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Abstract. A zero set of a holomorphic vector field is totally degenerate, if the endomorphism of
the conormal sheaf induced by the vector field is identically zero. By studying a class of foliations
generalizing foliations of C�-actions, we show that if a projective manifold admits a holomorphic
vector field with a smooth totally degenerate zero component, then the manifold is stably birational
to that component of the zero set. When the vector field has an isolated totally degenerate zero, we
prove that the manifold is rational. This is a special case of Carrell’s conjecture.
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1. Introduction

Let X be a complex projective manifold and V be a holomorphic vector field
on X . For a component Z of the zero set of V , we have an induced OZ-linear
endomorphismLV on the conormal sheaf IZ=I2

Z . We say thatZ is nondegenerate,
if LV has non-zero determinant at every point of Z . Using the Bialynicki-Birula
decomposition ([BB]), Lieberman showed in [L] that if all zero components of V
are nondegenerate, then there exists a component Z of the zero set, such that X is
birational to Z � Pr for r = codim(Z).

It is expected that a similar result holds for arbitrary holomorphic vector fields.
But without the nondegeneracy assumption, very little is known. In this paper,
we will study the other extreme case, namely when the map LV on the conormal
sheaf of Z is zero. In this case, we say that Z is totally degenerate. If V has an
isolated zero, it is totally degenerate if the linear part of the vector field at that point
vanishes. For example, consider a vector field induced by an additive group action
on the projective plane with a single fixed point, i.e. a vector field corresponding to
a nilpotent matrix with a single Jordan block. If we blow-up the plane at the single
fixed point, we get a vector field with an isolated totally degenerate zero. Our main
result is

COROLLARY (to Theorem 2). Suppose that a projective manifold X has a holo-
morphic vector field a connected component of whose zero set is smooth and totally
degenerate. Then X is stably birational to that component.
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By definition, projective manifolds X;Y are stably birational, if X � Pp is
birational to Y �Pq for some positive integers p; q. Similarly, a projective manifold
is stably rational, if its product with some projective space is rational. As a direct
consequence of the above theorem, if a projective manifold has a holomorphic
vector field with an isolated totally degenerate zero, it is stably rational. But in this
case, we can refine our result to

THEOREM 3 Let V be a holomorphic vector field on a projective manifoldX with
an isolated totally degenerate zero P . Then X is rational.

This result is a special case of Carrell’s conjecture ([C]) that a projective mani-
fold having a holomorphic vector field with finite number of zeroes is rational. In
fact, it is easy to see that a holomorphic vector field with an isolated totally degen-
erate zero has no other zero (see the proof of Corollary). So a proof of Carrell’s
conjecture would imply our result. Note that Carrell’s conjecture was proved for
dimension 6 5 in [H2].

Carrell’s conjecture is true if the vector field is induced by aC�-action. To prove
the conjecture, it is enough to prove it under the assumption that the vector field
is induced by an additive group action and there exists just a single zero point.
So far, most results on Carrell’s conjecture are proved by reducing the problem to
C
�-action case using some additional assumptions ([C], [K]). For example, Konars-

ki proved it under the assumption that the linear part of the vector field at the isolated
zero consists of a single Jordan block ([K]). But such a reduction is very difficult,
if the vector field has no linear information. In this sense, our result takes care of a
bad case.

The main idea of this paper is, instead of reducing the problem to C�-case,
extracting the key property of the foliation defined by a C�-action, to define a
more general class of foliations ‘semisimple foliations’. Then we construct a blow-
up procedure for this special class of foliations, which is similar to the blow-up
procedure introduced in [H2] for an additive group action. The problem is whether
the foliations on the blow-up of the manifold at the totally degenerate zero belong
to this class. This can be done based on our earlier result in [H1]. For the isolated
totally degenerate case, the rationality can be obtained by studying the structure of
a semisimple foliation on the projective space.

