to = t(t(a)) and g € Go(Z,). Here, we used (3.39) for the
first line. By averaging ¢ over T (Zp), we can suppose that it is T (Zp)-invariant. This finishes the
proof. O

We are now ready to state and prove the local matching result. This is just the Kudla matching
principle [Kud03] in some sense.
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Theorem 3.10. For any ¢, € S(Wo(F,)) with v | p, there exists ¢, € S(V,,;Q({,,m))(G'TA)(ZP) such
that

Fopop = (1=p)ID/DEl? [ [ LOL xi) A0 (80). (3.52)
vip

In addition, if p is unramified in E and co-prime to «, and ¢, is the characteristic function of the maximal
lattice in W (F\,), then we can choose ¢, to be the characteristic function of the maximal lattice in V.

Proof. Suppose p and « are co-prime, £, /Q,, is unramified and ¢,, = Char(OE, ), ¢, = Char(OF, X
Z?, X OF, ). Then it is easy to check that Fy,, o, and [], |, da,v(¢v) are both right G(OF,, )-invariant.
Since they are both in [1,,,, 1(0, x ), we only need to check that

Fpop (1) = (1=p2) [ [ LOL xv) A (60)(1)
vip

by the Iwasawa decomposition of G(F),). This is given precisely by Lemma 3.2 and proves (3.52) for
all but finitely many places.
When ¢, is Q-valued, we can use (2.29) to check that

ool [ [Aan @) 780 | = [ ] 0a(@an (780 @) O) = [ [(@ar () (@a(92))(0)
vip

vip vip

= [ [@an (@) (©) = [ [ Aav(@)(2)

vip vip

for any (t,19) € T® (Z,) with t = t(a),to = 1(t(a)) and g € Go(Zp,). Proposition 3.9 combined with
Remark 3.4 then completes the proof. O

Finally, we record the two local calculation lemmas used in proving Proposition 3.8.

Lemma 3.11. Suppose F, [Q,, is non-split with valuation ring O, uniformizer @, residue field size q,
and a nontrivial additive character . For a character o of H1(Q)p) = F; - 0;, let

n(y) :==min{n : Yy(@"Op) = 1}, n(p) :=min{n > 0: o(K,) =1}

be the conductors of Y and o, respectively, where K,, := F 11, N(1+@"0p). Then

/1 o(x)y(mx)dx #0

P
for some m € Oy, if and only if n(o) < n(y).
Proof. Let

flm) = {({F'* oMy (mx)dx it m € O,

otherwise.

Then f € S(F},) and its Fourier transformation with respect to i is
fom = [ soiwcnman= [ o) [ winte - mydnax
F, F} (@)

= /Fl o(x)(Char(m + m”(‘”)OP)(x) — ¢~ Char(m + w"(‘/’)_lop)(x))dx.
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First, assume that there is some hg € F Il, such that hy —m € w" W) Op. Then

f<m)=g(ho>( /K o)dx — ¢! /K g(x)dx)
n(y) n(y)-1

0 ifn(o) > n(y),
=1 0(ho)vol(Ky(y)) ifn(o) =n(y),
0(ho) (Vol(Ky(y)) = 4 ' Kp(y)-1) ifn(e) < n(y).

Next, we assume that there no hy € Fll, such that hg — m € w@w"¥) O, but some hy € F 11) with
ho —m € @"¥~10,. Then

R 0 ifn(o) = n(y),
fm)y=4"_, .
—q~" 0(ho)Vvol(Ky(yy-1) ifn(o) < n(y).

Finally, if there is no hgy € F,l7 with hg —m € w"(‘”)_lop, then f(m) = 0. Now the lemma is clear. O

Lemma 3.12. When ., is trivial, there exists ¢ € S(V,) such that Fy o, is nontrivial. When y, is
nontrivial, then for any € = (€&)y|p with €, = 1, there exists $¢ € S(V),) and m¢ € F} such that
Wine (¢€) # 0 and m€ = (my"), |, with x,,(my") = €,.

Proof. When y, is trivial, the character ¢, of H{(Q)) is also trivial. Suppose ¢ is the characteristic
function of the maximal lattice in V,; then the integral in (3.38) is positive at g = 1, which means Fy ,,
is nontrivial.

Suppose now that y,, hence o, is nontrivial. We can suppose that n(y) = 0. When ¢ = ¢o ® ¢;
with ¢; € S(V;,,), we can apply (3.38) to write

Wi (¢) = / Go((wn(b))™" - (5)20)¢1 (' ), (~mb)op (hy)dx dA dhy db.
F,xH | (Qp)XFpxQ),

We first assume that p is non-split and use the notation in Lemma 3.11. In this case, there is a unique place
vof F above p, and € = +1. Forn > max{n(o) +1, 1} and B € 07, let ¢; = ¢ g = Char(B+p"O,,) and

_ Zp @"O)
¢o = Char( @O, 14p"Z, )

Then
Won(do ® ¢1) = / ol bﬂtbﬂ/f’;,bb’x -ﬂ’;bx )1 (h™'2) o(h)y (—mb)dx dA dh db
FpxFLxFpxQ,
- f c(hyo(hydh,

Fj

where

c(h) :=/ / / W (—mb)dx db dA
,8h+w"(9,, —A+w@" O, 1+p"ZIJ
= p"*S) Char(@ ™" 0,) (m) / ¥ (mA’)dA = C Char(@™"O,) (m)y (mB'h™")
Bh+w@" O,
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for some nonzero constant C. Here, f = 1 or 2 depending on whether F'/Q is ramified or inert at p.
Using o(h) = o(h™"), we have

Win(0 © 61) = C Char(w™"0,)m) [ o(h)mph)a. (359

If F,,/Q)p is inert, then y,, is ramified and nontrivial when restricted to (’);. By Lemma 3.11, we can
find mg € w‘"(’); such that

Wi (G0 ® ¢1,8) = C/F] o(Wy(moh)dh #0

as n(y(@™)) = n = n(p). We can choose 8 = B* such that y(mo/(B%)") = £1. Then taking ¢* =
$o ® ¢1 g+ proves the Lemma. If F,/Q, is ramified, then E,, /F, is inert and y, (@) = -1, y, |o;= 1.

Again by Lemma 3.11, we can find m; € w‘"”(’); for j = 0, 1 such that
Wi, (80© 610 =C [ o(hutm;nd +0
FP

asn(y(m;-)) =n—j > n(o). Therefore, p* = ¢o ® ¢y satisfies the Lemma.

Finally, we come to the case when p = viv; splits and n := y,, = x», is nontrivial. In this case,
F, = F,, X F,, = Q3 and n = g, is a character of Q% = H;(Q,). For m € F,, we write m = (my,m)
withm; € Q, and

VO,pEMZ(QP)
(48 (8%):

So we take ¢1 = ¢1,1 ® ¢12 with ¢1 ; € S(Qp) and ¢ € S(M2(Q,)). Simple calculation gives us

Win(do ® ¢1) = ¢1,1(h_1/11)¢1,2(h/12)¢0(b"l‘fﬁffg};‘hﬂ _Az;b‘x)
Q% xQ3xQ%xQp

-n(h)yY(-mb; — maby)dx dA| dA; d*hdb; db,.

