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COBOUNDARY EQUATIONS OF
EVENTUALLY EXPANDING TRANSFORMATIONS

YouNG-Ho AHN

Let T be an eventually expansive transformation on the unit interval satisfying the
Markov condition. Then T is an ergodic transformation on (X, B, 1) where X = [0, 1),
B is the Borel o-algebra on the unit interval and g is the T invariant absolutely
continuous measure. Let G be a finite subgroup of the circle group or the whole circle
group and ¢ : X — G be a measurable function with finite discontinuity points. We
investigate ergodicity of skew product transformations Ty on X x G by showing the
solvability of the coboundary equation ¢(z)g(Tz) = Ag(z), |A| = 1. Its relation with
the uniform distribution mod M is also shown.

1. INTRODUCTION

Let (X, B, 1) be a probability space and T be a measure preserving transformation
on X. A transformation T on X is called ergodic if the constant function is the only
T-invariant function and it is called weakly mixing if the constant function is the only
eigenfunction with respect to T. A measure preserving transformation T is called exact

if ﬁ T-"B is the trivial o-algebra consisting of empty set and whole set modulo measure
ze'rlaosets. So exact transformation are as far from being invertible as possible. Recall
that if a transformation is exact then that transformation is weakly mixing ([11]).

A piecewise differentiable transformation T : [0,1) — [0,1) is said to be eventually
ezpansive if some iterate of T has its derivative bounded away from 1 in modulus, that
is, |(T")'| > 1 everywhere for some n. Let {A;} be a countable (or finite) partition of
the unit interval [0,1) by subintervals. Suppose that an eventually expansive map T on
the interval [0, 1) satisfies

(i) T|mea, has a C?-extension to the closure of A;,
(ii) Tl a, is strictly monotone,
(iii) T(A;) = [0,1], and in the case that the number of subintervals in the
partition is infinite

(iv) sqp{ sup IT”(Il)I/ inf '|T1(12)|2}<oo.

1 z1€Int A; z2€Int A;
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Then it is well known that there exists a measure p which is (a) T-invariant, (b) exact,
and {c) finite and of the form du = p(x) dz where p is continuous and 1/C < p < C for
some C > 0 ([1, 3, 4)).

The conditions of the above fact can be modified in several ways. One modification
is called the Markov condition, when the number of sets in the partition is finite and
T_(AJ is a union of A;. In this paper, let T be the unit circle in the complex plane,
T={z€eC:|z|]=1}.

In [9], Siboni consider the skew product transformation Ty, on the torus, [0,1)
x [0,1) defined by

(z,y) — (2z,y +az +w) (mod 1).

He proved a criterion for the ergodicity of the transformation by accurate estimation of
correlations of characteristic functions.

Let T be an eventually expansive transformation on the unit interval satisfying the
Markov conditions. Then T is an exact transformation on (X, B, 1) where X = [0,1),
B is Borel g-algebra on the unit interval and p is the T invariant absolutely continuous
measure. Let G be a finite subgroup of the circle group or the whole circle group T
and ¢ : X — G a measurable function with finite discontinuity points. In this paper
we investigate ergodicity of skew product transformations T, on X X G by showing the
solvability of the coboundary equation ¢(z)g(Tz) = Ag(z), |A| =1 and we give a simple
proof and generalisations of Siboni’s results, see Proposition 3.

Let X = {z: 0 < z < 1} be the compact group of real numbers modulo 1, and let
# € X be irrational. The numbers j8, j = 0,%1,..., comprise a dense subgroup of X.
For each interval I € X and n > 0 define S, = S,(6,I) to be the number of integers
j, 0 £ j € n— 1, such that j¢ € I. By the Kronecker-Weyl theorem lim S,/n = p(I),
where p is Lebesgue measure on X ([6]). Veech [10] was interestedni_;loothe behaviour
of the sequence {d,} of parities of {S,}, that is, d, is 0 or 1 as Sy, is even or odd. He
investigated the existence of the limit

uo(D) = lim — Z dn,

and he showed that a necessary and sufficient condition for ug(I) to exist for every
interval I C X is that 8 has bounded partial quotients. He also showed that d, is evenly
distributed if the length of the interval is not an integral multiple of # modulo 1.

