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Abstract. A zero set of a holomorphic vector field is totally degenerate, if the endomorphism of
the conormal sheaf induced by the vector field is identically zero. By studying a class of foliations
generalizing foliations of C*-actions, we show that if a projective manifold admits a holomorphic
vector field with a smooth totally degenerate zero component, then the manifold is stably birational
to that component of the zero set. When the vector field has an isolated totally degenerate zero, we
prove that the manifold isrational. Thisis aspecia case of Carrell’s conjecture.
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1. Introduction

Let X be a complex projective manifold and V' be a holomorphic vector field
on X. For a component Z of the zero set of V', we have an induced O-linear
endomorphism L on the conormal sheaf 7, /Z2. We say that Z is nondegenerate,
if Ly has non-zero determinant at every point of Z. Using the Biaynicki-Birula
decomposition ([BB]), Lieberman showed in [L] that if all zero components of V/
are nondegenerate, then there exists a component Z of the zero set, such that X is
birational to Z x P, for r = codim(Z).

It is expected that a similar result holds for arbitrary holomorphic vector fields.
But without the nondegeneracy assumption, very little is known. In this paper,
we will study the other extreme case, namely when the map £, on the conormal
sheaf of Z is zero. In this case, we say that Z is totally degenerate. If V' has an
isolated zero, it istotally degenerateif the linear part of the vector field at that point
vanishes. For example, consider a vector field induced by an additive group action
on the projective plane with asingle fixed point, i.e. avector field corresponding to
anilpotent matrix with asingle Jordan block. If we blow-up the plane at the single
fixed point, we get avector field with an isolated totally degenerate zero. Our main
resultis

COROLLARY (to Theorem 2). Suppose that a projective manifold X has a holo-
mor phic vector field a connected component of whose zero set is smooth and totally
degenerate. Then X isstably birational to that component.
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By definition, projective manifolds X, Y are stably birational, if X x P, is
birational to Y x P, for some positiveintegersp, g. Similarly, aprojective manifold
is stably rational, if its product with some projective space is rational. As a direct
conseguence of the above theorem, if a projective manifold has a holomorphic
vector field with an isolated totally degenerate zero, it is stably rational. But in this
case, we can refine our result to

THEOREM 3 Let V' be a holomor phic vector field on a projective manifold X with
an isolated totally degenerate zero P. Then X isrational.

Thisresult is aspecial case of Carrell’s conjecture ([C]) that a projective mani-
fold having a holomorphic vector field with finite number of zeroesis rational. In
fact, it is easy to see that a holomorphic vector field with an isolated totally degen-
erate zero has no other zero (see the proof of Corollary). So a proof of Carrell’s
conjecture would imply our result. Note that Carrell’s conjecture was proved for
dimension < 5in[H2].

Carrell’sconjectureistrueif the vector field isinduced by a C*-action. To prove
the conjecture, it is enough to prove it under the assumption that the vector field
is induced by an additive group action and there exists just a single zero point.
So far, most results on Carrell’s conjecture are proved by reducing the problem to
C*-action case using someadditional assumptions([C], [K]). For example, Konars-
ki proved it under the assumption that the linear part of the vector field at theisolated
zero consists of a single Jordan block ([K]). But such areduction is very difficult,
if the vector field has no linear information. In this sense, our result takes care of a
bad case.

The main idea of this paper is, instead of reducing the problem to C*-case,
extracting the key property of the foliation defined by a C*-action, to define a
more general class of foliations ‘ semisimplefoliations’. Then we construct a blow-
up procedure for this special class of foliations, which is similar to the blow-up
procedureintroduced in [H2] for an additive group action. The problem iswhether
the foliations on the blow-up of the manifold at the totally degenerate zero belong
to this class. This can be done based on our earlier result in [H1]. For the isolated
totally degenerate case, therationality can be obtained by studying the structure of
asemisimple foliation on the projective space.

2. Birational geometry of semisimplefoliations

We recall basic notionsin foliations by curves and introduce semisimplefoliations.