Taking ¢ ; = Char(1 + p"Z,), n > max{1,n(n)}, and

— Zp  p"Zp
o = Char((pnzp 1+p"Z,, ),
the same calculation as above gives

dx

Win(¢1 ® o) = C /Q ()Y (max + myx™") Char(p™"Z3,) (my. ma) Char(p™"Zj,) (m1x™", max) T

for some nonzero constant C.
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When 7 is ramified, we take n = n(p), m; = p' with [ > n and my = mop™ € p~"Z,, and obtain
(write o(x) = ordpx)

d
Won(61 ® d0) = C /O s ln(x);ﬁ(mzx)w(mlx-l)ﬁ
=c 3 [ mowmgae 3 [ v

= C[n(mo)! /Z @ de o [ n-l(xw(p-"x)dxl

P P

#0,

for some m,.
When 7 is unramified, we have n(n) = 0 and take n = 1. For m; € p"Z;, j =1,2, we have

Wiy ,my) (90 ® ¢1) = C/ W (mox +myx~")dx.
zy

If we sum this over m; € p‘IZIX,, then the result is nonzero. So there exists m; € p‘IZf, such that
Wimny.my) (90 ® ¢1) # 0. Form; € Z, j = 1,2, we have

L dx
L dsenor [ v en /p-lz;¢(m2x)|x|l

2

Wiy m) (¢0 ® ¢1) = C

=C(1-p+pt+p =0,
asn(p) = —1. Replacing ¢, by ¢| = Char(1 + p"Z,, p + p"Z,), the same calculation gives
W(ml,mz)(¢0 ® (M) #0

when m; € Z} and m3_; € p_IZ;;. This completes the proof. O

3.6. Matching local sections I1

In order to give the factorization result, we also need a matching result involving the following local
sections with the s parameter. When p = vv’ splits in F, we define a slightly modified section

Fop oo m(2p) = /H Q0T ) . o)l (3.54)
1 P

This function on Go(Q,,) depends on the choice of v | p and has the following property.

Lemma 3.13. When |s| < 1, the integral in (3.54) converges absolutely and defines a rational function
in p® defined over Q({p=)(¢p). Furthermore, when restricted to the first (resp. second) components of
Go(Qp) = G(F)) = G(F,) x G(F,), it defines a section in 1(s, xv) (resp. 1(=s, x')).

Proof. For the first claim, one can suppose w(gp,)%1(¢p) is the characteristic function of

C1 X (pUZy +11) X (pPZp +12) X (PP Z, +11) x (pP2Z, + 12),
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with C; C Q%, a compact subset and aj,b; € Z,rj,t; € Qp. As in Lemma 3.2, the integral defining
Fth,,Qp,v,s (gp) is given by

F(p,,,g,,,v,s(gp) = ‘[QX ‘/Q;4 (w(gp)gl((pp))(o’ 0»115123 a/ll»a_l/b)d/lld/bQ((a: a_l))|a/|;)dxa'
P P

Suppose (0,0) € Cy; otherwise, the integral vanishes identically. When |a[, > p" for N sufficiently
large, we have |a/‘1/lz|,, very small for all A, € p“*Z,, + r,. Therefore, when t, ¢ prZ,, orry ¢ pYZp,
the integral over those a with |a|, > pY is zero. When 1, € prZ,, and ry € p“'Z,, we have

[ [ @@ Zi om0k 000 ) ddbota.a el
alp2p P

— () Y elpp™ )™ [ el@a™)

n>N v

x vol(p“Z, N p(ph +a_lt1))vol((p“2Zp +7)N p_'“'szp)an

= vol(Cy)vol(p™Z,, + ra)vol(p” +a™'1) éx o((a,a™"))d*a Z (o((p,p~Np~*)",
P n>N

which converges when |s| < 1 and defines a rational function in p*. The same argument takes care of
the case when |a|,, is sufficiently small. This proves the first claim.

For the second claim, it is clear from the definition that Fy, o, s is locally constant as ¢, is a
Schwartz function. For the transformation property, we have

(w(m(@)g, F (¢p))(0) = |aa’ly (w(g. h(a'[a))F (¢))(0) (3.55)

for a = (a1,a) € Fj = (Q;)z. A change of variable plus o(a/a’) = xv(@)xy (@) and |a|, =
lai]p, |@’|y = |az|, then finishes the proof. O

Now, we will extend the matching result in Theorem 3.10 to standard sections.

Theorem 3.14. In the setting of Theorem 3.10, suppose p = vv’ splits and let 1o s(¢v) € 1, (s, xv)
denote the standard section associated to A4 (¢v) € 1, (0, xv) for ¢, € S(Wo(Fy)). Foranyr € N,

there exists ¢, € S(Vp; Q({pw))(G'TA)(ZP) such that
Foyp0pm.5(8) = L()Aav s ($2)(8v)Aav.~s (41/) (gv) + O(5"). (3.56)
forall g = (gv.8v) € Go(Qp), where L(s) := (1= p™)|D|,' L(1 +5.xv)L(1 = 5. x1)
Remark 3.15. If o, is unramified and ¢, is the characteristic function of the maximal lattice in V),, then
Fopopovs (D) = LU +5,x0) L1 =5, x0) (1= p7) (3.57)

by a similar calculation as in Lemma 3.2, and Fy,, o, v.s/(L(1+s5, xy ) L(1 =35, x,)(1 —p7?)) is already
the standard section dq,v,s(¢v) (8v)da,v,-s (1) (817).

Proof. For ¢ € S(V,,;C) and g € Go(Q),), we write

an(p, g)
F‘Pv@p,v,s(g) = Z n—(—logp -5)",

!
n>0

00(0:8) = (=108 D) "0} (Fogys(@)) o= [ @0(F ()8 Do) ord ()"

Hl (Qp)
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It is easy to check from definition that Fy, o, v s : Go(Z,) — C satisfies (3.50), and hence, so does the
function a, (¢, g) for all n > 0. Now we define

o = (w((p,p™")H = D)"p € S(V,,;C)

(2)"'

1

nl

with (p,p~!) € Hi(Q,). An easy induction shows that Fom opvs =
implies

P,0p,V,S> WhiCh

0 ifn’ <n,
an(@™.8) =14, o, (3.58)
p.0p ifn'=n.

When ¢ € S(V,;Q({p)) is (G - TA)(ZP)—invariant, so is the function ¢ € S(Vp;Q(Lp~)). Fur-
thermore, the function a, (¢, ) : Go(Z,) — Q({)=) satisfies conditions (3.50) and (3.51). By Propo-
sition 3.9, there exists ¢, € S(V; Q({,,m))(G'TA)(ZP) such that

Foy,.0,(k) = an(p, k) (3.59)

for all k € Go(Z)).
Now we prove the theorem by induction on 7. The case r = 1 is just the content of Theorem 3.10.
Note that |D|, = 1 when p splits in F. Now suppose we have ¢ satisfying (3.56) for some r > 1. As

D, = /la,v,s(‘pv)(gv)/la,v,—s(‘pv’)(gv’) € I(s, xy)I(=s, xv)
is a standard section, it satisfies (k) = ®g(k) when k € Go(Z,). So in that case, we have

Fo oy (0) = L0, (0 = (a9, k) — ero(k) TRELD 4 o)

with ¢, 1= (—log p)™" 0. L(s) |s=0 rational. If we set

~ r A
gi=¢ -9 =) € SV, QEpe)) TV,
then equations (3.58) and (3.59) give us
Faﬁ,gp,v,s(k) - ‘C(S)(Ds(k)

_1 . r
= (ar((p, k) = Fy, .0, (k) + ¢rFy o, (k) = er)o(k))%

+0(Sr+]) — 0(sr+1).

So ¢ satisfies the claim for r + 1. This completes the proof. O

Now, we can state a consequence of the matching result in Theorem 3.14.