In this paper, we are interested in the uniform distribution of the sequence d,
€ {0,...,M — 1} defined by

do(z) =Y 15(T*z) (mod M)
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for eventually expanding transformations, particularly for generalised L-covering maps
(which will be defined in section 3) and for Gauss transformation on the interval. Here
1g(z) denotes the indicator function of £ C X.

To investigate the sequence {d,,(:l:)}, we consider the behaviour of the sequence
exp((2mi/M)dn(z)) and check whether this sequence is uniformly distributed on the
finite group G generated by exp((27i)/M). Weyl’s criterion for uniform distribu-
tion says that the sequence exp((27r1,/M .(z)) is uniformly distributed if and only if

Jim Z /N exp*((2mi/M)dn(z)) = O for all 1 < k < M —1 ([6]). We investigate this
—)mnzl

problem from the viewpoint of spectral theory. Let (X, 1) be a probability space and T
be an ergodic measure preserving transformation on X, which is not necessarily invert-
ible. Let ¢(z) be a G-valued function defined by ¢(z) = exp((27i/M)1g(z)). Consider
the skew product transformation Ty on X x G defined by Ty(z, g9) = (T'z, ¢(z)g). Then

A}i_r}noo N Z ex (—d z)) hm — Z Ur, f(z,2)

where Ur, is an isometry on L?(X xG) induced by T and f(z, 2) = 2*. If Ty is ergodic, we
may apply Birkhoff’s Ergodic Theorem to f to deduce that hm 1/N Z exp* ((2mi/M)d,
(z)) = 0, Recall that the dual group of G consists of the 'yk(z) =2 for 0SSk M-1.
Hence L?(X x G) = @ L*(X) - 2* and each L*(X) - 2* is an invariant subspace of Ur,.
If f(r,2) € L*(X,G) then f(z,2) Z fr(z)z*, and

Ur,f(z,2) = 3 ¢"(2)fu(Tz) - 2

0

S

x
]

Hence, if f is an eigenfunction with eigenvalue A we have ¢*(z)fi(Tx) = Afi(z) for all
k. Recall that a nonconstant function h(z) is called a coboundary if h(z) = q(Tz)q(z),
lg(z)| = 1 almost everhwyere on X.

In [2], Ahn and Choe considered the case when T is an (1/L,...,1/L)-Bernoulli
transformation and show and that if E is a cylinder set with the same missing initial
digit and M = 2, then the sequence {d,} is evenly distributed. In this paper, we show
that for all generalised L-covering maps and Gauss transformation on the unit interval,
the sequence {d,} is uniformly distributed and that compact group extension by ¢(z) is
exact.

2. COBOUNDARY EQUATIONS

Let (Y,C, i) be a probability space, f € L!(Y,C, u) and B C C a sub o-algebra. We
denote by E(f | B) the conditional expectation of f with respect to B. Recall that this
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is a B-measurable function g with the property that [, fdu = [, gdp for all B € B. Let
S be a transformation defined on Y and B be ezhaustive that is, S'B C B and S™B 1 C
as n — +o0o. The Martingale Convergence Theorem says that E(f | S"B) converges to
f almost everywhere and in L' (Y,C, n) asn — +oo for f € L}(Y,C, i)

LEMMA 1. Let S be a measure preserving transformation on (Y,C, 1), and B be
an exhaustive o-algebra B C C, and let ¢ : Y — T be a B-measurable map to the circle
group T. If ¢ : Y — T is a C-measurable solution to the equation ¢ - go S = g, then q is
B-measurable.