2. Birational geometry of semisimple foliations

We recall basic notions in foliations by curves and introduce semisimple foliations.
A 1-dimensional foliation with singularity on a complex projective manifold

X is a nontrivial map � : L ! TX from a line bundle to the tangent bundle. The
subscheme Sing(�) defined by � = 0 is called the singular loci of this foliation.
� induces a foliation on the complement of Sing(�). If every leaf of this foliation
can be compactified to a rational algebraic curve in X , we say that � is a foliation
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by rational curves. A rational curve compactifying a leaf will be called an integral
curve of �.

A foliation � : L ! TX is said to be saturated if Sing(�) has no component
of codimension 1. If Sing(�) contains a divisor D, we get a new foliation 1

D
� :

L(D) ! TX divided by a local defining function of D. Here L(D) is the tensor
product of L with the line bundle corresponding to D. If � is not saturated, by
an irreducible component of Sing(�), we mean an irreducible component of either
the underlying subvariety of Sing(�) or the underlying subvariety of the foliation
obtained after divided by the codimension one part.

A foliation � by rational curves on a complex projective manifoldX is semisim-
ple, if there exists an irreducible component Z of Sing(�) and a proper subvariety
Z 0 � Z , with the following properties:

(1) For any pointP 2 ZnZ 0, we can find a local coordinate system z1; : : : ; zn; n =

dim(X) for X in a neighborhood of P , such that in that neighborhood, the
foliation is tangential to a vector field of the form �1z1

@
@z1

+ � � � + �lzl
@
@zl

where l � n and �i is a positive integer for each i = 1; : : : ; l.

(2) Let � : P1 ! C be the normalization of a generic integral curve. Then the set
��1(Z n Z 0) is a single point.

We will callZ a semisimple limit variety of the semisimple foliation. When we say
a generic point of Z , we mean a point on Z nZ 0. Note that if the coordinate system
in Condition 1 exists for a point P 2 X , then in that coordinate neighborhood,
the submanifold defined by z1 = � � � = zl = 0 is a component of Sing(�), and
such a coordinate system exists for any point sufficiently close to P lying on the
submanifold z1 = � � � = zl = 0. It follows that z1 = � � � = zl = 0 is precisely the
defining equation for the semisimple limit variety Z .

For example, the foliation induced by a C�-action is semisimple with two
semisimple limit varieties, so-called sink and source ([BB]).

For a foliation � by rational curves, we can find the subscheme of the Hilbert
scheme parametrizing the integral curves. Taking reduction if necessary, we get
projective varieties W;H, a birational morphism � : W ! X and a proper
morphism � : W ! H. The generic fibers of � are irreducible rational curves
and � gives an embedding of them into X . Their images are precisely the integral
curves of �. This pair of morphisms will be called the Fujiki family associated to �.

For a semisimple foliation, we define the index of the foliation as the intersection
number of the anti-canonical bundle K�1

X with a generic integral curve. Since the
deformations of a generic integral curve sweep out an open set in X , the index is
always greater than or equal to 2.

The most important property of a semisimple foliation is that the semisimplicity
is preserved under the blow-up of a semisimple limit variety:

PROPOSITION 1 Let � be a semisimple foliation on a projective manifold X with
a smooth semisimple limit variety Z . Let � : ~X ! X be the blow-up of X along
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Z and let ~� be the lifting of the foliation �. Then ~� is also semisimple and there
exists a semisimple limit variety ~Z inside the exceptional divisor. Moreover ~Z is
birational to Z � Pm for some nonnegative integer m.

Proof. It is obvious that ~� is a foliation by rational curves. So it is enough to find
a subvariety ~Z in the exceptional divisor E with the desired properties.

Let P be a generic point of Z . By assumption, we have local coordinates
z1; : : : ; zn; n = dim(X) in a neighborhood U of P , such that � is tangential to
the vector field v = �1z1

@
@z1

+ � � � + �lzl
@
@zl

, where �1 � � � � � �l are positive
integers. Recall that Z \ U is defined by z1 = � � � = zl = 0.