Proposition 3.16. For matching sections ¢, € S(V,;Q({p=))9 @) and {¢, € S(Wo(F,)) : v | p}
as in Theorem 3.14 with r = 2, we have

[Twis@n =3 / | en T 0P [ (3.60)

vip nez

forallt € F;. Furthermore, when p = vv' is a split prime and Wy ,(¢,) = 0, then we have

W* /(¢v) r(¢v')
logp

:Z/H( )Qp(h)%(sop)((O,p”),t’/p”,—h*‘z/p")ov(h)dh. (3.61)

nez
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Remark 3.17. Since o,/ (h) = —o, (h) for all h € H;(Q,), the left-hand side of (3.61) gets a minus
sign if 0, (h) is replaced by o, (/) on the right-hand side.
Proof. To prove (3.60). we apply the definition of Wy, in (2.54) and Theorem 3.10 to obtain

[ Twin @) = 1D/Del* [ L0 x0) /F Ly (80) (wn(by)ry (~tby, )db,

vip vip

—(1-p2)! / Fyy. 0, (wn(b))rp (= Te(th))db

Fp

—(1-p2)! / o(h) / F (wp (wn(b). h1))pp) (O (— Tr(1b))dbdh.
Hi(Qp) Fp

Now the right-hand side of (3.60) can be rewritten as

Right-hand side of (3.60) = / op(h1) Z Fr(wp(h)ep)((0, p™), 1" [ p", —t/p™)dh
Hi(Qp)

10ep nez

-/, o, e 2 =p I oy TP )2 (0.0, =t )

nez p

=(1-p™H! / op(h) / F1(wp(h)ep) ((0,u), 1 Ju,—t/u)d udh;.
Hi(Qp) Q}

For the second line, we have used w(m(a))¢, = ¢, for all a € Zj since ¢, is G(Zp)-invariant.
Equation (3.60) now follows from applying Proposition 3.18 to ¢ = wp, (h1)¢,.

We now prove (3.61). Let 5 € I(s,xy)I(—s,yx,) be the standard sections extending
Aav(@y)Aa v ($y). By Theorem 3.14 with r = 2, we have

F(,up,gp,v,s = (1 - p_z)lDE|1_71L(1’XV)L(LXv’)/laf,v,s(¢v)/la,v’,—s(¢v’) + 0(32)-
Therefore, using W |, (¢,) = 0, we have
W:\i (¢V)W;*,v'(¢v’) = 0s (Wzv(l’ S, ¢v)WZv'(1a =S, ¢v’)) |s=0

= Del5' L(1, xy) L(1, x0)ds

e —p‘z)—las(/F

p

Fp

/ q)s((wn(bv)’Wn(bv’)))‘//v(_tbv)‘//v'(_tbv’)dbvdbv’) ls=0
F&pp,gp,v,s(wn(b))wp(_ Tr(tb))db) |x:0

=(1 —Pz)]as(/ Q(h1)|h1|5/ 9(wp((W”(b),hl))sﬂp)(o)lﬂp(—Tf(fb))dbdhl) ls=0
Hy(Qp) Fp

=logp(1-p2)~" o(hy) ord, (hy) / F (wp((wn(b), 1)) (00, (— Tr(th))dbdh .
H(Qp) Fp

Applying Proposition 3.18 and continuing as in the second half of the proof of (3.60) then proves

(3.61). o

We end this section with the following technical result used in the proof of the previous proposition.
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Proposition 3.18. For any ¢ € S(V,; C)9@p) and t € FX, we have

(1) [ (@ (on()F (00 Oy (= Tr(ep)) B = [Q F@O.0, 1 fu, =t ) d*u.
' (3.62)

Proof. Since the left-hand side is essentially the Fourier transform of (w(wn(B8))F (¢,))(0) as a
function of 8 € F),, it suffices to calculate the inverse Fourier transform of the right-hand side, though
we need to be careful about the singularity of right-hand side when ¢ ¢ F;j. To take care of this, we define

I ro_ X if
Golts ) = {[Qf, F1()((0,u),t" [u,—t/u)yd*u, if|t| > e, (3.63)

, otherwise.
for € > 0 and ¢t € Fp,. Note that [¢| := min{|#1], [t2]} when t = (#1,12) € F), = Q%, Given any fixed

t e F;, the limit lim¢ 0 G ¢ (¢, ¢) exists and is the right-hand side of (3.62). Also for any fixed € > 0,
the function G ¢ (¢, ¢) is a Schwartz function on F),. Its inverse Fourier transform is given by

Ge(Boy) = / G e (1, )0 (TH(¢B) )

Fp

= [ At -t (e p s
Fp\De JQf
[ [ SO T Dy (g i
Qp YFp\Deju
where D, C F,, is the e-neighborhood of 0. Note that

‘GJTI (90)((07 M), f/’ _i')lpp (Tr(f/uﬂ’)) = ‘G/:l (Spﬁ)((()? M), _fa _f)a

where ¢g 1= w(won(B))p and w; € H(Q) is defined in (3.6). Therefore, G < (B, @) is given by

Ge(Boy) = / / F1 () (0, u). 7. ~DlulPdTd*u
Qp YFp\Deju

- /. (9(%)((0,@,0) -

P

¢p((0,u), s, s)ds)|u|2d><u

€/lul

with s = —7 and ds = df. Using the G(Z,)-invariance of ¢, we have
F (¢p)((0, p"u),0) = F(pp)((0, p"),0) = F(¢p)(a,0)

forallu € 23, n € Zand a € (p"Z,,)2 - (p"“Zp)z. Applying this, we can evaluate the first part as

L F e @n.0ufau= Y [ #ep w0k

nez
= Fp)((0,p"),0p" (1= 1/p) = (1+1/p)™" > F(p)((0, p"),0) / da
nez nez (P"Zp)?=(p"*1Zp)?
=(1+1/p)~! F O)da=0+1/p)" | F ,0)d
e D[ i T @ 0da= 1o [ (g (a0

= (1+1/p)"' F(@(w1)gp)(0) = (1 +1/p) " (@(wn(B))F (¢))(0).
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Then for any fixed 7 € F, we have

Geltig) = / G e (B @) (— Te(B))dB

r

=(1+1/p)_1/F (w(wn(B)F) () (0)¢p (= Tr(B1))dB - Ec (),

Eeto)= [ upTeGa0) [P [ 71000, 9w (- () dsaudp.

€/lul

Since # (¢) is a Schwartz function, we can replace the domain Qf, X D ¢ /|| with a compact open subset
independent of 8 and interchange the order of integration to compute the integral over g first, which
yields

Eer= [l [ [ T ) dp A (0.0, - s

e/lul ¥ Fp

When € is sufficiently small, we have t ¢ D¢ and ¢ + su # 0, in which case E. = 0. This finishes the
proof. O

4. Doi-Naganuma lift of the deformed theta integral

In this section, we will define and study the properties of the function Z discussed in the introduction. In
particular, we will calculate its Fourier coefficients and images under lowering differential operators. The
actions of differential operators follow from those on the theta kernel, which are given in Section4.1. The
Fourier expansion computations are carried out in Section 4.2, with the main result being Proposition 4.7.
Section 4.3 contains rationality results about theta lifts that will be needed to handle the error term
mentioned in Section 1.3.

Choose @) = @0 wg’l) € S(V(A))Ke with ¢§j") = 90(()’1;01) ® ¢t € S(VH(R)) @ S(Vi(R)) and

OV (a,b,v,v') = —ila—b+i(y +')e T@HHHO) ¢ SV (R)). @.1)
For ¢ as in (2.76), we can define

7(20) = Z(g0 0", 6¢) = /[ iy /[ e o). ¢ )dsoc (). “2)
1

We will now analyze various properties of this integral.