A 1-dimensional foliation with singularity on a complex projective manifold
X isanontrivial map ¢: L — Tx from aline bundle to the tangent bundle. The
subscheme Sing(¢) defined by ¢ = 0 is called the singular loci of this foliation.
¢ induces afoliation on the complement of Sing(¢). If every leaf of this foliation
can be compactified to arational algebraic curvein X, we say that ¢ is afoliation
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by rational curves. A rational curve compactifying aleaf will be called an integral
curveof &.

A foliation ¢ : L — Ty is said to be saturated if Sing(¢) has no component
of codimension 1. If Sing(¢) contains a divisor D, we get a new foliation %f ;
L(D) — Tx divided by alocal defining function of D. Here L(D) is the tensor
product of L with the line bundle corresponding to D. If £ is not saturated, by
an irreducible component of Sing(¢), we mean an irreducible component of either
the underlying subvariety of Sing(¢) or the underlying subvariety of the foliation
obtained after divided by the codimension one part.

A foliation ¢ by rational curveson acomplex projective manifold X issemisim-
ple, if there exists an irreducible component Z of Sing(¢) and a proper subvariety
Z' C Z, with the following properties:

(1) Forany point P € Z\ Z',wecanfindalocal coordinatesystemzy, ..., z,,n =
dim(X) for X in a neighborhood of P, such that in that neighborhood, the
foliation is tangential to a vector field of the form Alzla% + 4 Alzla%
wherel < n and )\; isapositiveinteger foreachi =1,...,1.

(2) Letv : Py — C bethe normalization of agenericintegral curve. Then the set
v=Y(Z\ Z') isasingle point.

Wewill call Z asemisimplelimit variety of the semisimplefoliation. When we say
ageneric point of Z, wemeanapointon Z \ Z'. Notethat if the coordinate system
in Condition 1 exists for a point P € X, then in that coordinate neighborhood,
the submanifold defined by z; = --- = 2z; = 0 is a component of Sing(¢), and
such a coordinate system exists for any point sufficiently close to P lying on the
submanifold z; = --- = z; = 0. It followsthat z; = - - - = 2; = 0 isprecisely the
defining equation for the semisimple limit variety Z.

For example, the foliation induced by a C*-action is semisimple with two
semisimple limit varieties, so-called sink and source ([BB]).

For afoliation ¢ by rational curves, we can find the subscheme of the Hilbert
scheme parametrizing the integral curves. Taking reduction if necessary, we get
projective varieties W, #, a birational morphism x : W — X and a proper
morphism n : W — H. The generic fibers of n are irreducible rational curves
and x gives an embedding of them into X . Their images are precisely the integral
curvesof £. Thispair of morphismswill be called the Fujiki family associated to £.

For asemisimplefoliation, we definetheindex of thefoliation astheintersection
number of the anti-canonical bundle K )}1 with a generic integral curve. Since the
deformations of a generic integral curve sweep out an open set in X, theindex is
always greater than or equal to 2.

The most important property of asemisimplefoliation isthat the semisimplicity
is preserved under the blow-up of asemisimple limit variety:

PROPOSITION 1 Let £ be a semisimple foliation on a projective manifold X with
a smooth semisimple limit variety Z. Let 7 : X — X be the blow-up of X along
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Z and let £ be the lifting of the foliation ¢. Then ¢ is also semisimple and there
exists a semisimple limit variety Z inside the exceptional divisor. Moreover Z is
birational to Z x P, for some nonnegative integer m.

Proof. Itisobviousthat ¢ isafoliation by rational curves. Soit isenoughto find
asubvariety Z in the exceptional divisor E with the desired properties.

Let P be a generic point of Z. By assumption, we have local coordinates
21y -5 2p,n = dim(X) in aneighborhood U of P, such thatf IS tangential to
the vector field v = Alzlaz + o Nz By where \; < --- < \; are positive
integers. Recall that Z N U |sdef|ned by 21 = =2z =0.