ProoF: We follow an idea of Parry in [8]. Applying the conditional expectation
operator E(- | B) to the equation

(*) $-goS=gq

we obtain ¢- E(goS | B) = E(q | B) or ¢-E(q | SB)oS = E(q | B). Multiplying this with
the inverse of (x) we have q(v) - E(q | B)(y) = ¢(Sv) - E(q | SB) 0 S(y) almost everywhere
so that [, 7-E(g | B)du = [, - E(q| SB)dp. By exactly the same argument, using S™B
in place of B, we have [, 7- E(q| S"B)du= [,3- E(q| S™'B)du so that [, g- E(q |
B)du = [, G- E(g | S"B) du. Taking limits, we get [, §- E(q | B)du = [, |g|?dy. Thus
E(q | B) = g almost everywhere, and ¢ is B-measurable. 0

PrROPOSITION 1. LetY = [[{0,1,...,L — 1} where L < oo and let o be the

shift map on Y with g-invariant measure u. Let P denote the state partition {P,c : B
={z:z9=4k} for 0K k< L-1}, andlet B® =\ 0P for | < m. Assume that

i=l
#(z) is a T-valued B]" measurable function. If g(z) is a T-valued solution of the equation,
#(z)g{oz) = g(z) then g(z) is also a B]* measurable function.
oo .
PRrROOF: Let B = \/ 07*P. Then ¢(z) is B measurable and B is exhaustive with

i=l
respect to o. Since ¢(z)g(oz) = g(z), g(z) is also B-measurable by the above Lemma.

Now let A= \/ o*P. Then ¢(c~'z) is A measurable and A is exhaustive with respect
1=—m -1

to o~!. Since ¢(z)g(cz) = g(z) can be rewritten as ¢(0~'z)g(z) = g(o~'z), that is,

o(o07'z)g(o~1z) = g(z), g(z) is also A measurable by applying the above Lemma to the
map o~ !. Hence the conclusion follows. 0

3. THE INTERVAL MAPS AND SYMBOLIC DYNAMICS

In this section we apply the previous result to Markov maps. Consider the be-
haviour of the iterates of a map 7 of the unit interval to itself. We also assume that 7 is
noninvertible and piecewise continuous. Here are several well-known examples:

(a) 7(z) =2z (mod 1);
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(b} 7(z) =Bz (mod 1), (1+V5)/2;
(c) Gauss transform T(.’E) = l/x (mod 1).

For each of these transformations explicit formulas are known for absolutely continuous
invariant measures:

(a) the Lebesgue measure dz;

(b) du=pBdz,0<z< 8 ,anddu=dz, B! <z <1;

(c) the Gauss measure du = (1/log2)dz/(1 + z).

DEFINITION 1: Let 7:[0,1) = [0,1) 0 =ag < @ < --- < ar =1, and let {[;}}75

be a partition of [0,1) with I; = [aj,a;4+1), 0 < § € L — 1 € 0o. Assume that 7 satisfies

(1) 7|t 1,, the restriction of 7 to interior points of I;, has a C?-extension to the

closure of I;,
(2)  Tl|mtr, is strictly monotone,
3) 7(L) = [0,1], and, in the case where L = oo

(
(4) sup{ sup |7"(z1)|/ inf |T’(:L‘2)|2}<OO.

z1€lnt I; z2€Int I;
Suppose that for some n, |d7"/dt| > 6 > 1 for all t. If we regard the above map 7 as
being defined on the unit circle, its winding number equals L. We call it a generalised
L-covering map.
It is known that 7 has a finite ergodic measure p(z)dz where p(z) is piecewise
continuous and 1/D < p < D for some D > 0. See [1, 3).