4.1. Lowering operator action

To calculate the action of differential operators on Z, it suffices to understand the effect on ¢ via the
Weil representation, which can be done in the Fock model. For this, we follow the appendices in [FMO06]
and [Li22] (see also [KM90]).

We identify (Vo(R), Q) = (M>(R), det) = R>? with the basis

110 1 {0 -1 1 (=10 101 43
v1.—$01,\/z.—\/—§1 0 ,V3-—$ 0 1,V4~—$10, (4.3)
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which identifies S(R>?) = S(Vy(R)) and gives us

(a vl):a+b —a+b —Vi+wm V1+V2V4. 44)

vy + V3 + Vo +
v2 b V2 V2 V2 V2

The polynomial Fock space is the subspace S(R*?) c S(R?*?) spanned by functions of the form
[i<j<a D;.j ¢° for r; € Ny, where ¢° € S(R*?) is the Gaussian

S S U S
©°(x1,X2,X3,Xx4) =€ (XX +XT+X)

and D, are operators on S(R??) defined by
D, =0y, —2nx,, 1 <r < 4. 4.5)

There is an isomorphism ¢ : S(R>?) — P(C*) = C[31,32,33,34] such that «(¢°) = 1, D, acts as
(-1)L=D72ljz  We now set

D=3 +i32, W =33 —i34. 4.6)
Then using (4.4), the Schwartz functions ¢ € S(Vo(R)) in (3.22) and (4.1) become

) = iV2i((xy +ix2) %) = —it(wl +iD2)¢°) = ﬁ

\/__ «/E %))

11))_ Wy (11))_

Let (W, (,)) be the R-symplectic space of dimension 2, and W := V,(R) ® W the symplectic
space with the skew-symmetric form (,) ® (, ). The Lie algebra sp(W ® C) acts on S(Vp) through the
infinitesimal action induced by w, which we also denote by w. In sp(W ® C), we have the subalgebra
sp(W ® C) x n(Vy ® C). Through ¢, the elements L, R € sI,(C) = sp(W ® C) defined in (4.11) act on
C[31, 32,33, 34] as (see [FM06, Lemma A.2])

1 _ 1 _
w(L) = —8md,05 + gmm, w(R) = —8m0y 05 + gnn. 4.8)

Using the isomorphism

51,(C)? - 0(Vy ® C)
(A,B) — (v — Av+VvB"),

we see that the elements L; = (L,0),L, = (0,L;),R; = (R,0),R, = (0,R) in sl,(C)? act on
C[315 32, 33, 34] through ¢ as (see [FM06, Lemma A.1])

1 1
w(Ly) = 8780y0p — — W, w(R)) = 879505 — —dw,

8 ’7

1 1 4.9
(A)(LZ) = 87165611, - —UE, (,t)(RQ) = 871-61)613_ —DW.

8 ]

For convenience, we slightly abuse notation and write L, R, L;, R; for their corresponding actions on
P(CH.
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When we consider the decomposition Vy = Vyo®Up in (3.2), the map ¢ induces S (VOO(R)) = P(C =

C[31,33,34] and S(Up (R)) = P(C) = C[32]. For a, b, ¢ € Ny, we also define go(()g . € S(Voo(R)) and
©D 00 € S(R) by

a+b

00,00 " A

(a,b) ._ (_ ﬁ

CGRe). e :—( \f’) ' (35)- (4.10)

For r € Ny, we have the operators RC,., ﬁér defined in (2.8) that also act on %(C*). They are related
by the following lemma.

Lemma 4.1. In the notations above, we have

(L1 + L2)RC, (w) = —L(RC, (v + (=1)"D)),
(RC, — (R1 + Ry)")(v) = (-87) ™" 2" R(w" p, (v, 7)), (4.11)
(RC, — (Ri + R2)")(®) = (=87)"2" 2" R(w" p, (v, 1)),

where p(X,Y) = —(0,(X,Y) = (X +Y)") /Y € Q[X,Y] forall r € Ny.
Proof. 1tis easy to check that

RC, (w) = (=87) " 2" w"*1Q, (v,),
RC,(v) = (=87) 22" w" 0, (v, D)V, (4.12)
RC, (D) = (-87) 2" w" 0, (v, 0)D.

This leads directly to the second equation in (4.11) from the definition. To prove the first equation, it is
enough to verify

(L1 + L)™' Q, (0,9) = ~L(Q, (v,0) (v + D)w"),

which follows from (2.6). O

Proposition 4.2. Let ¢y € S (W (F)) and ¢ r € S(V; Q™) be matching sections as in Theorem 3.3
and denote € := sgn(ay) = —sgn(ay). Then for L defined in (4.2), we have

L1+ L)RCI(g) = ~(=4m) " (R + Ro) (E*(8.4") = (<1 E*(g.4))
—_ (4.13)
- 2log e, TRC, Iy (.0 = (=10, o),

where Ly is defined in (3.23) and eELFD = or® gac(,oﬂ e S(V(A)) is defined in (3.22).

Proof. Suppose 95 = ¢@o,r ® ¢1,7 and denote ¢T = @1, @, (,D(()k *) = = ¢ f(p(k ) Then

(L1 + Ly)RC,(Z(g)) = /[ . (L1 + Ly)RC,(60(g", 8. 93" "001 (8", ¢F, 6c)dg’

= [GJ L(ﬁér(eo(g', g, 90(()1’_1)) - (—])rOO(g g, 900_ 1))))191(8 901,Qc)dg
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by Lemma 4.1 and (4.7). Now applying Stokes’ theorem and Theorem 2.7 gives us

/[ | HRC G0’ 65 DI &' 7 20’
=—/[G RC, (60(g", 8. 05 )L (g, ¢}, bc)dg’

= ‘/{GJ RC,(60(g", 8,95 N (B1(g", 91, 0) +21oge,01(g", 91, 0))dg

with € = £1. Since R (g’, ¢7, 0) = 0, we can apply Stokes’ theorem, Lemma 4.1 and Theorem 3.3 to

obtain
/[ RE(00(&"- 865 DN &' 07 00
= (—47)7" (R1 + Ry)" /[G](Go(g',g,¢§’_5))ﬂ1(g’, @7, 0)dg’
= (<41 (Ry+ Ro) (g, (7, 0) = > (<4m) " (Ry + R E* (5,0,
Putting these together finishes the proof. O

To understand the first term on the right-hand side of (4.13), recall the decomposition for
8o(g’, g™, ¢o) in (3.18) when ¢g o € S(Vp). This allows us to define

(RC, . 1) 00) (&', 8005 00) = (=4m) ™" Qs k1 o) (R R) (800 (g1 800, £00) 0D (83, ) lg;=g=¢
(4.14)

for o = poo ® wp with pgg € S(Vyo(A)), op € S(Up(A)), and R;. the raising operator on g}. In the
Fock model, R;, resp. R}, acts on C[31, 33, 34], resp. C[32], as ‘

1,

’ 1 ’
w(R}) = —8710w0g + gaf, w(R}) = o5 (4.15)

This definition also extends by linearity to all ¢y € S(Vp(A)) satisfying ¢o.c € S(Vo(R)). We now
record the following lemma.

