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ABSTRACT.

A new llow law for anisotropic polycrystalline ice is presented. The

strain-rate tensor is related by a geometrical factor tensor (G) to the stress tensor. The
G factor tensor can he obtained from the c-axis fabric data and stress condition. This
new flow law deseribes well the direction-dependent mechanical properties of
anisotropic ice which cannot be demonstrated by Glen’s {low law. For example, the
new flow law can explain the fact that a strong single-maximum fabric ice, such as Dye
3 Wisconsin ice, can deform several times faster than isotropic ice under horizontal
shear but can hardly deform under vertical or horizontal normal stress. We also show
that at a deeper part of an ice sheet, where a single-maximum [abric develops, a
positive vertical strain rate can be produced with only a horizontal shear stress.

1. INTRODUCTION

lce-sheet modelling and studies on ice-sheet dynamics
carried out so far have been based on Glen’s {low law:

_ A-n—=1_7
U ‘Fth' ”i_; 1

M.

(
A= Apexp —% (1)

where £;; is the strain-rate tensor, 7, is the effective shear
stress, CT:j is the deviatoric stress tensor, (2 is the activation
energy for creep, k is the Boltzmann constant, T' is the
absolute temperature and 7 is a constant around 3. Most
ice-sheet modellers have used this flow law in their
calculations, assuming that the pre-exponential [actor A
depends on fabric, impurity concentration, etc. but not on
coordinate-system orientation. This assumption, however,
is not realistic. Since individual ice crystals have a very
strong plastic anisotropy, Ay does depend on coordinate-
system orientation, if the polyerystalline ice has a
preferred c-axis orientation fabric. Glen’s [low law
(Equation (1)) can be applied for only isotropic
polyerystalline ice which has random c-axis orientation
fabric. It is not applicable to an ice sheet in which a
preferred orientation ol eaxes is developing.

Preferred ec-axis orientation fabrics generally develop
in ice sheets. This fabric development is explained by the
c-axis rotation due to basal-glide deformation (Azuma
and Higashi, 1985; Alley, 1988; Azuma, 1994) and by
recrystallization (Budd and Jacka, 1989; Alley, 1992; Van
der Veen and Whillans, 1994 ). Especially in a deep zone
in an ice sheet or at the margin of an ice stream, very
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strong preferred c-axis orientation fabrics such as a single
maximum develop. To explain the flow properties of such
characteristic fabric ice, it is necessary to derive a new
flow law which takes the flow anisotropy induced by
different orientations ol individual ice crystals into
account. In an experimental study on the deformation
behaviour ol individual crystals under uniaxial stress, we
found the relationships among the c-axis orientation,
strain and stress for individual grains (Azuma, 1995).
Based on this result, a new flow law for polyerystalline ice
in the principal-axes coordinate system was derived
(Azuma, 1994).

In this paper, we modily this low law for the x—y—=
coordinate system to be used more conveniently in ice-
sheet modelling. We also present the enhancement factors
for different deformation patterns, for the case ol a single-
maximum f{abric and that of a small-circle girdle [abric so
that modellers can use them in their calculations. Finally,
we demonstrate that in a deeper part ol an ice sheet,
where a single-maximum fabric develops, unique defor-
mation patterns could be produced, depending on the
mean orientation of the caxes . This paper is concerned
with the ellects of the fabric on the constitutive law of
stress but it does not touch upon its evolution.

2. A NEW FLOW LAW OF ICE
We take &,y and z as the coordinates corresponding to

the horizontal flow direction, the transverse direction and
the vertical upward direction, respectively. Now consider
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the stresses which deform the ice crystals. We assume that
the individual crystals in a polycrystalline aggregate
deform only by basal glide. The total resultant stress
vector Py, acting on the basal plane of an individual
grain is determined as [ollows:

P = F(g) * C(g) (2)

where o, is the stress tensor acting on an individual
grain and c(y) is the unit vector parallel to the ¢ axis of the
grain. The subscript (g) designates an individual grain.
Therefore, the shear stress 7, in the glide direction myy)
on the basal plane is given by

Tig) = Pl Fa = Diggr (e - X e)

= U(g],_,c(g}_,'m(g), = (3)

Now define a second-order tensor

Gy = m) B ¢y (4)
where & denotes the tensor product: G(g) = Myg) C(g) -
Then, with Equations (3) and (4)

) = F(g) * Gy (5)

where the double dot product o, : G denotes
J(g)UG’(g]U. (We shall use Einstein’s summation convention
except where explicitly indicated.)