Let us choose the coordinates u1 = z1,uiuz = 22,...,ulU; = 2, U1 =
2141, - - ., Uy = 2, fOr X. Thenthelifting & of the vector field v is given by

. 0 0 0
v = >\1U1(9— + ()\2 - Al)uza— +---+ ()\[ Al)ula »

Let & be the largest integer satisfying A, = A1. From the expression, it is obvious
that in the open subset of X, whereus, . . , u, aredefined, Smg(g) hasacomponent
defined by u1 = g1 =--- =u; =0. Let Z be the component of Smg(g) whose
intersection with this open set is u; = upy1 = --- = u; = 0. Certainly, Z is
contained in the exceptional divisor E. We claim that Z is a semisimple limit
variety of €.

First, let us check Condition 1 in the definition of a semisimple foliation. From
the above expression for ¢, we can find the desired coordinate system at a generic
point of Z over the point P € X. A direct calculation using the coordinates
21,...,2, showsthat Z is the only irreducible component of Sing(€) with this
property, over the open set U. Since P can be chosen as any generic point of Z,
thisimplies that we can find the desired coordinate system at any generic point of
Z.

Now, letv: P; — C bethenormalization of agenericintegral curveof £. Then
mov: P1 — w(C) isthe normalization of a generic integral curve of £. Since
Z C E = 4Z) and 7~%(Z') does not contain Z, Condition 2 for ¢ implies
Condition 2 for &, for a suitable choice of proper subvariety Z' ¢ Z. This shows
that ¢ is semisimple and Z is asemisimple limit variety.

In the coordinates chosen above, the intersection of Z with the fiber 7~ 1(P) is
exactly the submanifold defined by ug 1 = --- = u; = 0. Sinceuy, . . . , u; givean
inhomogeneous coordinate system on the projective space 7~ 1(P), wecan seethat
m|;: Z — Zisgenericaly aP,,-bundle, m = k — 1. Now the dual tautological
bundle on E which is the projectivization of the normal bundle of Z C X, gives
aline bundle on Z, whose restriction on a generic fiber of «|;: Z — Z isthe

hyperplane bundle for P,,,. It follows that Z is birational to Z x P,,. i

It was proved in [BB] that for a foliation induced by a C*-action on X, if Z is
one of the two semisimple limit varieties, then Z x P, is birational to X where
r =codim(Z). The following theorem is a generalization of Bialynicki-Birula's
result to arbitrary semisimple foliations.
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THEOREM 1 Supposethat Z isa semisimplelimit variety of asemisimplefoliation
on X. Then Z x P, ishirational to X for » =codim(Z).

Proof. We will first prove the theorem for » = 1, and then introduce a blow-up
procedure to reduce the general caseto r» = 1.

(Proof when r = 1)

Let ¢ be the semisimple foliation on X and Z be a semisimple limit variety
which is a hypersurface in X. Locally at a generic point of Z, ¢ is tangential
to a vector field of the form z;;2-. This means that ¢ is not saturated and has
removable singularity at a generic point of Z. From the definition of a semisimple
foliation, we conclude that each generic integral curve intersects the generic part
of Z transversally at one point.

Letn: W — H and x: W — X bethe associated Fujiki family of £. From
the fact that a generic integral curve intersects the generic part of Z transversally
at one point, the strict transform [Z] of Z by y is areduced Weil divisor in W and
each generic fiber of p intersects [Z] only at one point. Hence [Z] is birational to
H.

By taking normalization of W if necessary, we can assume that a generic fiber
of n isasmooth rational curve. Over an affine open subset &/ C #, we can assume
that 7 is a P1-bundle and [Z] is a Cartier divisor inducing O(1) on the generic
fibers. It followsthat 17 ishirationa to [Z] x P, whichimpliesthat X isbirational
to Z x P1 because y is birational.