Lemma 4.3. For r € Ny, denote ro := |r/2]. Then

(ﬁ“creo)(g’ 8o @SV + (=) lHY)
(L,r) r=2ro (416)

2. 1 A
2T RC L2200 (87 80 90,5 (P07 ® @5 )

Proof. Suppose o, = ¢oo0,r ® ¢p,r. Then equations in (4.7) imply

(RC-00) (8", ghs 087" = (=1 o)) = \/—90(8 85 0.7 T'RC, (0 + (=1)"D)).
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From (4.12) and the definition of P, in (2.5), we have

RC, (0 + (=1)"0)) = (=47) 227" w" 0, (v,0) (0 + (-1)"D) = (=47) 270" Q, (v, 9) (v + 1)
= (—4m) 22w 3 Py (i32/31)

= (=4n) 722w 3 (-1)" Z (rO -r- 1/2) (” - ”OS— 1/2)3%5(1-32)1'25

pry ro—=s
= (—4m)"0 724" (=2)"° Oy (<rs1/2,r-2r041/2) (R}, R£)31mr3£_2m'

Substituting the definition (4.10) finishes the proof. O

The following technical lemma concerns a change of regularized integrals and follows from the proof
of Lemma 5.4.3 in [Li22].

Lemma 4.4. Given ¢; 5 € S(V;) withi = 0,1, let T' € PSLy(Z) € Goo(Q) be a congruence subgroup
that acts trivially on o y. Foranya > 1,b > O and f € Mizb(F), we have

reg

- a,b —_
[0 [ ot none. el (vl © 6 D dedut2)
M\H [SL2]

reg reg
= / 01(8.£.47) / Y F(2)80(g. 85 00.r (w532 ® @ &) du(z)dg.
[SL2] IH

4.2. Fourier expansion of T

To evaluate the Fourier expansion of Z in (4.2), we change to a mixed model of the Weil representation
using the partial Fourier transform % defined in (3.28).
Throughout the section, we write

80 = (821> 82,) € Go(R) (4.17)

for (z1,22) € H? with z; = x; + iy; and gr € G(R) with T = u + iv € H. Then (3.27) implies

00,00(80) F1(90,00)((0,7),v) = \y1y2e(r(x2v +x1v")) F1(¢0,00) ((0, v/y1¥2), v/ y2/¥1),

(4.18)
@0,00(82) F1(¢0,00) ((0,7),v) = Vwe(=uvv') F1(0.) ((0,7/Vv), Vvv).
Also when ¢g o = go(()k(;ok’) with &k, k" = +1 as given in (3.22) and (4.1), we have
’ 7’ . _ 2
91(%(){(;0’( N(0,7),v) = wéﬁ,’ok ) (ir, 0, v)e 27" (4.19)

with 7 € R,v = (v1,v2) € R?. After applying Poisson summation and unfolding, we can rewrite the
theta kernel 8y(g, go, o) as

00(g:80,00) = ), wo(g:g)¢o(D) = D, w-1(2)wo(80)F1(po) (g, v)

1€V (Q) veV_1(Q)
neQ?

= ), wa(@wo()| Fi(e)((0,0,m+ > File)((0,r)yg.7) |

veVo(Q reQx
y€lw\SLa(Z)
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For a bounded, integrable function f on [G] such that 6(g, go, o) f(g) is right SL(Z)SO(R)-
invariant, we have

3
Io(80. ¢0. f) = / 60(g. 80, ¢0) f (g)dg = / 60(gr. 50, 20) f (g2)du (),
[G] T JSL,(Z)\H

which can be written as Iy(go, ¢o, f) = Ig(go, %0, f) + 15 (80, o, f) with (see, for example, equation
(4.2) in [Kud16])

12(g0. 90, f) = /S o O BT ) (0,009 501 (),

veV_1(Q)

3

.

2 [ Fmen@men(e) (0 (0.)gym du(r)
SLa (Z)\H

veV_1(Q), reQ*
Y€lw\ SLa(Z)

D Fileo.)(0.1), M) ($0.0) (21,22, )
veV_1(Q), reQx

B @)z f) = / (000 20T () ((0.7), ) (g7,

)

15 (80> %o, f)

(4.20)
Using the SL,(Z)-invariance of 6y(g, go. o) f (g), we can rewrite for any N € N

& (@) (21,22, f) = N*%/ (wo(grs80)F1(9))((0,7),v) f(gr)du(r) 4.21)
'N\H

with TN := {(n(Nb) : b € Z} C T.

For our purpose, we are interested in the case when f(g) = ¥ (g, ¢1,p) with p € {0,0c}, ¢1 = ¢}
and ¢g = go(()k’k'> for k, k” = +1. In that case, we have Iy(go, vo, f) = Z(go, ¢, p) With ¢ = g ® ¢, and
denote

T*(80. ¢, p) = I3 (80, 00, P (. 01, ), I°(80, ¢, p) = 13 (80, 0, (-, ¢1, p))- (4.22)

This can be extended by Q-linearity to all ¢ = ¢ ¢ € S(V(A)) with ¢ € S(V) and ¢o, € S(V(R)).
The constant term 18 in the Fourier expansion of Iy(go, ¢o, f) is independent of x;, x, and can be
evaluated by the change of model in section 3.3. For our purpose, we will state a decay result needed to

prove Theorem 5.1

Lemma 4.5. Suppose there is s € R such that | f(g.)| < v® for all T in the usual fundamental domain
of SLy(Z)\H. Then

0
lim y_c(aa ab I()(g07 ©0, f)

—y,=y=0
y—t00 1Y% N1ys ) lyi=y>=y

forany a,b,c € Ng satisfyinga+b+c > 1. When a = b = ¢ =0, the limit exists.

Remark 4.6. It is easy to check that f(g) = 9(g, ¢1, 0¢) fulfills the condition in the lemma.
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Proof. Let F denote the fundamental domain. Then we can use (4.18) to obtain

13(g0, o,
% =2 2, Fi(40.0)((0.0).9 (ralvn + v\ /)

dudyv

» .

y / e(cuvy ) e RO G £(g)
f

Since F1(¢o,r) is a Schwartz function, we can suppose the sum over A € F is replaced by a sum over
the translate of a lattice. For the integral on the second line, we can trivially estimate it by

/'oo e Y3+ (V)Y D) (3132) s ﬂ
V3/2 y

From this, we see that |y~! 18((gz, g2), ¥o, f)| is bounded independent of y, and the second claim holds.
This also gives the first claim for @ = b = 0 and ¢ > 1. The other cases follow from first applying 9¢ 6%

y17y2
19(80.%0.f)

to VY1y2

and then conducting the same estimate. O

We will now evaluate the non-constant term Z*. Let ¢ and g¢ be as in (2.76), and K, € H; (2),T o C

H{(Q) be as in (2.14) and (2.67), respectively. For f(g) = #1(g, ¢, 0) and ¢o,c = ga(()i;’il) defined in
(3.22), we can apply (4.18), (4.19) and (4.21) to obtain

v (5™ ) (21,22, £) = sgn(v)2yF1y2e(r((x2 F iy2)v + (x1 £ iy1)V))
xvol(Kp) D" 0(6) > sen(Be1 s (&7'B)

£eC el \F*
BB =vv'<0

if Frv > 0, and zero otherwise. After the change of variable t = rv’, we have

- 3 —
(g0 )=~y ), alpr.e(tiz+0m),

teF*, t;>0>n

I*(g0. ¢V, 0) = %\/)’1)’2 Z ci(pyr,0)e(t171 + 122),
teF*, h>0>1
ci(pr. ) =2vol(Kg) . 0(8) Y > se(Bin/nFiler)((0.r).1/r.E7).