Let us choose the coordinates u1 = z1; u1u2 = z2; : : : ; u1ul = zl; ul+1 =

zl+1; : : : ; un = zn for ~X . Then the lifting ~v of the vector field v is given by

~v = �1u1
@

@u1
+ (�2 � �1)u2

@

@u2
+ � � � + (�l � �1)ul

@

@ul
:

Let k be the largest integer satisfying �k = �1. From the expression, it is obvious
that in the open subset of ~X , whereu1; : : : ; un are defined, Sing(~�) has a component
defined by u1 = uk+1 = � � � = ul = 0. Let ~Z be the component of Sing(~�) whose
intersection with this open set is u1 = uk+1 = � � � = ul = 0. Certainly, ~Z is
contained in the exceptional divisor E. We claim that ~Z is a semisimple limit
variety of �.

First, let us check Condition 1 in the definition of a semisimple foliation. From
the above expression for ~v, we can find the desired coordinate system at a generic
point of ~Z over the point P 2 X . A direct calculation using the coordinates
z1; : : : ; zn shows that ~Z is the only irreducible component of Sing(~�) with this
property, over the open set U . Since P can be chosen as any generic point of Z ,
this implies that we can find the desired coordinate system at any generic point of
~Z.

Now, let � : P1 ! C be the normalization of a generic integral curve of ~�. Then
� � � : P1 ! �(C) is the normalization of a generic integral curve of �. Since
~Z � E = ��1(Z) and ��1(Z 0) does not contain ~Z, Condition 2 for � implies
Condition 2 for ~�, for a suitable choice of proper subvariety ~Z 0 � ~Z . This shows
that ~� is semisimple and ~Z is a semisimple limit variety.

In the coordinates chosen above, the intersection of ~Z with the fiber ��1(P ) is
exactly the submanifold defined by uk+1 = � � � = ul = 0. Since u2; : : : ; ul give an
inhomogeneous coordinate system on the projective space ��1(P ), we can see that
�j ~Z : ~Z ! Z is generically a Pm-bundle, m = k � 1. Now the dual tautological
bundle on E which is the projectivization of the normal bundle of Z � X , gives
a line bundle on ~Z , whose restriction on a generic fiber of �j ~Z : ~Z ! Z is the
hyperplane bundle for Pm. It follows that ~Z is birational to Z �Pm. 2

It was proved in [BB] that for a foliation induced by a C�-action on X , if Z is
one of the two semisimple limit varieties, then Z � Pr is birational to X where
r =codim(Z). The following theorem is a generalization of Bialynicki-Birula’s
result to arbitrary semisimple foliations.
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THEOREM 1 Suppose thatZ is a semisimple limit variety of a semisimple foliation
on X . Then Z � Pr is birational to X for r =codim(Z).

Proof. We will first prove the theorem for r = 1, and then introduce a blow-up
procedure to reduce the general case to r = 1.

(Proof when r = 1)
Let � be the semisimple foliation on X and Z be a semisimple limit variety

which is a hypersurface in X . Locally at a generic point of Z , � is tangential
to a vector field of the form z1

@
@z1

. This means that � is not saturated and has
removable singularity at a generic point of Z . From the definition of a semisimple
foliation, we conclude that each generic integral curve intersects the generic part
of Z transversally at one point.

Let � : W ! H and � : W ! X be the associated Fujiki family of �. From
the fact that a generic integral curve intersects the generic part of Z transversally
at one point, the strict transform [Z] of Z by � is a reduced Weil divisor in W and
each generic fiber of � intersects [Z] only at one point. Hence [Z] is birational to
H.

By taking normalization of W if necessary, we can assume that a generic fiber
of � is a smooth rational curve. Over an affine open subset U � H, we can assume
that � is a P1-bundle and [Z] is a Cartier divisor inducing O(1) on the generic
fibers. It follows thatW is birational to [Z]�P1, which implies thatX is birational
to Z �P1 because � is birational.

(Proof for the general case)
We introduce a blow-up procedure for any semisimple foliation with the fol-

lowing choice of blow-up center:
(i) If a semisimple limit variety is smooth, then that semisimple limit variety

is the blow-up center. By Proposition 1, we can lift the foliation to a semisimple
foliation on the blow-up, and the new semisimple limit variety is birational to the
product of old semisimple limit variety with Pm for some nonnegative integer m.