With the following assumptions, we determine the
strain-rate components in each grain-coordinate system
and convert them to the strain-rate components in the

macroscopic x—y—z coordinate system.

Assumptions
(1) Individual grains deform only by basal glide.

(2) The basal glide of each grain takes place in the
maximum shear-stress direction on the basal plane when
the macroscopic stresses act on the grain.

In an earlier study (Azuma, 1994), the glide direction
of each grain was assumed to be the closest direction to
the macroscopic maximum shear-stress direction in the
aggregate. In this study, to simplify the calculation in the
r—y-z coordinates, we assumed the above glide direction.
This glide direction gives the minimum total deformation

energy and seems to give more realistic deformation of

polycrystalline ice than the earlier assumption.

(3) The stress components acting on an individual grain
and those on the aggregate are macroscopically related as
follows:

(‘
o “e gy (no sum over i,j = x,y, z),
- G(g),‘,
1 &
Gu b = (Go), ) where () = N—IZ : (6)
“g=1

GlL),, is the local geometric tensor and Ny, is the total
number of grains in the local area (L) which includes the
nearest neighbour grains of the grain and the grain itself.
a;j 1s a macroscopic stress tensor acting on the aggregate.
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Equation (6) means that a larger stress acts on a grain
surrounded by softly oriented grains than that sur-
rounded by stiffly oriented grains and a larger stress acts
on the stiffer grain. Equation (6) was originally derived
empirically for the case of uniaxial compression (Azuma,
1994, 1995). Here, we generalize the empirical equation
to an arbitrary macroscopic stress condition,

(4) Shear-strain rate 7, and shear stress 7(, on basal
planes of single ice crystals are related by the following
power-law equation (Weertman, 1983):

L.) —JT(,,J . (7)

3 = ,dn (“(p( kf;_‘)

where ) is a constant, possibly dependent on impurity
concentration and other variables but independent of
stress configuration.

(5) The macroscopic strain-rate component of the
aggregate £;; is equal to the averaged value of the
strain-rate components of individual grains £(,)

1 M

EATZ (8)

where

€= (€,

where Ny is the total number of grains in the aggregate.
Note, in particular, the difference between the two
averages ( ) and (( )). Equation (8) was originally derived
empirically for the case of uniaxial compression (Azuma,
1994, 1995). Here, we generalize the empirical equation
to an arbitrary macroscopic stress condition.

With these assumptions, we now derive a flow law for
anisotropic polycrystalline ice in the r—y-z coordinate
system in ice sheets.

The unit vector my,) in the basal-glide direction can

be determined by assumption (2) as follows:

C(g) X Ty
n[ g} = et . (9)
. IIC(;;! x Ttg)”
Ty =0 Cy, (10)

N(g) X Cg)

my, (]_1)

a [ x c(ﬁ_’;)”

where T,y is a tentative resultant stress on the basal plane
if’ the macroscopic stress o acts on the grain. ng, is the
unit vector normal to a plane on which three vectors
m,), € and Ty lie. The unit vector my, can be
determined with the stress tensor o and the unit vector
o). Hence, the G factor tensor can be calculated with
the c-axis fabric data and the stress condition.
With assumption (3) (Equation (6)), Equation (5) is
expressed as follows:

G,
G =), o i | G,

ii T{E)is

— ZO’;JG“_;” =a. G([_) =T (12)

]

Tle) =9 (g

where we defined 7 as the local shear stress. With
assumption (4), Equations (7) and (12), the shear-strain
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rate on the basal plane in the direction of m(,) is given as
follows:

Y = ,(51'("3) = B(o: G(L))”: rBT(’i) =y (13)

where we defined (1) as the local shear-strain rate. This

result (Equation (13)), which was brought about by

assumption (3), indicates that the shear-strain rates on

the basal plane of individual grains depends on the

anisotropy of local regions surrounding the grains rather

than the orientations of the grains themselves.
Assumption (1) states that

_ 0 g O
€@, =3l 7w 0 0 (14)
0 0 0

where £(g) is the component of €(y) in a grain-coordinate

system €)(=c¢), ey(=m), e;. The components in a
macroscopic coordinate system e, €y, e are given by