(Proof for the general case)

We introduce a blow-up procedure for any semisimple foliation with the fol-
lowing choice of blow-up center:

() If asemisimple limit variety is smooth, then that semisimple limit variety
is the blow-up center. By Proposition 1, we can lift the foliation to a semisimple
foliation on the blow-up, and the new semisimple limit variety is birational to the
product of old semisimple limit variety with P,,, for some nonnegative integer m.

(i) If al semisimple limit varieties are singular, then the blow-up center is
a submanifold of a semisimple limit variety, which is the blow-up center for an
embedded resolution of the singularity of that semisimple limit variety. We can lift
the given foliation to a semisimple foliation on the blow-up. In fact, a semisimple
limit variety for the lifted foliation is just the strict transform of the semisimple
limit variety below.

From the existence of the embedded resolution, the choice (ii) can appear
consecutively only for a finite number of times. To show that the choice (i) can
appear only for a finite number of times, we look at the change of the index
under the blow-up = : X — X along a smooth generic limit variety. Note that
Kt ="Ky — (r — 1)E where E isthe exceptional divisor. Since the generic
integral curveon X alwaysintersects E, theindex decreases strictly. But we know
that the index is always greater than or equal to 2. This shows that the blow-up
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procedure must stop after a finite number of steps, and we get to the situation of
r=1 O

3. Semisimplicity of foliations arising from totally degener ate zeroes

Let V' be an additive vector field on an irreducible projective variety X, i.e. V is
induced by an action of the additivegroup C ™. It iswell-known that each nontrivial
orbit of the action can be compactified to a smooth rational curve by adding one
point. This rational curveis called an orbital curve and the unique compactifying
point is called the limit point of the orbit. We define the generic limit variety of an
additive vector field as the unique irreducible subvariety of X which isthe closure
of the limit points of generic points of X ([H2]). In other words, any generic
orbital curve intersects the generic limit variety, and the generic limit variety is
theirreducible subvariety of the minimal dimension having this property, which is
contained in the zero set of V. If the foliation defined by an additive vector field
is semisimple, a generic point of the semisimple limit variety is the limit point of
ageneric point of X. Hence, in this case, the generic limit variety of the additive
vector field is the only semisimple limit variety of the semisimple foliation. The
following theorem tells us that under some condition on the zero set, an additive
vector field givesrise to semisimple foliations.

THEOREM 2 Let V' be an additive vector field on a projective manifold X, which
vanishes on a smooth divisor D. Assume that any generic orbital curve intersects
D. Then the foliation defined by V' on X is a semisimple foliation with a unique
semisimplelimit variety Z contained in D. Moreover the foliation defined on D by
the meromor phic vector field %V issemisimple and Z is also a semisimple limit
variety of thisfoliation.

Proof. We will use the following lemmawhich follows directly from Lemma 1
in [H1] and its proof. For the reader’s convenience, we will give a proof.

LEMMA. Let X, V and D beasintheassumption of Theorem2. Thenthefollowing
istrue.

() Atthelimit point of ageneric point of X, wecan find alocal coordinate system
z1,...,2n,n = dim(X) of X andalocal defining function d(z) of D, interms
of which V' = d(z)(>\1z18%1 +--+ Alzla%), where [ and \;’s are positive
integers.

(i) Thefunction d(z) satisfiesthefunctional equationwlz)V(d(z)e(z)) = d(2)e(2)
for some nonvanishing local holomorphic function e(z).

(iii) The limit point @ of a generic point has the attracting property, i.e. for any
sufficiently small neighborhood U of @), any point in U hasits limit point in
U. Here, the limit point of a zero point of V' is defined as the zero point itself.

Proof of lemma. Let ¢: F — X and+: F — D betheFujiki family associated to
V. Namely, D isasubvariety of the Hilbert scheme parametrizing invariant curves,
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and F' isthe corresponding universal family. Note that ¢ is a birational morphism.
We can find an additive vector field W on F, so that W is tangential along the
fibersof ¢ and ¢ (W) = V. A generic fiber of 1) isP1. Thereexistsan irreducible
hypersurface H in F', so that H is birational to D by v and W vanishes to order
2 aong H. At a generic point Q of H, we can find a local coordinate system
Yy -+ Yn, SUChthat W = uy%%, wherev isaunitin Og. Thisfollows from the
standard form of additive vector fields on P;.