&eC reQx Bl \F*
Nm(8)=Nm(z)/r?><0

In the case of Z*(go, ¢, 0c), we have the following result.

Proposition 4.7. Given ¢y € S (Wy), let ¢ r €S (V)G(Z)TA(Z)KQ be a matching section as in Theo-
rem 3.3. For oc as in (2.76), we have

TH(go.or eV, 0¢) 3 s
f =2 Z Ci(@r,0)e(tiz) +1220) + Z e:(@r;y1,y2)e(t1z1 + 1222),
Vylyz ﬂteFX,t>>0 teF*

(4.23)

where ¢, (¢r,0) € Cande;(¢5;-) : Rio — Care givenin (4.27) and (4.28) below. There is a constant
M € N such that ¢, (¢, 0) =0 whent ¢ M~'0.
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Let
Sc :={v primein F : ord, (¢) # 0 for some & € C} (4.24)

be a finite set of primes, and then there exists k € N and B(t,¢7) € F* such that ¢;(¢yr,0) =
—3 log|B(1.65)/B(t. )| and

Wi(dr),  if Diff(Wq.1) = {p},
kL ordy(B(t,¢f) /Bt df)) = 1 =W, (¢7), if Diff(We,1) = {p'} (4.25)
0, otherwise,

when Diff (W, 1) C S¢. with W, defined in (2.62). Furthermore, the function e, satisfies

tim v~ (05,08, €:(51,32)) yymamy= 0 (4.26)

y—00

forall a, b, c € Ny.

Remark 4.8. Note that we have

Z(g0) = Z(g0. "V, 6¢) = T°(g0, "V, 6¢) + ¥ (g0, 0"V, 5¢)
from (4.2) and (4.22).

Proof. Suppose ¢ = g, r ® @1, 5, as the general case follows by linearity. We first prove (4.23). Using

(4.20), it is enough to evaluate ‘{yr,,,(<p(()};i))(zl,zz, (-, ¢7,0c)). If we sett := rv’, then we have by
(4.18), (4.19), and Theorem 2.7

1,1 ~ ~
Frov (00 (21, 22,91 (o0}, 80)) = (eri (@1, 71.¥2) + Er (1,5, 0)) VI TI2€(1121 + 122))

with é, (¢, 0) and e, (¢;y,y’) given by

Wol(Ky) Y. o@senrB)e (& p)log(eo) {log,, VIBIFT) 130
5r,v’(‘p’ Q) = 5;55}/{;0
&eC

0, otherwise.

vol(K,) . ( )
V2 ﬁelzg\pxg(f)(p(f B)| 6y <osgn(Ble; , (y1.y2) +

BB=vv'
&eC

loge,

=

ery (@Y1, y2) === ei,y,ﬁ(yl,yz))

Here, we have set

. © dv
¢ (1ay) = /O 00,47 1V)Kr o (0. 1, 32) o

ef L siya) = / S sen(Be - B'eNT(1/2,w(Be — € )DINTKr (v, y1,72) .
- A S

eel

2
_ A—BW) A vy +v'ys
Ky (o y1,32) = ¢ " (—+B\/§),A:=r\/_1 N ppalnad iy
rovV, Y1,y W yiy 172
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So if we set

Gler0) = Y Filgo.)(0,1), 8 /r)er (g1 5, 0), (4.27)
reQx

e(@riyiy) = Z F1(o,r)0,r), ' [r)e, v/ (@1,73 Y1, Y2)s (4.28)
reQx

then equation (4.23) holds by (4.20). Since ¢ ¢ is a Schwartz function, the sum defining ¢; is finite and
equals to O when ¢ ¢ M~'O for some M € N depending only on ¢ f-
To prove (4.25), notice that

Glpr o) =4vl(Kp) > > a©F (pp)(0,r),1[r,£7 Prsen(rB) log IB/B
reQ*  Bel \F*
1<IB/B | <&

BB =tt’ [r?>0
&eC

By Theorem 3.10 and Lemma 3.7, there exists ¢ € N such that 2c%1 (¢ )((0,7),v, 1) € Zforall r € o)
and v, 1 € F. Then we can write

2 t,
¢i(py,0) = —ZIOg%,

’ -1
B(t,¢r) = 1_[ 1_[ (rﬁ)_VOI(Kg)Q(f)Kg:I(‘Pf)((oar)»t [r.&7 B)sgn(rp)
reQ*  Bel,\F*

1<|B/B' | <&

BB =tt’ [r?>0
teC

For any split rational prime p = pp’ with any p ¢ Sc, we have

k! ordy, B(t, @)
=—vol(Kp) > >\ 0@Fi(er)((0,r),¢'[r, &7 B)sgn(rp) ordy (&' rB)

reQx Bel \F*

BB'=tt’ [r?>0
&eC

=—vol(Ko) D > 0®©Fi(pr —ws(-Dgy)

reQ* hel,\H (Q)*
teC

x ((0,7), ' /r,é Y h~ 't /r)sgn(h™"t) ordy (67 i)
=2 Z / o(h)Fi(er)((0,r), 1 [r,—hi't/r) ordy (hy't))dh
reQx

sincet > 0, ordy () = ordp(f‘lﬁ) and o (h) = sgn(h), where hy = —¢éh € Hy (Q) and o(hy) =—-p0(&).
The last step follows from (2.71).
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Notice that the quantity above factors as the following product of sums of local integrals

k! ord, B(t, @)

=2 Z/ . oc(hi,e)F(@r.0)((0,6M),1 /", _hl_’lgt/fn)dhl,f)
H; (Q¢

<00, {,’#p(neZ

X Z/ op(h1.p)F1 (5 p)((0,p™), 1" [p", =7t/ p™) ordy (BT 1) dhy |-
nez Hl(Qp)

Applying (3.60) turns the first line on the right-hand side into 2 [], <o, vsp Wy, (¢y). If this is nonzero,
then Diff (W, 1) is either {p} or {p’} as it has odd size. If Diff (W, 1) = {p}, then W} (¢y) = 0 and
Proposition 3.16 tell us that the second line on the right-hand side becomes

Wit ()W, (d307)
log p

W ()W, (dy)
log p

+ W/ (@p) W/ (dy) ordy (1) =
as ordp(hflpt’) = ordp(hIlp) + ord, (¢’). This gives us

k! Ordvﬁ(ta‘;of) = Wt(¢f)/2'

Repeating the above argument together with Remark 3.17, we obtain «~! ordy B(t, ¢ ) =-Wi(dr)/2.

Putting this together gives us (4.25), where the case with Diff(W,, ) = {p’} is obtained similarly.
Now we will prove (4.26). Since ¢ has compact support, the summation over £ and £ in e, ,, and the

summation over r in (4.28) are finite sums, it suffices to establish (4.26) with e; replaced by et’v and

eI V.5 with 7 > 0. For any fixed C,e > 0, s € R and a, b, ¢ € Ny, we have

¢ qa qab A -Cv,s ’ dv A ’ dv —A€/2
yeola,, e VK, (v, y,Y)—| < K y(v,y,y)— <xe s
Y y 0 v

. o , dv
ol [ eV Lo

I-€

(o]
— _Al/2-€)2
< e 20y < A
Al-e€

when B is in a compact subset of R and A > 0 is sufficiently large. Furthermore, it is easy to see that
there exists C > 0 such that

IC(0, 47|vv'|v)| < v~ le ™7, <y 12e=CY

> sen(Be - f'e)T(1/2,7(Be - f'e) )

g€l

for all v > 0. Combining these then proves (4.26). O

4.3. Rationality of theta lifts
Recall that the rational quadratic space V,, is the restriction of scalars of the F-quadratic space W,. The
following result shows that the Millson theta lift preserves rationality.