E(g)ij = AAE (K (15)

=% a s —_— . .7 —_— i *® L3 i
where e = a;je; and hence apq = €, €q. I'hus,

: Y(g)
E(yij = (azia1; + a1;az)) 7’2

'".f(g)
2
)ﬁ(g) ; (16)

=[(e} - e))(e] - &)) + (€] - &i)(e; - ;)]

:%(:rn.,-cj = c,—m_,-)"y(g) — %(G(g)u =t G(g)

Ji

Define

G =4(G + GE) - (17)

Then, more generally

. Sym - o sym n
€ = Gy Tw = Gy A1y - (18)

With Equation (6), the local strain-rate tensor is
expressed as

€)= (€)= AG )L, - (19)

For a polyerystalline aggregate, we can substitute, as
the first-order approximation, G for Gy and hence 7 for
7(1)- We then obtain the following flow law of ice.

E:' — ﬂGs)'an L T= G_ e Gl= ((G(g}» {20)

where, for the case of reference, we repeat earlier
definitions as [ollows

Gsm :%(G + G[“) . & o= G':jg‘,-j g
i Nt

=53

=1
g : ¢
8 = Poexp (— A;) )

Culh= 1y, 7 (21)

Gy =m; gy ;

Although we showed the stress tensor o in Equation (20),

we could also use the deviatoric stress tensor o’ instead of
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Fig. 1. Typical patterns of a single-maximum fabric (a)
and a small-civele girdle fabric (b). The centre of each
circle corresponds to the vertical axis. The angle ¢ for the
stngle maximum shows the standard deviation of the zenith
angles of caxes. For the small-cirele girdle pattern, the
¢ axes are distributed so that the zenith angle of each c axis
should be p£5°.

o, as Gy + Gy + G.. = 0. This new flow law (Equations
(20) and (21)) demonstrates the direction-dependent
mechanical properties of anisotropic ice, as will now be
described in the following sections.

3. FLOW PROPERTIES OF CHARACTERISTIC
FABRIC ICE

At depth in an ice sheet, a single maximum or a small-
circle girdle pattern generally develops, depending on
the depth and on the stress configuration. The ice with
these characteristic fabric patterns deforms in a different
manner [rom that of isotropic ice. For example, the
single-maximum fabric ice deforms eight times faster
under simple shear, which is perpendicular to the mean
c-axis direction, than isotropic ice (Budd and Jacka,
1989). Shoji and Langway (1988) also found experi-
mentally that the Dye 3 ice core, which has a strong
single-maximum fabric, deforms easily under horizontal
shear but with difficulty under vertical compression.
These direction-dependent mechanical properties of
anisotropic ice can never be explained by Glen’s flow
law (Equation (1)). Below we demonstrate that these
can be described well by the above anisotropic flow law
(Equations (20) and (21)).

Figure 1 shows the typical fabric patterns for a single
maximum and a small-circle girdle. For these typical
fabrics, we calculate the flow-enhancement factors, where
the enhancement factor is defined as the ratio of the strain
rate for a given anisotropic ice to that for isotropic ice,
obtained by this flow law with random (artificial) c-axis
orientation distributions. In the case of the single
maximum, the caxes are distributed as the Gaussian
distribution about the pole. The angle ¢ for a single
maximum shows the standard deviation of the zenith
angles of caxes. For a small-circle girdle pattern, the
caxes are distributed so that the zenith angle of each
caxis should be ¢ £ 5°. For each artificial e-axis distribu-
tion, which has 1000 ¢ axes, the G tensor was calculated
by Equations (20), (21), (9), (10) and (I1) for a given
stress [ield o. Then, the strain-rate tensor £ was
calculated for each. For example, when uniaxial com-
pression and simple shear act on random fabric ice, the
stress tensor and the G tensor become
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Uniaxial compression

00 0 § 00
o=(0 0 0 G=(01 0
00 —o 00 -4

Simple shear
00 o 00 &
o=0 0 0 G=(0 0 0
o 0 0 20 0

Results are shown in Figure 2. The enhancement
factor of the horizontal shear deformation for a single
maximum (HS(SM)) increases to a value of about 8 as
the angle ¢ decreases. On the other hand, the enhance-
ment factor of the vertical compression for a single
maximum (VC(SM)) decreases to zero as the angle ¢
decreases. In the case of a small-circle girdle, the
enhancement factor for the vertical compression
(VCG(SCG)) approaches a value of 5 as ¢ approaches
45" and decreases to zero as ¢ moves away from it. These
theoretical calculations by the new flow law agree well
with the experimental results stated above (Budd and
Jacka, 1989).