Let P = ¢(Q). By the assumption, P lieson D. Let h € Op be a defining
function of D. Supposethat £V istangential along D. Then Vh = gh? for some
g € Op. We can write ¢*h = vy1 for some unit v € Og. From ¢*(Vh) =
W (vy1) = uyl(y1 8% + v), we have ¢p*g = % + Ly 2% It follows that g is a
unit in Op, and we can consider the local vector field gihv. By a direct power
series calculation, we can find a new coordinate system z1, . . ., 2, hear (), so that
5V = bu(z15%). Itfollowsthat gihv islocally of theform A1z; 72— +- - -+Alz13%
fqor some positive integers A1, ..., A;, in some local coordinates z1, . .., z, a P,
because if a vector field has such a coordinate system, then so does its birational
push forward (Proposition 2 in [H1]).

Let d = gh. Then (i) is proved. (i) follows by setting e = g~ and (iii) follows
from (i) directly.

It remains to take care of the case when %V is not tangential along D. In this
case, we can find an invariant curve through any generic point of D, which is
not contained in D. Then every point in a neighborhood of P is alimit point. In
particular, V' vanishes to order 2 along D. Let ﬁth = ¢ and repeat the above
argument. O

Now, let us prove Theorem 2, using thelemma. Let Z C D bethe closure of the
limit points of generic pointsin X, i.e. Z isthe generic limit variety of the additive
vector field V. Then Z isasemisimple limit variety of the foliation defined by V.
In fact, Condition 1 follows from (i) of the lemma, and Condition 2 follows from
the fact that an orbital curve of V' can intersect D only at one point, because V' is
additive. So the foliation defined by V' is semisimple and 7 is the only semisimple
limit variety.

Now we claim that Z is also a semisimple limit variety of the foliation defined
by %V on D. First of all, the leaves of the foliation are limits of leaves of the
foliation defined by V' on X \ D. So they can be compactified to algebraic curves.
These algebraic curves are specidizations of orbital curves of V. So the foliation
isafoliation by rational curves.

From (ii) inthelemma, thelinear part of thelocal definingfunctiond(z) of D isa
linear combinationof 2y, . .. , z;. Now asuitablechoiceof [ — 1 functionsw; = z;(;)
from z1,...,z; and w; = z41,...,w,_1 = 2, define a coordinate system on D
andwith respect to that system, le)v isof theform l/]_w]_aiwl—f—' : -+ul_1wl_1%H
for some positive integers v; = A;;). This shows that the foliation %V satisfies
Condition 1 of semisimplicity.
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To check Condition 2, assume the contrary. There are two possibilities. First
assumethat there exists a sufficiently genericintegral curve C' C D of thefoliation
which intersects the generic part of Z at two or more distinct points. Let A, B €
Z N C betwo distinct points where coordinate systems with the property givenin
thelemmaexist. Let £ 4 bethe closure of the constructible set of pointsin X whose
limit point is A. Then from the local expressionof V' at A, we can seethat £4 isa
subvariety in X containing the curve C. In particular, B € £4 and there are points
arbitrarily close to B whose limit point is A. Thisis a contradiction to (iii) of the
lemma.

Theonly remaining possibility iswhenagenericintegral curve C of thefoliation
on D intersects the generic part of Z only at one point R, but the normalization
v: P71 — C'isnot one-to-one over that point. We will call such apoint amultiple
point of the curve. We know that C' is the underlying curve of an irreducible
component of the specialization of smooth rational curves. Consider the invariant
subvariety £ in X as above. The additive vector field V' on £ has an isolated
attracting point. By choosing a suitable curve in the Hilbert scheme parametrizing
integral curves of V' in g, we get a surface S C Er which is invariant under V
and contains C'. We can assumethat V| s isanontrivial additive vector field and the
point R is an isolated attracting point, i.e. R hasthe attracting property as defined
in (iii) of the lemma.