Given a generalised L-covering map 7, construct an one-sided shift space on L
symbols as follows: To each t € [0,1) there corresponds a one-sided infinite sequence
[a0, @1, - ,an,...] such that 7(t) € I,,. For some t € [0,1), we can find N such that its
representation ¢ = [ag, ay, ..., @y, ... satisfies the condition that a, = 0 for all n > N.
We call such a t a generalised L-adic point. Let X be the set of all such sequences and
1 be the assignment of a sequence to a point. Since 7 has a finite absolutely continuous
ergodic measure p(t) dt, we can define a shift invariant measure v on any cylinder set
cc ﬁ{O 1,. -1} by v(C) = fw 1(c) P(z) dz. Note that %~ 1(C) is a union of inter-
vals w1th generallsed L-adic endpoints. The Kolmogorov Extension Theorem guarantes
that v may be uniquely extended to the whole o-algebra. We call the shift space X the
L-adic symbolic system obtained from T. Recall that two measure preserving transfor-
mations Ty and T5 on X, and X, are said to be isomorphic if there exists a measure
preserving transformation ¥ : X, — X, which is one-to-one such that ¥y o T} = T o ¥
on X, modulo sets of measure zero. The mapping ¢ introduced above is an isomorphism
between ((O, 1), pdt, 7‘) and the one-sided shift space (X, dv, o).

Our construction also applies even if the condition (3) in Definition 1 does not hold.
For example, the interval map z — Bz (mod 1), 8 = (1++/5)/2 has the following special
property: Put Iy = [0,871), [, = [87',1). If z € I, then 7z € I;. In other words, in
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any sequence [y, Zy,. .., Ty, - .| the symbol 1 does not occur consecutively. Hence in this

case X would not be the full shift [J{0,1}. In fact, it is a shift of finite type with a
forbidden block 11. See [1]. o

DEFINITION 2: An L-adic multi-indez 7 is a finite sequence of elements of {01 ...,
L — 1} and will denote by 7 = (ny,...,n) Its length k is denoted by |7|. If there is no
danger of ambiguity we call it a multi-indez. If || = 1, then @ = (ny) for some ng, and
we write 77 = ny.

Let 7 be a map as given in Definition 1. Define h; : [0,1) — [0,1) by letting A;(¢)
be the unique element in the set 7~!({t}) N I;, i = 0,1,...L — 1. Note that 7 1({t})
= {ho(t), h1(t),... . hp—1(t)}. For a multi-index 7@ = (n;,...,nx), define hg = hy, 0...0
Py -

For example, consider the transformation 7(z) = 2z (mod 1) defined on the unit
interval with the partition {[O, (1/2)), [(1/2), 1)} Since every t € [0,1) can be repre-
sented as a binary expansion, say t = [t1,y,.. ], ho(t) = (1/2)t = [0, t1, 23, .. .] and hy(2)
(1/2) + (1/2)t = [L,t1,t2,...]. Hence hi(t) = [i,t1,t2,..] for 4
= 0,1. So hi(t) = [n1,...,n%,t1,t2,...] where i = (ny,...,n). In particular,

E

hﬁ(O) = [Tll, cen ,nk] = Z 'n,j2'-".
Jj=1

From Definitions 1 and 2 we easily obtain

LEMMA 2. Putii=(ny,...,n). Let 7 and h; be as given in Definitions 1 and 2.
Then
(1) 775({t}) = {ha(t) : |7i] = K},
2) 7F(ha(z)) = z where k = ||,
3) ha(lay,aa,..)) =[n,...,nk,01,09,...], and
)

(4) 77¥E)= U ha(E) for any subset E.
Iil=k

—~ o~

For any fixed integer k£ > 0 let P§ be the set of numbers of the form [a, ..., a],
a; = 0,1,...,L — 1 so that the points in P¥ partition the whole interval [0,1) into L*
segments. Then (i) hz([0,1)) is one of the L* intervals obtained by partitioning the unit
interval by the points in P§, k = |7i] and (ii) if z € hz([0,1)), 7 = (n1, ..., n), then the
coded sequence for z is [ny, ..., Nk, .. .).

PROPOSITION 2. A complex valued step function ¢(z) with finite generalised
L-adic discontinuity pointsay € t; < ... < t, < 1, is not a coboundary for any generalised
L-covering map.