Proposition 4.9. Let f =} ,crv/r fulu € M be weakly holomorphic for some r € N and lattice

2r.pL
L C Vg For o7 = goég)’ggof with o5 € S(Voo;Qab)TA(Z), let T(N) c SLy(Z) be a congruence
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subgroup contained in ker(py) that fixes ¢y . The following regularized integral*

1 reg
™ (z, fu, :=—/ r 000(g7, bz, 0 )d 4.29
(T, fus95) SL2)  T)] F(N)\Hy Su(2)bo0(g ¢ ")du(z) (4.29)

defines a weakly holomorphic modular form of weight —r + 1/2 < 0. Suppose f has rational Fourier
coefficients at the cusp o, so does IM (1, f,, ¢¢) forall p € LV /L.

Remark 4.10. When r = 0 and f has vanishing constant term, the same proof shows that the weakly
holomorphic modular form I™ (7, f,,, ¢ ) has rational Fourier coefficients up to algebraic multiples of
weight 1/2 unary theta series.

Proof. We will use the Fourier expansion of Millson theta lift calculated in Theorem 5.1 of [ANS18],
which we now recall. Fix an orientation on Vo(R). For an isotropic line £ C Vi, let Goo.r € Goo be
its stabilizer and y, € SLy(Z) such that y;'Goo,cye = Goo,e,, With €eo = Qv and ve, = () §). Denote
c¢(m, p) the m-th Fourier coefficient of f,, |2, y¢. If x € Vio(Q) satisfies 4/—Q(x) = d € Qs, then x*
is a hyperbolic plane spanned by two isotropic lines ¢ and {_, such that x, y¢ Ve, Y¢_, Voo is positively
oriented. We can then define r, € Q by

_ 2ry 1
fol 'X=—d( 1 O)'

Suppose r > 1. From [ANS18, Theorem 5.1], we know that [SL,(Z) : T'(N)] - IM is weakly
holomorphic of weight —r + 1/2 < 0 with principal part given by?>

e(—-d’t
SEED S e e On el + (1) e (w, pern) € G
d>0 XEFL\VQOV,dZ(Q)

weQq

Note that the inner sum above vanishes for d sufficiently large by Proposition 4.7 in [BF04], and IM is
uniquely determined by its principal part because its weight is negative. Now we can enlarge N such that
Nrixw € Z whenever cg, (w, u) # 0. Then given a prime p { N, for an element x € I'z\Vjyy _,2(Q) to
have a representative X € Vg such that both #(p) - X and ¥ are both p-integral is equivalent to finding a

p-integral representative (4 2) with p 4 A. Note that the set

Sa(p) :={x € [L\Vy_2(Q) : p(x) # 0}

is a finite set for any ¢ € S(Voo).

For any o, € Gal(Q®/Q) with a € Z%, we have t(a) € T(Z) c GLy(Z). Choose an odd prime
p 1 N such that a = p mod N and every x € S;(¢y) has a p-integral representative X € Vo(Q) such
that 7(p) - X is p-integral. Let S4(¢ ) be such a set of representatives.

Denote ¥’ :=t(p) - X for X € Sd(gof ), which is p-integral and satisfies €.z = t(p) - €+5 and

Ye.o =t(P)yet(p)™ = t(@)ye (@)™ mod N, rogw — prazw € Z

when ¢, (w) or ¢¢_, (w) is nonzero. By equation (2.29), I'(N) C ker(py.) and the fact that f has rational
Fourier coefficients, we then have

oa(f l2r ver) = prt(@)ye.) f = prt(@ye (@)™ f = pr(ve ) f = f l2r Voo

4The regularization is the same as in [BF04] or [ANS18].
5Up to a sign (—1)"*! depending on the orientation of Vg (R).
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These imply that
alce (W, ) =ce (W, p), oale(rsw)) = e(prew) =e(rew) (4.30)
foralld > 0,% € Sd(cpf) and w € Q. Finally, we have ¢ (%) = ¢ (t(p)~'x"), which implies

97 (®) = o (1(a)”'F) = w(u(t(a)pf) (¥ (4.31)

since ¢y € S(L) and p is co-prime to the level of L. Here, ¢ is the map defined in (3.10). The map
X + X’ then gives a bijection between S4(¢ ¢ ) and Sq(w(i(t(a)))¢ys ). From this, we then obtain

Ta(IM (7, fus 7)) = M (7, frs 0((t(@))a(@f) = M (7, s 0(1(a), c(t(@)) ). (4.32)

As (t(a),(t(a))) € TA(Z), and ¢ is T* (Z)-invariant, the modular form I™ (7, f,, ¢ ) has rational
Fourier coefficients. o

From Propositions 2.8 and 4.9, we can deduce the following result.

Proposition 4.11. Letr € Nyand f € Mi2r or @5 in Proposition 4.9. For all u € LY /L and congruence

subgroup I'(N) C ker(pyr) fixing ¢, € S(V; Qab)(G'TA)(Z), which is a matching section of ¢, as in
Theorem 3.3, the regularized integral

—r T 1 reg — 1,-1) (-1,1)
cu(f) =VD ——/ V f(ORC Iy (g2, 0,057 = (=1) 7))
a 3 [SL2(Z) : T(N)] Jrvpe F 1ee H H
(4.33)
is a rational number.
Proof. Since ¢, is G (Z)-invariant, we can rewrite the constant cu=cu(f)as
. reg A
ooy = [ vipim [ [ e (6. eeUndinda(r ) du(o)
L \H "= Jgp JH(Q\H (Q)

with ¢}, := Iiér(@,l’*l) - (—1)’90}([1’])) € S(V(A)). Using Lemma 4.4, we can switch the regularized
integral in g with the limit in 7”. Then by the rational decomposition V = Vo @ Up @ V], we can write

Pu = Z ©00,u,j ® PD,u,j @ Plp,j»
JjeJ

with @0 € S(Voo; @)@, ¢y, € S(V1) and ¢p ., € S(Up). The constant ¢, can then be

rewritten as
Cu = Z Cu.j»

jeJ

where ¢, ; is defined by
cuj=VD vol(K,) lim O1(gr» 7, »0)
T'o Jg, ]

reg ~ B ) ,
X fr e V" fa(T)00(g, 8% RC, (g = (=) g D)) dpa(7)du ().
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Now with Lemma 4.3, we obtain

Cu,j _ : n-1/2 - ’ ’
22rg—r+l VOI(KQ) Tl/linoo [, , ) 81 (gT,’ Pl ‘Q)G/"j (r )d'u(T )s

Fr
where G, ; is a weakly holomorphic modular form of weight —1 defined by
"o ; —3r 7,A r—=2r M/
Gpj(T) = VWwVD RCro,(—r+1/2,r—2ro+l/2) (GD (gTé’ (’DD»#»OJ')I (71 fius S000’“’]')) IT;=T§=T'
and has rational Fourier coeflicient at the cusp co by Proposition 4.11. As ¢,, is SL, (Z)-invariant, the

function (v’)~1/2 Yjer O1(g, O 0)G,,j(7’) is SLy(Z)-invariant in 7’. Applying Proposition 2.8
and Stokes’ Theorem, we then have

c A\ — 7. ’
zzro—fm = vol(Ky) lim | > LT'(\/W(%,c(gTu O i Q))Gy,j("' . du(t’)
T jeJ
= —vol(Kp) )| CT(VWO] c(8v 47 ;- G (7', ) € Q.
jeJ
This finishes the proof. O