Let «: S — S bethe normalization of S. We claim that « is one-to-one over
R.Infact, V canbelifted to S, and any inverseimage of R isan isolated attracting
point. If an additive vector field has an isolated attracting point, the point must be
the generic limit variety and there exists no other attracting point. So, there cannot
be two or more inverse images of R. In particular, S also contains an invariant
rational curve with amultiple point. The equivariant resolution S of S will contain
either an invariant rational curve with a multiple point or a union of invariant
rational cuveswhich forms acycle, i.e. not simply connected. Any additive group
action descends to any minimal model of a surface. Under the contraction of a
(-1)-curve, an invariant rational curve with a multiple point is sent to an invariant
rational curve with a multiple point. A cycle of rational curvesis sent to a cycle
of rational curves or a union of rational curves one of whose components has a
multiple point. So we get aruled surface with an additive group action, containing
an invariant rational curve with a multiple point or a cycle of rational curves. If
there is an invariant rational curve with a multiple point, let us cal it C'. If there
is an invariant cycle of rational curves, we can choose a cycle with a minimal
possible number of components. In this case, let C' be such a minimal cycle of
rational curves. We may assumethat C' is reduced. In either case, any irreducible
component of smooth part of C' cannot be biholomorphic to C. This implies that
the vector field vanisheson C'.

Consider a member of the ruling on this ruled surface. It is aways smooth.
Hence C' cannot be a member of the ruling. This implies that a generic member
of the ruling must intersect a component of C'. Since the vector field vanishes on
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C, the additive group action moves the member of the ruling with some points
fixed. But the member of the ruling havetrivial self-intersection. It follows that the
vector field istangential along the ruling. From the definition of C, the intersection
number of C' with a member of the ruling must be greater than or equal to 2. On
the other hand, amember of the ruling can have only one zero point of the additive
vector field. Thisisimpossible, because C'is reduced. O

COROLLARY Suppose a projective manifold has a holomor phic vector field with
the property that a connected component of its zero set is smooth and totally
degenerate. Then the manifold is stably birational to that component of zero set.

Proof. Let X be the projective manifold and let V be the vector field with
a smooth totally degenerate component Y. The algebraic subgroup of Aut(Xp)
generated by Vj is of the form (C*)? x (C*)4, p anonnegativeinteger and ¢ = 0
or 1 (see[L]). By total degeneracy, the action of this group on the normal bundle
of Y istrivial. In particular, the action of C* on the tangent spaceat apoint of Y is
trivial. But an effective action of C* cannot have trivial linear part at a fixed point
(seeeg.[BB]). Sop =0, ¢ = 1, and 1} is an additive vector field.

Since the zero set of an additive vector field is connected, Y is the only zero
set of Vp, and it contains the generic limit variety of V5. Let 7: X — Xg bethe
blow-up along Y', D be the exceptional divisor, and V' be the additive vector field
on X induced by Vp. Then Theorem 2 applies. Let Z C D be the semisimple limit
variety. It follows that X is stably birational to Z and Z is stably birational to D
from Theorem 1. Since D is stably birational to Y, Xy is stably birational to Y. O

4. Rationality for an isolated totally degenerate zero

From Corollary to Theorem 2, if aholomorphic vector field on aprojective manifold
has an isolated totally degenerate zero, the manifold is stably rational, i.e. stably
birational to the projective space. We can improve this result to the rationality.

THEOREM 3 Let V' be a holomor phic vector field on a projective manifold X with
an isolated totally degenerate zero P. Then X isrational.

Proof. As in the proof of the corollary to Theorem 2, V' is an additive vector
field with the generic limit variety P. Blowing up P, we get an additive vector field
V vanishing on the exceptional divisor E. The line bundle valued vector field %f/
restricted to £ corresponds to a section o of Tp_ (1) when we identify £ with
P, 1. From Theorem 1 and 2, X isrational if we can prove that the semisimple
limit set Z of the foliation induced by o isrational.