PRrROOF: Let (X, 0y, v) be the one-sided shift space which is isomorphic to the given

o0
L-covering map. Let Y = [[{0,1,...,L — 1}, oy the two-sided shift and x the unique
-00

measure on Y so that (Y, oy, u) is the natural extension of (X, oy, )
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Assume that ¢(z)h(rz) = h(z). Since ¢(z) is step function with finite L-adic dis-
continuity points, we can regard ¢(z) is function on Y which is measurable, with respect
m

to B = \/ 07*P for some m < oo (Lemma 2). Hence h(z) is also Bg*-measurable by
i=0

Proposition 1. Thus h(z) is also a step function with finite L-adic discontinuity points.

Hence there exists 0 < r < a; such that h(z) is constant on [0,7). Thus ¢(z)h(z) = h(z)

on [0,7), that is, ¢(z) = 1 on [0,¢,). Since ¢(z)h(7z) = h(z), t; = ay and 7[0, ay) = {0, 1),

h{z) is constant on [0,1). Hence the conclusion follows. 0

EXAMPLE 1. For a transformation T : {0,1) — [0,1) defined by z ~ 2z (mod 1),

o0

we consider the following. Let I = [(3/4),1), F = J(1/2*)] and E = F o T~'F.
k=0
Then ¢(z) = exp(m‘lE(x)) is a coboundary even if the discontinuity points of ¢(z) are

contained in [(1/2),1) where the cobounding function h(z) = exp(milp(z)). Hence the
assumption in Proposition 2 of finite discontinuity points cannot be dropped.

4. A CLASS OF SKEW PRODUCTS OF CIRCLE ENDOMORPHISMS

In this section, we investigate the dynamical properties of a class of skew products
of circle endomorphisms.

DEFINITION 3: For a positive integer L, let T ,, be the skew-product transfor-
mation on the torus, [0, 1) x [0, 1) defined by

(z,y)~ (Lz,y+ax +w) (mod1).

In [9), Siboni considered the skew product transformation T3,,. and proved a cri-
terion of ergodicity of the transformation by the accurate estimation of correlations of
characteristic functions. In this section, we shall give a simple proof and generalisation
of his results.

For a fixed natural number L, let T be the transformation on X = [0, 1) defined by
Tz = Lz (mod 1).

LEMMA 3. Let S and S’ be transformations of the torus defined by

S(z,y) = (Lz,y +az) (mod1l) and

L1
4 ka
S'(z,y) = <L:c,y + Z T 11((k/L),(k+1/L))(x)> (mod 1).
k=0

Then S and S’ are isomorphic.

PROOF: We will use the L-adic expansion of z; z = (zo/L) + (1/L?) + ---. Let
8(z,4) = (@ + (/L — 1)z) (mod 1). Then ¢*(z,y) = (z,y — (/L ~ 1)) (mod 1)
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and
o7 'Sh(z,y) = ¢! (Lz, y+az+ v a_ 1:1:)
= (Lz,y+az + ——z — —> (Lz — k) ifzg =k
=\ I-1" I-1 0=
Loy+—2") ifz, =%
Zz,y -1 U Ty=
= S'(z,y).
0
Hence to investigate the spectral type of S, we only need to study the spectral type
of §'.

PrROPOSITION 3. T, is weakly mixing if and only if a is irrational. Further
if a is rational then T} ., is ergodic if and only if w is irrational.

PRrROOF: For convenience, let us denote the 2-torus by X x T. As before, we use the
o0
L-adic expansion of z. Recall that L*(X xT) = @ f(z) 2"

Let n(z) = exp(2mi(az + w)), ¥(z) = exp(2;;1_xo)°and é(z) = exp(2mia(zo/L — 1)).
Then
Ur,(f(z) - 2*) = exp(2minaz) - exp(2minw) - f(T'z) - 2"

"We consider the operator
U(f(z)) = exp(2minaz) - exp(2minw) - f(T'z).