1] i
—~HS(SM) |
- VC(SCG) |
Al —O—VC(Sﬂ I

EAE

N W A 0 OO N OO W

ENHANCEMENT FACTOR

i

0 10 20 30 40 50 60 70 80 90

¢ (deg)
Fig. 2. Calculated flow-enhancement factors by the present
Slow law. HS(SM ) indicates the enhancement factor for
horizontal shear deformation of a single-maximum fabric
we. VO(SM) designates the enhancement factor for the
vertical compression of a single-maximum fabric ice.
VC(SCG) is that for the vertical compression of a small-
cirele girdle.

4. FLOW ENHANCEMENT OF DYE 3 ICE

If the stress components and the c-axis orientation fabric
at a given depth in an ice sheet are known, the strain-rate
components there can be calculated by this flow law
(Equation (20)). Dye 3 ice-core fabric data (Herron and
others, 1985; Langway and others, 1988) and the
borehole survey work (Hansen and Gundestrup, 1988)
provide us with good data to examine this flow law.
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Figure 3 shows the enhancement factors of the Dye 3 ice
core calculated theoretically from its fabric data by
Equation (20). Solid circles designate the enhancement
factors for horizontal shear and open circles show those
for vertical compression. Although the vertical strain rates
were not measured, the horizontal strain-rate enhance-
ment factor of Dye 3 ice, obtained from the borehole
survey, indicates that Wisconsin ice below 1786 m is three
times softer than Holocene ice (Dahl-Jensen and Gun-
destrup, 1987). This is in good agreement with the
present theoretical calculation as shown in Figure 3. This
fact supports the applicability of the new flow law
(Equation (20)) for ice-sheet flow. This figure also
predicts that the enhancement factors for Wisconsin ice
are very small for vertical compression. In other words,
Wisconsin ice is very hard for vertical compression.

5. VERTICAL STRAIN RATE OF DEEP ICE

As the magnitude of vertical c-axis alignment increases
(i.e. as the angle ¢ decreases) the vertical strain-rate
enhancement factor decreases as shown in Figure 2. This
means that ice with a strong single-maximum fabric like
Dye 3 Wisconsin ice cannot deform easily under vertical
compression as shown in Figure 3.

Let us calculate the vertical strain-rate profile of Dye 3
with the present anisotropic flow law. We take the z, y
and z axes as the flow direction, the transverse direction
and the upward direction, respectively. We assume plane-
strain conditions, that is, the ¥ component of the strain
tensor is zero. We also assume that o,, and o,. are zero.
Hence, the stress tensor and G tensor are expressed as;

Oz 0 Oz

o= D gy O,

s T G.l‘.f' 0 G.J':
Qo — %(G =Y ) =|0 0 aU
G‘r': 0 G::
7 T T
| ‘ ‘, i’
L e e
o o EHF(VC) | | Lo
Q8 eEHrHs)— T [ £3
L - ‘ H- |
Eal—| | WS ) O S .
= .
w 3 ' = i & i
Q | . ® .
a2 .
% 3 "= s ww ¥ od & . ) ‘ |
. . © il S o
b 1 — ‘Lj_uii | " -] ‘____oo—_.
p & e "o
0 | 9 16%;90
0 400 800 1200 1600 2000
DEPTH(m)

Fig. 3. The flow-enhancement factor of ice from the Dye 3
tce core caleulated by the present flow law using observed
Jabric data. Solid circles designate the enhancement factors
Jor the horizontal shear and open circles show those for
vertical compression.
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STRESS (1E+4 Pa)
4 -2 0 2 4 8
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810 0 b 4
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DEPTH(m)

I
1800—|

1

!