5. Proofs of theorems
In this section, we will prove Theorem 1.2. First, we state and prove the case for O(2, 2).

Theorem 5.1. Let E be a biquadratic CM number field with real quadratic subfield F. Let W = W, be an
F-quadratic space and W v its neighborhood quadratic space as in Section 2.4. Suppose a1 < 0 < .
Forr € Ny and a lattice L C Wq, suppose

!
f= Z c(m,)q"ey € M-,,
meQ, uelLV/L

is a weakly holomorphic modular form with rational Fourier coefficients. Furthermore, suppose it has
vanishing constant term when r = 0. Then there exists k, M € N depending on f such that

K@ (Z(Wa)) = (<1 @} (Z (W)

deg(Z(W)) . (A - A') B, ¢u)
_ _JeslztW)) m, P, I . 6D
A0, x) m>o,;LV/LC( e AGFX%lIO % B(4, ¢H)/
Tr/(l/ﬁgm
where 3(t, ¢ ) € F* is nonzero which has the property
Wi(¢r),  ifDiff(W,1) = {p},
«ordy (B(1,07) B, ¢5)") =1 -Wileys), ifDiff(W,1) = {p'}, (5.2)

0, otherwise.

Proof. By the Siegel-Weil formula in (2.56), we have

C’ reg . _
@ (ZW) = 57 /SL o’ 2 uORCE (2, g ()
2 peLY/L
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with C’ := deg(Z(W))/(2A(0, x)) € Q*. For each yu € LY/L, let ¢, € S(V)(G T be a matching
section of ¢,, as in Theorem 3.3. Then we can apply Proposition 4.2 to obtain

DL (Z(Wov) = (1) @ (Z(Wa))

’ reg
S S R gl = 1 E g (o)

SL2(D\H erv/r
P reg 0
e [ OLRG D de et ()
SLZ(Z)\H/[ELV/L
C2loge, T /reg — -1,1)
TN A IV 2 FuORC, Ty (85, 0,057 = (1) g V) du(r)
T SL@) : T(V)] W& 3 Jranna g ! o
T Y = N~
=-C'-3 / D K@L(RC )8, 6c, ol )du(r) +2C'VD loge, D' cul(f).
SL2(D\H erv/p peLV/L

By Proposition 4.11, we know that ¢, (f) € Q for all u € LY/L. For the other term, we can apply
Stokes’ theorem to obtain

- g LT > K@LRCI) (g2, bc. ol )du(T)

pnelV/L
(1,1
.t 1520/ > ORI be. el )du
pnelV/L
’ r A=A\
¢’ > e-mp) > m Pr( )cﬁm,g).
m>0, uelv/L AeFX, >0, Tr(A)=m

For the last step, we have applied Remark 4.8 to replace Z with Z° + Z*, used Lemma 4.5 to see that Z°
contribute nothing, and substitute in the Fourier coefficients of RC,Z* in terms of &, (¢, 0), the A-th
(1 1), oc). Note that m” P, ((A — A")/m) appears by (2.9) and is a rational
multiple of VD". As the sum above is finite, we can choose C such that S¢. contains Diff(W, r) for all
the ¢ that appears in this sum. Finally, the knowledge about the factorization of these coefficients in
Proposition 4.7 finishes the proof. O

Fourier coefficient of Z ( gT ,

Corollary 5.2. In the setting of Theorem 5.1, suppose that Zy does not intersect with Z(W) when r = 0.
Then there exists k € N and y(A, ¢,) € F* such that

deg(Z(W A=A
@) (2(w)) = -2 SEED cempm’ 3 (el
m>0, ueLV/L AeF*NM 'O
A>0
Tr()=m
5.3)
and
-1 _ Wt(¢f)a l‘fDlﬂ:(Wa t) = {p}9
K ordy(y (1, 97)) = {O, otherwise. >4

deg(Z(W))

Remark 5.3. The constant —A@y) can be explicitly given when Xg = Xo(1)? (see [Li21, Remark

3.6]).
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Proof. By Theorem 5.10 in [BEY21], we have

(@) (Z(Wa)) + (-1 @ (Z(Wer))
QO S e Y e e,

AOY) oS AES
Tr(/T?:m

where a; (¢,,) is t-th the Fourier coefficient of the holomorphic part of the incoherent Eisenstein series,
and given in (2.61). Adding this to (5.1) and applying (5.2) finishes the proof. O

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Write V=V, ®Wgand Lw ==L NWg, Lo :==LNV,.Then L, ® Lw C Lis
a full sublattice, and we can write

(f(0),0L(t, ZW))L = (f(1,7), 0Ly, (T, Z(W)) Ly
with f(11, 1) = (Tr%O@LW (f(11)),0r, (1)), Using (2.10), we have
(4m) (R f (1), OL(7, Z(W)))r = (4m) ™" (R, (f (1), OL(T, ZW)))L |r=r
= ()7 (R, ()2, OLy, (1, Z(W)))1yy

= e Am)y TR fr Oy (1 ZW)) 1y
£=0

where ki = -2r +1- 75,k = 5 — 1 and

fo = RC[,(kl,kz)(f)A € Mizrm’,Lw

has rational Fourier coeflicients. Therefore, we have

r

r _ (r;ki,k) gyr—¢
@ (Z(W)) = ; e oz (W), (5.5)
If f has the Fourier expansion
f@= D g,

veLV/L, neZ+Q(v)

then the (m, p)-th Fourier coefficient of f, denoted by c,(m, ), can be expressed as

celmp)= Y Q) (m = Q(A:). Q(A))e(m — Q). (Aor 1)),

A, €LY
with Qp (x,.k,) (X, Y) € Q[X,Y] defined in (2.4). In particular, when Z(W) N Z; = 0, we have

¢ (0,u) =0forall0 < £ < randu € LY/Las c(=Q(4,), (Ao, ) = 0forall A, € LY and u € Ly, /Lw
by (2.43).
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By Corollary 5.2, we can write

d zZ(W rikyi ks —
K(I)r (Z(W)) = eizo( ))) Z (r3k1,k2) 0 ZL:V ., ce(=m, f)m 4
m>0, peLy, [Lw

A=
X Pr_¢ log [ye(4, ¢)l
2 - !
AeF*nM 'O
>0
Tr(A)=m

with y¢(4, ¢,) € F* having factorization as in (5.4) independent of ¢, and express d)} (Z(W)) as in
(1.6) such that

deg(Z(W))
xordy(aj) = 2= Y e(=m = 0(A), (Ao, 1)
AL, x)
m>0
/IGL /LW
A, €LY
x> e sy (-m = 0(L:), 0(A0))
0<t<r (56)
r—{¢=j mod 2
1 A=A\~
X Z jmodZPr_()( m )Wﬁ(¢ﬂ)
Aernm~'o VD
A>0
Tr(A)=m
Diff(W,)={p}
for all prime p of F. O

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. By the main result in [Li23], we have £ € N and Galois equivariant maps
@; : Tw(Q) — E®™ satisfying

@, (h)

+VDlog| 7008

@’ ([20, h]) = @ ([20, 1]) = %(

) (5.7)

for all h, i’ € Ty (Q). Furthermore, when n = 2, we have @; = 1for j = r mod 2. Setting & (h) :=
aj [z n1ez(W)\[z0.h] :.:J’T(:)) and « := K|Z(W)| and applying equations (5.7) and (1.6) proves the first
two claims. Combining with Corollary 2.4, we see that Conjecture 1.1 holds. O
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