If n =0, then U(f(z)) = f(T'z). Thusif f(Tz) = Af(z) then f(z) is constant and X = 1
by the mixing property of T. Hence it remains to consider the case n # 0. Assume that

U(f(z)) = Af(z). Then
exp(2ninaz) exp(2ninw) f(Tz) = A f(z)

and |A| = 1. Without loss of generality we may assume that |f (z)| = 1 almost every-
were. So exp(2minaz) = X f(Tz)f(z), where ) = Xexp(—-2minw). By Lemma 3, Uy, is
spectrally equivalent to UT¢ and Ur, also has an eigenfunction g(z) with eigenvalue X,

that is, M exp (27rm Z (ka/L — 1)1ik/L)(k41/L)) (T )) = g(Tz)g(z). If a is an irrational

number, then there ex1sts the only integer n for mention.
L-1
- ka
X exp| 2min

is constant is n = 0. Hence by Proposition 2, there exists no eigenfunction for Ur,. If a

L{(k/L),(k+1/L)) (1‘))

L-1
is rational then there exists n such that exp (21rin > (ka/L - 1)1[(,:/1,),(;:.,.1/,,))(25)) =1.
k=0
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So the problem is reduced to finding g(z) such that g(Tz) = Ag(z). By the mixing
property of T we know that g(z) is constant and X' = Mexp(—2minw) = 1 for each
n # 0. So Ur, has eigenfunction g(z,z) = 2" with eigenvalue A = exp(27winw). Hence
T1 o is not weakly mixing. For the ergodicity, we need only consider the case A = 1,
that is, exp(2ninw) = 1. Hence if @ is rational, then Ty 4, is ergodic if and only if w is
irrational. 0

REMARK 1. Indeed we have shown that if a is irrational then Tj ,,, is exact on the

torus. In fact, Ty 4. is strong mixing. To see this, let B; be the Borel o-algebra on [0,1),
[o.]

B, be the Borel o-algebra on T and By, = [ Tp :,w(31 X Bs). We only need to show
n=0

that L?(By) is the set of constant functions. We use the fact that Tp, ., commutes with
the circle action (z,z) = (z,z - g) so that for every n the o-algebra T, ; (B x B,) is
preserved by the circle action. Hence By, is invariant with respect to the circle action. If
f € L*(By) then it has a representation

f@,2) =3, fula) - 2

and f(z,z-9) = Y, fu(z) - 2¥ - g% for all g € T. Hence fi(z) - 2* € L*(Bs). So
|fu(z) - 2¥| = |fi(z)] is also By measurable. But |fi(z)| depends only on z. Hence
| fk(z)| is constant by the exactness of T. By a similar argument f - fi o Tpew is also
constant, that is,

exp(2mikaz) - exp(2nikw) - fi(Tx) - 2F = Afi(z) - 2*

where A € C. Thus if Ty, ,,, is weakly mixing then T} ., is exact. For more information
on this subject, see [5].

5. MOD M NORMALITY OF L-COVERING MAPS

In this section, let G be the finite subgroup of T generated by exp(2wi/M).

PROPOSITION 4. Let T be an ergodic transformation on X and ¢(z) be a
G-valued function. Let T, be the skew product transformation defined by Ty(z,g)
= (Tz,4(x) - g) on X x G. If $(z)h(Tz) = h(z), then there exists a G-valued func-
tion q(x) such that the following diagram commutes

XxG —25 XxG

o Je
XxG —25 XxG
where Q(z, g) = (z,q(z)- g) and S(z, g) = (T'z, g). Hence Ty has M ergodic components.
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PROOF: Since (¢(a:))M =1, (¢(z))M(h(T:1:))M = (h(a:))M is equivalent to (h(Tz))™
= (h(:c))M. So we may assume that (h(z))M =1 by the ergodicity of T. Hence there
exist a G-valued function g(z) such that ¢(z)q(T'z) = g(z). For g(z), of this for it is easy
to see that the diagram commutes. 0

LEMMA 4. Let T be piecewise, twice continuously differentiable and such that
zingl,T,(z)I > 1 where J; = {z € X : 7'(z)exists}. If the number of discontinuity points
of 7 of ' is finite, then there is a finite collection of sets Ly, ..., L, and a set of invariant
functions {f1,..., fa} such that

(1) each L;(1 < i £ n) is a finite union of closed intervals;

(2) L:NLj contains at most a finite number of points when i # j;

(3) fi(z)=0forz ¢ L;,1 <1< n, and f;(x) > 0 for almost everywhere z in
L;;

(4) le filz)dz=1for1 <ign;

n

(5) every 7 invariant function can be written as f = ). a;f; with suitable
=1
chosen {a;}.