(ii) If all semisimple limit varieties are singular, then the blow-up center is
a submanifold of a semisimple limit variety, which is the blow-up center for an
embedded resolution of the singularity of that semisimple limit variety. We can lift
the given foliation to a semisimple foliation on the blow-up. In fact, a semisimple
limit variety for the lifted foliation is just the strict transform of the semisimple
limit variety below.

From the existence of the embedded resolution, the choice (ii) can appear
consecutively only for a finite number of times. To show that the choice (i) can
appear only for a finite number of times, we look at the change of the index
under the blow-up � : ~X ! X along a smooth generic limit variety. Note that
K�1

~X
= ��K�1

X � (r � 1)E where E is the exceptional divisor. Since the generic

integral curve on ~X always intersectsE, the index decreases strictly. But we know
that the index is always greater than or equal to 2. This shows that the blow-up
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procedure must stop after a finite number of steps, and we get to the situation of
r = 1. 2

3. Semisimplicity of foliations arising from totally degenerate zeroes

Let V be an additive vector field on an irreducible projective variety X , i.e. V is
induced by an action of the additive groupC+. It is well-known that each nontrivial
orbit of the action can be compactified to a smooth rational curve by adding one
point. This rational curve is called an orbital curve and the unique compactifying
point is called the limit point of the orbit. We define the generic limit variety of an
additive vector field as the unique irreducible subvariety of X which is the closure
of the limit points of generic points of X ([H2]). In other words, any generic
orbital curve intersects the generic limit variety, and the generic limit variety is
the irreducible subvariety of the minimal dimension having this property, which is
contained in the zero set of V . If the foliation defined by an additive vector field
is semisimple, a generic point of the semisimple limit variety is the limit point of
a generic point of X . Hence, in this case, the generic limit variety of the additive
vector field is the only semisimple limit variety of the semisimple foliation. The
following theorem tells us that under some condition on the zero set, an additive
vector field gives rise to semisimple foliations.

THEOREM 2 Let V be an additive vector field on a projective manifold X , which
vanishes on a smooth divisor D. Assume that any generic orbital curve intersects
D. Then the foliation defined by V on X is a semisimple foliation with a unique
semisimple limit variety Z contained in D. Moreover the foliation defined onD by
the meromorphic vector field 1

D
V is semisimple and Z is also a semisimple limit

variety of this foliation.
Proof. We will use the following lemma which follows directly from Lemma 1

in [H1] and its proof. For the reader’s convenience, we will give a proof.

LEMMA. LetX;V andD be as in the assumption of Theorem 2. Then the following
is true.

(i) At the limit point of a generic point ofX , we can find a local coordinate system
z1; : : : ; zn; n = dim(X) ofX and a local defining function d(z) ofD, in terms
of which V = d(z)(�1z1

@
@z1

+ � � � + �lzl
@
@zl

), where l and �i’s are positive
integers.

(ii) The functiond(z) satisfies the functional equation 1
d(z)

V (d(z)e(z)) = d(z)e(z)

for some nonvanishing local holomorphic function e(z).
(iii) The limit point Q of a generic point has the attracting property, i.e. for any

sufficiently small neighborhood U of Q, any point in U has its limit point in
U . Here, the limit point of a zero point of V is defined as the zero point itself.

Proof of lemma. Let � : F ! X and  : F ! D be the Fujiki family associated to
V . Namely,D is a subvariety of the Hilbert scheme parametrizing invariant curves,
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and F is the corresponding universal family. Note that � is a birational morphism.
We can find an additive vector field W on F , so that W is tangential along the
fibers of  and ��(W ) = V . A generic fiber of  isP1. There exists an irreducible
hypersurface H in F , so that H is birational to D by  and W vanishes to order
2 along H . At a generic point Q of H , we can find a local coordinate system
y1; : : : ; yn, such that W = uy2

1
@
@y1

, where u is a unit in OQ. This follows from the
standard form of additive vector fields on P1.