2000"
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Fig. 4. Calculated stress components and the vertical strain-rate profiles at Dye 3. "The horizontal shear-strain rate E.p and
the shear stress o ., in the flow direction al each depth are known from the borehole survey and the surface-inclination data

( Dahl-Jensen and Gundestrup, 1987).

The horizontal shear-strain rate ., (= 0.5du/dz) and
the vertical strain rate £..(= dw/dz) are given as [ollows,
where uw and w denote the horizontal (x direction) and
the vertical (z direction) flow velocity at a given depth.
Thus, Equation (20) implies

O 9,900,020 Gas + 025G+ G + Gor))'
(22)

d‘ﬂ.’ - - ¥ 3

E =€,=0G., (a.r'J'GJ'.z' Vi oy e Gia C':.r)) .

(23)

The horizontal shear-strain rate £., and the shear stress
0., in the flow direction at each depth are known from
the borehole survey and the surface inclination data
(Dahl-Jensen and Gundestrup, 1987). We assume the
artificial c-axis orientation fabric at each depth as
follows: ¢ =80° at 0-1000m, ¢ = 50"at 1000-1786 m,
¢ =107 at 1786-2036 m. These are similar to the
observed fabric development at Dye 3. With this data
sct and assumptions, we can determine a plausible
solution of 0,,, ,, and 0., at each depth so as to satisly
Equation (22). Then dw/dz was calculated from
Equation (23). The results are shown in Figure 4. This
calculation shows that the vertical strain rate drastically
decreases below 1786 m because the caxes almost align
vertically. In this calculation, it is found that no
combinations of .., g, and .. satisfy the jump of
du/dz at 1786m, if the c-axis verticality does not
increase suddenly from ¢=>50" to ¢p= 10" at this depth.
This fact indicates that only a sudden change in fabric
could cause the jump in du/dz.

According to the isotropic flow law (Glen’s flow law),
horizontal shear stress itself never produces a vertical
strain. Vertical strain is caused by vertical deviatoric
stress o.. However, in fact anisotropic ice, like single-
maximum [abric ice, should produce vertical strain alone
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with horizontal shear stress. Figure 5 illustrates this
feature. If the mean orientation of ¢ axes (i.e. the pole of a
single maximum) is inclined with respect to the vertical
axis, normal strain components (£, and g£..) are
produced by horizontal shear stress. The anisotropic flow
law (Equation (20)) can demonstrate this characteristic
flow property of anisotropic ice. We discuss this more
quantitatively below.

Figure 6 shows the ratio of the vertical strain rate to
the horizontal shear-strain rate which is calculated by
Equation (20), by assuming that only horizontal shear

—  flow direction

mean orientation of c-axes
shear stress 4

mean basal plane

z “annual layer

Fig. 5. Anisotropic ice flow at a deeper part of an ice sheet.
If the mean orientation of caxes Is inclined towards
upstream or downstream, even the hovizontal shear stress
alone produces vertical strain.
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-0.2

-0.3

-0.4

60 70 80 90

¢

vertical strain

(deg)

Fig. 6. The ratio of the rate to the
horizontal shear-strain rate which is caleulated by the
present flow law, assuming that only a horizontal shear
stress acts on an ice body. The ratio is shown against the
standard devtation of the angles between ¢ axes and a pole
of single maximum (¢ ) with the tilted angle X. A positive
angle A means that the mean dirvection of caxes inclines
towards downstream. A negative angle X means that the

mean direction of ¢ axes inclines towards upstream.

stress acts on the ice body. The ratio is shown against the
standard deviation of the zenith angles of caxes (@) for
cach inclination angle A of the mean orientation of ¢ axes
(MOC). The positive angle A means that the MOC
inclines towards downstream. This result clearly indicates
that, if the MOC inclines towards upstream, the
horizontal shear in the ice sheet produces positive vertical
strain. This means that, if the annual layer is horizontal,
the annual laver thickness increases with time due to the
shear ice flow.