Choose an inhomogeneous coordinate system x4, ..., z,, 1 on E centered at a
generic point of Z. From the genera form of a O(1)-valued vector field, we can
write

n—1 n-1 n—1

j 0
o= azi+ Y gzklszxl‘F«fiQ(x))ax.a

i=1 j=1 k<i=1
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where aZ , gFl are complex numbers and ¢ (=) is a homogeneous quadratic polyno-
mial inz1, ..., z,_1. From the semisimplicity, the linear part of the vector field at
1 =+ =z, 1 = 0isdiagonalizable. Hence by alinear coordinate change and
multiplying o by a constant, we get

m n—1
0
o = Z (Aixi-i- Z bflﬂﬂkxl +$iQ($)) oz

i=1 k<l=1

n—1

+ Z ( Z b "oy + 2,Q(x )) (,;Z
j=m+1 \k<i=1 J

where \;'s are positive integers, b is a complex number, and Q (= ) Is a homoge-

neous quadratic polynomial. Here we used the fact that > | z; 5> a is invariant

under alinear coordinate change.

By the definition of a semisimple foliation the foliation defined by o agrees
withthefoliation definedby >~ 1 Aizi a , under asuitablelocal coordinatesystem
21, ..., 7n—1. Note that this foliation has the property that for any divisor on the
zero set 21 = -+ = zpy = 0, there exists an invariant hypersurface in a small
neighborhood whose restriction to the zero set is precisely the given divisor. In
fact, with respect to the coordinates z1, . . ., z,_1, a divisor on the zero set can be
written asapower seriesin z, 11, - - . , zn—1, and this power series certainly defines
an invariant hypersurface in the coordinate neighborhood. Since this property is
a property of the foliation, o has this property. In this coordinate neighborhood,
Zisa(n —1— m)-dimensiona manifold defined by 2z = --- = 2, = 0.
From the above expron of o, we can see that Z is defined by the equations
Niwi + Sroh Wy + 2;Q(z) = 0,1 < i < m in asmall neighborhood. We
may assumethat m < n — 2to prove the rationality of Z.

Any linear combination of x,,41,...,2, 1 defines a local divisor on Z. It
followsthat o hasan invariant hypersurface defined by a power serieswhose linear
termiselzy+- - -+e™z,, +e™ e, 14 -+ Lz, _1 for any choice of complex

numbers et . et unlessemtl = ... = ¢! = 0. Here e, ..., e™ can
take only certain values depending on e™*1, ... e®~1. From the expression of o
above

U(elacl + -+ en_lxn_l) = Aetzy + o 4 Ape™ T, + 0(2).
It follows that the numbers el, ..., e™ must be zero, for any nonzero choice of
e+l .. e". Choosing etl = 1,¢mt2 = ... = ¢"1 = 0, we can see that
b”C 1= O if K #m+ 1,1 # m + 1. Choosing ™2 = 1, ™1 = ¢m*3 =
= 0,wecanseethat bl , = 0,if k # m + 2,1 # m + 2. Repeating this,
we can seethat o hasthe form

n—1
0
o = Z()\il‘i + Z b?lfﬁkl‘l +sz($))

i1 k<i=1 O
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n—1 8
+ > (Lj(w>+Q(w>)wja7j,

j=m+1

where L;(x) is a homogeneous linear polynomial in x4,...,z,. Now choosing
emtl ,e”_l generically, we get L, 1(z) = - - - = L,,_1(z). So we can write

I

n—1
()\ia;i—i— Z bflfﬁkxl—i-xi@(x)) &i

i=1 k<l=1

n—1 8
+ > (L(x)+Q(w)>wj%j

j=m+1

for some homogeneouslinear polynomial L(x).