Let P = �(Q). By the assumption, P lies on D. Let h 2 OP be a defining
function of D. Suppose that 1

h
V is tangential along D. Then V h = gh2 for some

g 2 OP . We can write ��h = vy1 for some unit v 2 OQ. From ��(V h) =

W (vy1) = uy2
1(y1

@v
@y1

+ v), we have ��g = u
v
+ u

v2 y1
@v
@y1

. It follows that g is a

unit in OP , and we can consider the local vector field 1
gh
V . By a direct power

series calculation, we can find a new coordinate system x1; : : : ; xn near Q, so that
1
gh
V = ��(x1

@
@x1

). It follows that 1
gh
V is locally of the form�1z1

@
@z1

+� � �+�lzl
@
@zl

for some positive integers �1; : : : ; �l; in some local coordinates z1; : : : ; zn at P ,
because if a vector field has such a coordinate system, then so does its birational
push forward (Proposition 2 in [H1]).

Let d = gh. Then (i) is proved. (ii) follows by setting e = g�1 and (iii) follows
from (i) directly.

It remains to take care of the case when 1
h
V is not tangential along D. In this

case, we can find an invariant curve through any generic point of D, which is
not contained in D. Then every point in a neighborhood of P is a limit point. In
particular, V vanishes to order 2 along D. Let 1

h2V h = g and repeat the above
argument. 2

Now, let us prove Theorem 2, using the lemma. LetZ � D be the closure of the
limit points of generic points in X , i.e. Z is the generic limit variety of the additive
vector field V . Then Z is a semisimple limit variety of the foliation defined by V .
In fact, Condition 1 follows from (i) of the lemma, and Condition 2 follows from
the fact that an orbital curve of V can intersect D only at one point, because V is
additive. So the foliation defined by V is semisimple and Z is the only semisimple
limit variety.

Now we claim that Z is also a semisimple limit variety of the foliation defined
by 1

D
V on D. First of all, the leaves of the foliation are limits of leaves of the

foliation defined by V on X nD. So they can be compactified to algebraic curves.
These algebraic curves are specializations of orbital curves of V . So the foliation
is a foliation by rational curves.

From (ii) in the lemma, the linear part of the local defining function d(z) ofD is a
linear combination of z1; : : : ; zl. Now a suitable choice of l�1 functionswi = zj(i)
from z1; : : : ; zl and wl = zl+1; : : : ; wn�1 = zn define a coordinate system on D
and with respect to that system, 1

d(z)
V is of the form �1w1

@
@w1

+� � �+�l�1wl�1
@

@wl�1

for some positive integers �i = �j(i). This shows that the foliation 1
D
V satisfies

Condition 1 of semisimplicity.
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To check Condition 2, assume the contrary. There are two possibilities. First
assume that there exists a sufficiently generic integral curveC � D of the foliation
which intersects the generic part of Z at two or more distinct points. Let A;B 2

Z \ C be two distinct points where coordinate systems with the property given in
the lemma exist. Let EA be the closure of the constructible set of points inX whose
limit point is A. Then from the local expression of V at A, we can see that EA is a
subvariety in X containing the curve C . In particular, B 2 EA and there are points
arbitrarily close to B whose limit point is A. This is a contradiction to (iii) of the
lemma.

The only remaining possibility is when a generic integral curveC of the foliation
on D intersects the generic part of Z only at one point R, but the normalization
� : P1 ! C is not one-to-one over that point. We will call such a point a multiple
point of the curve. We know that C is the underlying curve of an irreducible
component of the specialization of smooth rational curves. Consider the invariant
subvariety ER in X as above. The additive vector field V on ER has an isolated
attracting point. By choosing a suitable curve in the Hilbert scheme parametrizing
integral curves of V in ER, we get a surface S � ER which is invariant under V
and containsC . We can assume that V jS is a nontrivial additive vector field and the
point R is an isolated attracting point, i.e. R has the attracting property as defined
in (iii) of the lemma.