For Dye 3 Wisconsin ice, we estimated the vertical
strain rate for the inclined MOC with respect to the flow

4.0 ‘ 0
— 1800m 3 —
dwidz
38 |— 1+ =
0 0= 10deg T
N —A=0 = o
w
‘-‘:J, 36 | 2=
N N
o
5 £
T 54 370
32 ‘ -4
0 02 04 06 08 1 12 14
O xx (1E+5Pa)
4.0 | 6
1800m
< © zx=72kPa 5
-'-'T 30 4 :-NT
o ©
w w
b5 3
-E 20 2 E‘
32 178
1
1.0 ; - 0
0 02 0.4 06 08 1 12
o . (1E+5Pa)

du/dz (1E-2 /a)
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direction. Figure 7 shows one example for 1800 m depth.
In ice sheets the real stress field is complicated. To
simplify, we assume a plane-strain condition as above. To
satisly this condition for a single-maximum [abric ice like
Dye 3 Wisconsin ice, the present flow law requires a
uniaxial stress (o', = —20’_:',_“ = —2¢,) in addition to the
shear stress o., as can be seen in Figure 4. For three
different inclination angles of MOC (A =07, 5° and —5°),
the horizontal shear-strain rate du/dz and the vertical
strain rate dw/dz were calculated for various values of @’
From Figure 7 it is found that positive vertical strain rates
of the order of 10 *a ' are produced if’ A =-5°, while
negative vertical strain rates of the order of 10 a ! are
produced when A =5 This means that the inclination
angle of MOC! is very important for describing the vertical
flow of deep ice. Detailed ice-fabric studies on Dye 3
Wisconsin ice reveal that the MOC inclines about 5-15°
from the core axis, depending on depth (Langway and
others, 1988). Although the core axis is not vertical and
inclines at most 6° near the bottom, the mean direction of
caxes definitely inclines several degrees from the vertical
axis. Unfortunately, due to lack of information on the
geographical orientation of the Dye 3 core, the vertical

strain of Wisconsin ice cannot be discussed in detail,

Atdepth, the MOC varies slightly in the horizontal and
the vertical directions. If the MOC varies in the vertical
direction (Fig. 8a), the layers with positive A become
thinner with time while the layers with negative A become
thicker with time by horizontal shear. This suggests a
heterogeneous layer thinning. If the MOC varies in the
horizontal direction (Fig. 8h), even initially horizontal
layers could produce layer folding or boudinage.

6. CONCLUSIONS

The generalized flow law (Equation (1)), which has been

7.0 0
[ 1800m  — o 7x=72 kPa =
0 2
. ¢= 10deg 9 =
A= 5deg du/dz $
5.0 - B/ =
N
s
4.0 -9 3
| dw/dz
3.0 — : -12
0 02 04 06 08 1 12
o ,, (IE+5Pa)

mean orientation
of c-axes

vertical axis

Fig. 7. Vertical strain rate dw/dz and horizontal shear-strain rate du/dz ( calculated by the present flow law ) versus o',
at Dye 3 1800 m depth. Results for three different inclination angles X of the MOC are given: 07, 5 and 5.
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shear deformation

——————e T

¢ annual layer

Y _mean orientation
r OT C-axes

layer thinning

layer thickening

shear deformation

L —

mean orientation

of c-axes annual layer

’ |

Fig. 8. Expected characteristic deformation of annual
layers caused by the spatial variation of the MOC. If the
MOC wvaries vertically (a), both layer thinning and
thickening can occur depending on the direction of the
MOC. If the MOC varies hovizontally (b), layer folding
or boudinage could occur.
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used in all ice-flow calculations, is not appropriate for
studies of ice-sheet dynamics because the polycrystalline
ice in ice sheets has a strong plastic anisotropy caused by a
preferred c-axis orientation. In this paper, a new flow law
for anisotropic ice observed in the deeper parts of ice
sheets has been derived. This flow law is simply expressed
with the strain-rate tensor, the stress tensor and the
geometric factor tensor (G), which is determined by using
the c-axis fabric data and the stress condition. This flow
law can describe well the direction-dependent mechanical
properties of anisotropic ice which can never be explained
by Glen’s flow law. The flow-enhancement factors for
anisotropic ice calculated by this flow law agree well with
the experimental results and field observations. We also
show that anisotropic ice in the deeper parts of ice sheets
deforms in a manner different from isotropic ice. This
may significantly affect flow-model dating of an ice core
and the ice-sheet dynamics.
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