PROOF: For the proof, See [7]. 0

PROPOSITION 5. If a G-valued function ¢(z) is a step function with finite dis-
continuity pointsa; € t; < --- < t, < 1, then ¢(z) is not coboundary for any generalised
L-covering map.

PROOF: Assume that ¢(z)h(Tz) = h(z). Without loss of generality assume

M-1

that X = [0,1). Since X x G = (J {X x exp((2k7ri)/M)}, we may identify
k=0

{X x exp((2k7ri)/M)} with the unit interval [k,k + 1), 0 < k < M. Since ¢(z) is
a G-valued step function with finite discontinuity points, we can regard T, as a piece-
wise continuous map on [0, M) satisfying the condition of Lemma 4. So we can say that
h(z) is also a G-valued step function with finite discontinuity points by Lemma 4 and
Proposition 4. Hence there exists 0 < r < a; such that h(z) is constant on [0,7). Thus
#(z)h(z) = h(z) on [0,7). So h{z) is constant on [0,1) by the argument of the proof of
Proposition 2. The conclusion follows. 0

REMARK 2. In Proposition 5, we have not assumed that the discontinuity points are
generalised L-adic points, but rather that the range of ¢(z) is contained in a finite
subgroup of T. For generalised L-covering maps, mod M normality holds for finite
unions of intervals, when the associated step function ¢(z) step satisfies the condition of
Proposition 5. Indeed we may also show that the skew product transformation induced
by ¢(z) is also exact on X x G, as in fact strong mixing, using the similar arguments, to

those in Remark 1.
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6. MoOD M NORMALITY OF GAUSS TRANSFORMATION
Recall that the Gauss transformation T on [0, 1) is defined by
0 if z=0
T(z) = 1, v
= if z#0 (mod 1).

It is well known that T preserves the Gauss measure on [0, 1) given by

1 1
A) = —
1(4) g3 ), 1+2 "

Let P = {P;} be a partition on [0,1) defined by P; = [(1/j +1),(1/j)) for j € N.

PROPOSITION 6. Let {B;} be a sequence of intervals of [0,1) with rational
endpoints and {b;} be a sequence of real numbers. Then a nonconstant function ¢(z)

n
=exp| 271 Y b;1p,(z) | is not a coboundary for the Gauss transformation.
i=1

00 oo
Proor: Let Y = []{1,2,...} and Y* =[][{1,2,...}. Consider the following com-
Zoo 0

mutative diagram

. [0,1) — [0,1)

9] |v

Y+ at y Y+

where ((z)), = jif T*z € P; fori € N. Then ¢ is a an isomorphism between ([0, 1), T, )
and (Y*,0%,v*) where v* is the induced measure by ¢ and o% is the one-sided shift
map on Y*. Let (Y,0,v) be the natural extension of (Y*,0%, v*) where o is the two-
sided shift map on Y. If ¢(z)g(Tz) = g(z) then g(z) is also step function with rational
discontinuity points and there exist an interval I with rational end points such that ¢(z)
is constant on I by the arguments of Proposition 1. Since T"I = [0,1) for some n,
#(z) is a function with finite discontinuity points, and ¢(z)g(Tz) = g(z), g(z) is also
a function with finite discontinuity points. Since ¢(z)g(Tz) = g(z) can be rewritten as
#(z) = 9(z)g9(Tz), ¢(z) must be a function with infinite discontinuity points. this is a
contradiction. 0

REMARK 3. By Proposition 6, mod M normality holds for finite union of intervals with
rational end points on Gauss transformation. By the similar arguments as in Remark 1,
the induced skew product transformation on X x G is also exact.
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