Let � : Ŝ ! S be the normalization of S. We claim that � is one-to-one over
R. In fact, V can be lifted to Ŝ, and any inverse image ofR is an isolated attracting
point. If an additive vector field has an isolated attracting point, the point must be
the generic limit variety and there exists no other attracting point. So, there cannot
be two or more inverse images of R. In particular, Ŝ also contains an invariant
rational curve with a multiple point. The equivariant resolution ~S of Ŝ will contain
either an invariant rational curve with a multiple point or a union of invariant
rational cuves which forms a cycle, i.e. not simply connected. Any additive group
action descends to any minimal model of a surface. Under the contraction of a
(-1)-curve, an invariant rational curve with a multiple point is sent to an invariant
rational curve with a multiple point. A cycle of rational curves is sent to a cycle
of rational curves or a union of rational curves one of whose components has a
multiple point. So we get a ruled surface with an additive group action, containing
an invariant rational curve with a multiple point or a cycle of rational curves. If
there is an invariant rational curve with a multiple point, let us call it C . If there
is an invariant cycle of rational curves, we can choose a cycle with a minimal
possible number of components. In this case, let C be such a minimal cycle of
rational curves. We may assume that C is reduced. In either case, any irreducible
component of smooth part of C cannot be biholomorphic to C. This implies that
the vector field vanishes on C .

Consider a member of the ruling on this ruled surface. It is always smooth.
Hence C cannot be a member of the ruling. This implies that a generic member
of the ruling must intersect a component of C . Since the vector field vanishes on
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C , the additive group action moves the member of the ruling with some points
fixed. But the member of the ruling have trivial self-intersection. It follows that the
vector field is tangential along the ruling. From the definition of C , the intersection
number of C with a member of the ruling must be greater than or equal to 2. On
the other hand, a member of the ruling can have only one zero point of the additive
vector field. This is impossible, becauseC is reduced. 2

COROLLARY Suppose a projective manifold has a holomorphic vector field with
the property that a connected component of its zero set is smooth and totally
degenerate. Then the manifold is stably birational to that component of zero set.

Proof. Let X0 be the projective manifold and let V0 be the vector field with
a smooth totally degenerate component Y . The algebraic subgroup of Aut(X0)

generated by V0 is of the form (C�)p � (C+)q, p a nonnegative integer and q = 0
or 1 (see [L]). By total degeneracy, the action of this group on the normal bundle
of Y is trivial. In particular, the action ofC� on the tangent space at a point of Y is
trivial. But an effective action ofC� cannot have trivial linear part at a fixed point
(see e.g. [BB]). So p = 0, q = 1, and V0 is an additive vector field.

Since the zero set of an additive vector field is connected, Y is the only zero
set of V0, and it contains the generic limit variety of V0. Let � : X ! X0 be the
blow-up along Y , D be the exceptional divisor, and V be the additive vector field
onX induced by V0. Then Theorem 2 applies. Let Z � D be the semisimple limit
variety. It follows that X is stably birational to Z and Z is stably birational to D
from Theorem 1. Since D is stably birational to Y , X0 is stably birational to Y . 2

4. Rationality for an isolated totally degenerate zero

From Corollary to Theorem 2, if a holomorphic vector field on a projective manifold
has an isolated totally degenerate zero, the manifold is stably rational, i.e. stably
birational to the projective space. We can improve this result to the rationality.

THEOREM 3 Let V be a holomorphic vector field on a projective manifoldX with
an isolated totally degenerate zero P . Then X is rational.

Proof. As in the proof of the corollary to Theorem 2, V is an additive vector
field with the generic limit variety P . Blowing up P , we get an additive vector field
~V vanishing on the exceptional divisor E. The line bundle valued vector field 1

E
~V

restricted to E corresponds to a section � of TPn�1(1) when we identify E with
Pn�1. From Theorem 1 and 2, X is rational if we can prove that the semisimple
limit set Z of the foliation induced by � is rational.