Sowegetn—1—mlinear functionsz,,+1, - . . , ,—1, Withthe property that their
linear combinations are all invariant under o, and they induce a local coordinate
system on Z centered at an isolated point of the intersection of Z and the linear
subspace defined by z,,11 = --- = z,_1 = 0. Moreover, ﬂﬂl ”k =

L(z) + Q(z) forany m + 1 < I,k < n — 1. Applylngthesameargumentat
a nearby point P on Z, i.e. translatlng x1,...,Tn—1 to P and applying a linear
coordinate change to diagonalize the linear part at P,wegetn —1—m collection
of invariant polynomials of degree < 1, say z(P)m+1, - - - , (P)n—1, Whichinduce
local coordinates on Z at P. Any linear combination of z(P)p,+1,...,2(P)p-1

is invariant under o and (((PP))I) — 2@WDh) for 4y 11 < k.l <n-—1 Let
1 z(P),

z(P)j = ¢(P); + X' e(P )]:rz,m + 1< j < n— 1 Forageneric P, we may
assumethat ¢(P); #Oforalm+1<j<n-1
From the invariance,

n—1
P)j+ > e(P)ix
=1

1 m ) n—1 )
= ( : Z Aie(P)jzi + Q(m)) (C(P)j + Z e(P);-a;i> .
C(P)J i=1 =1
From "gf((PP))l” — "(xx((P)) &) we can see that E ; isindependent of j. Let uscall it

F(P)i. Then
z(P)j = c(P);(1+ f(P) w1+ + f(P) )
+e(P) e+ -+ e(P)) o

Note that the matrix e(P)§-, m+1<1i,7 <n—1isnonsingular. For otherwise,
we can find a linear combination of z(P);'sof theform 1+ ayz1 + -+ + apzpy,
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which definesasmooth divisor on Z at P. Thisisimpossible, because Z is defined
by Nz + 02t b¥lagr; + 2;Q(x) = 0for 1 < 4 < m. Now we may assume
that B

2(P); = ¢(P);(1+ f(P) w1+ + f(P)"zm) + x;

Consider the m-dimensional invariant linear subspace Wp defined by = (P); =
Oom+1 < j < n— 1 Itsintersection with the m-dimensional subspace W
defined by z,,11 = --- = x,_1 = 0, isan invariant hyperplane on W defined by
1+ f(P)lzy +--- + f(P)™x,, = 0. Note that o induces a semisimple foliation
on W with an isolated semisimple limit variety. In particular, there can be only a

finitely many invariant hyperplanesdigoint fromz; = --- = z,,, = 0. Sowe can
assumethat f(P)! isindependent of P for sufficiently general choiceof P. Let us
call it ft.

Now let Xy, . .., X,,_1 bethehomogeneouscoordinateson Ewithz; = X;/ Xo.
Choose a new homogeneous coordinates Yo = Xo + f1X1 + --- + f™X,, and
Y, = — X, for 1 < k <n— 1 Theninterms of the inhomogeneous coordinates
y; = Y;/Yo, Wp is defined by y; = ¢(P);,m +1 < 5 < n —1for any generic
choice of P. In other words, the level hyperplanesof y;,m +1<j <n—1, are
invariant under o.

Consider the projection p : (y1,.--,Yn-1) — (Ym+1,---,Yn—1) Of the

affine space Yy # 0 to the (n — 1 — m)-subspace defined by y1 = --- = y,,, = 0.
We claim that p gives a birational map from the semisimple limit set Z of o to
the linear subspacey; = --- = y,,, = 0. It is enough to show that for any point

P inasmall open subsetin Z, e.g. those points considered above, the intersection
of the m-subspace Wp defined by y,11 = c(P)mi1,- -+ Yn—1 = c(P)p—1, With
the generic part of Z consisting of V-attracting points, is precisely one point P.
As in the proof of Theorem 2, consider the closure £p of all pointsin X whose
V-limit points are P. Then £p contains Wp. It follows that Wp contains no other
attracting point of Z. Hence p is one-to-one on the Zariski open set of Z contained
intheys, ..., y,_1 coordinates cell and consisting of attracting pointswith respect
to the additive vector field V. This shows the rationdlity of Z. O
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