Choose an inhomogeneous coordinate system x1; : : : ; xn�1 on E centered at a
generic point of Z . From the general form of a O(1)-valued vector field, we can
write

� =

n�1X
i=1

(

n�1X
j=1

a
j
ixj +

n�1X
k�l=1

gkli xkxl + xiq(x))
@

@xi
;
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where aji ; g
kl
i are complex numbers and q(x) is a homogeneous quadratic polyno-

mial in x1; : : : ; xn�1. From the semisimplicity, the linear part of the vector field at
x1 = � � � = xn�1 = 0 is diagonalizable. Hence by a linear coordinate change and
multiplying � by a constant, we get

� =

mX
i=1

0
@�ixi + n�1X

k�l=1

bkli xkxl + xiQ(x)

1
A @

@xi

+

n�1X
j=m+1

0
@ n�1X
k�l=1

bklj xkxl + xjQ(x)

1
A @

@xj

where �i’s are positive integers, bkli is a complex number, and Q(x) is a homoge-
neous quadratic polynomial. Here, we used the fact that

Pn
i=1 xi

@
@xi

is invariant
under a linear coordinate change.

By the definition of a semisimple foliation, the foliation defined by � agrees
with the foliation defined by

Pm
i=1 �izi

@
@zi

, under a suitable local coordinate system
z1; : : : ; zn�1. Note that this foliation has the property that for any divisor on the
zero set z1 = � � � = zm = 0, there exists an invariant hypersurface in a small
neighborhood whose restriction to the zero set is precisely the given divisor. In
fact, with respect to the coordinates z1; : : : ; zn�1, a divisor on the zero set can be
written as a power series in zm+1; : : : ; zn�1, and this power series certainly defines
an invariant hypersurface in the coordinate neighborhood. Since this property is
a property of the foliation, � has this property. In this coordinate neighborhood,
Z is a (n � 1 � m)-dimensional manifold defined by z1 = � � � = zm = 0.
From the above expression of �, we can see that Z is defined by the equations
�ixi +

Pn�1
k�l=1 b

kl
i xkxl + xiQ(x) = 0; 1 � i � m in a small neighborhood. We

may assume that m � n� 2 to prove the rationality of Z .
Any linear combination of xm+1; : : : ; xn�1 defines a local divisor on Z . It

follows that � has an invariant hypersurface defined by a power series whose linear
term is e1x1+� � �+e

mxm+em+1xm+1+� � �+e
n�1xn�1 for any choice of complex

numbers em+1; : : : ; en�1, unless em+1 = � � � = en�1 = 0. Here e1; : : : ; em can
take only certain values depending on em+1; : : : ; en�1. From the expression of �
above

�(e1x1 + � � �+ en�1xn�1) = �1e
1x1 + � � �+ �me

mxm +O(2):

It follows that the numbers e1; : : : ; em must be zero, for any nonzero choice of
em+1; : : : ; en. Choosing em+1 = 1; em+2 = � � � = en�1 = 0, we can see that
blkm+1 = 0, if k 6= m + 1; l 6= m + 1. Choosing em+2 = 1; em+1 = em+3 =

� � � en�1 = 0, we can see that bklm+2 = 0, if k 6= m+ 2; l 6= m+ 2. Repeating this,
we can see that � has the form

� =

mX
i=1

(�ixi +
n�1X
k�l=1

bkli xkxl + xiQ(x))
@

@xi
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+

n�1X
j=m+1

(Lj(x) +Q(x))xj
@

@xj
;

where Lj(x) is a homogeneous linear polynomial in x1; : : : ; xn. Now choosing
em+1; : : : ; en�1 generically, we get Lm+1(x) = � � � = Ln�1(x). So we can write

� =

mX
i=1

0
@�ixi + n�1X

k�l=1

bkli xkxl + xiQ(x)

1
A @

@xi

+

n�1X
j=m+1

(L(x) +Q(x))xj
@

@xj

for some homogeneous linear polynomial L(x).
So we getn�1�m linear functionsxm+1; : : : ; xn�1, with the property that their

linear combinations are all invariant under �, and they induce a local coordinate
system on Z centered at an isolated point of the intersection of Z and the linear
subspace defined by xm+1 = � � � = xn�1 = 0. Moreover, �(xl)

xl
=

�(xk)

xk
=

L(x) + Q(x) for any m + 1 � l; k � n � 1. Applying the same argument at
a nearby point P on Z , i.e. translating x1; : : : ; xn�1 to P and applying a linear
coordinate change to diagonalize the linear part at P , we get n� 1�m collection
of invariant polynomials of degree� 1, say x(P )m+1; : : : ; x(P )n�1, which induce
local coordinates on Z at P . Any linear combination of x(P )m+1; : : : ; x(P )n�1

is invariant under � and �(x(P )l)

x(P )l
=

�(x(P )k)

x(P )k
for m + 1 � k; l � n � 1. Let

x(P )j = c(P )j +
Pn�1

i=1 e(P )ijxi;m + 1 � j � n� 1. For a generic P , we may
assume that c(P )j 6= 0 for all m+ 1 � j � n� 1.

From the invariance,

�(c(P )j +

n�1X
i=1

e(P )ijxi)

=

 
1

c(P )j

mX
i=1

�ie(P )ijxi +Q(x)

! 
c(P )j +

n�1X
i=1

e(P )ijxi

!
:

From �(x(P )l)

x(P )l
=

�(x(P )k)

x(P )k
, we can see that

e(P )ij
c(P )j

is independent of j. Let us call it

f(P )i. Then

x(P )j = c(P )j(1 + f(P )1x1 + � � � + f(P )mxm)

+e(P )m+1
j xm+1 + � � �+ e(P )n�1

j xn�1

Note that the matrix e(P )ij ;m+1 � i; j � n�1 is nonsingular. For otherwise,
we can find a linear combination of x(P )j’s of the form 1 + a1x1 + � � � + amxm
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which defines a smooth divisor onZ at P . This is impossible, becauseZ is defined
by �ixi +

Pn�1
k�l=1 b

kl
i xkxl + xiQ(x) = 0 for 1 � i � m. Now we may assume

that

x(P )j = c(P )j(1 + f(P )1x1 + � � � + f(P )mxm) + xj

Consider the m-dimensional invariant linear subspaceWP defined by x(P )j =

0;m + 1 � j � n � 1. Its intersection with the m-dimensional subspace W
defined by xm+1 = � � � = xn�1 = 0, is an invariant hyperplane on W defined by
1 + f(P )1x1 + � � � + f(P )mxm = 0. Note that � induces a semisimple foliation
on W with an isolated semisimple limit variety. In particular, there can be only a
finitely many invariant hyperplanes disjoint from x1 = � � � = xm = 0. So we can
assume that f(P )i is independent of P for sufficiently general choice of P . Let us
call it f i.

Now letX0; : : : ;Xn�1 be the homogeneous coordinates onEwithxi = Xi=X0.
Choose a new homogeneous coordinates Y0 = X0 + f1X1 + � � � + fmXm and
Yk = �Xk, for 1 � k � n� 1. Then in terms of the inhomogeneous coordinates
yi = Yi=Y0, WP is defined by yj = c(P )j ;m + 1 � j � n � 1 for any generic
choice of P . In other words, the level hyperplanes of yj;m+ 1 � j � n� 1, are
invariant under �.

Consider the projection � : (y1; : : : ; yn�1) 7! (ym+1; : : : ; yn�1) of the
affine space Y0 6= 0 to the (n� 1 �m)-subspace defined by y1 = � � � = ym = 0.
We claim that � gives a birational map from the semisimple limit set Z of � to
the linear subspace y1 = � � � = ym = 0. It is enough to show that for any point
P in a small open subset in Z , e.g. those points considered above, the intersection
of the m-subspace WP defined by ym+1 = c(P )m+1; : : : ; yn�1 = c(P )n�1, with
the generic part of Z consisting of ~V -attracting points, is precisely one point P .
As in the proof of Theorem 2, consider the closure EP of all points in ~X whose
~V -limit points are P . Then EP contains WP . It follows that WP contains no other
attracting point of Z . Hence � is one-to-one on the Zariski open set of Z contained
in the y1; : : : ; yn�1 coordinates cell and consisting of attracting points with respect
to the additive vector field ~V . This shows the rationality of Z . 2
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