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Abstract. Let COP = B0 ∩ H∞, where B0 is the little Bloch space on the open
unit disk �, and A(�) be the disk algebra on �. For non-zero functions u1, u2, . . . , uN ∈
A(�) and distinct analytic self-maps ϕ1, ϕ2, . . . , ϕN satisfying ϕj ∈ A(�) and ‖ϕj‖∞ = 1
for every j, it is given characterisations of which the sum of weighted composition
operators

∑N
j=1 ujCϕj maps COP into A(�).

2000 Mathematics Subject Classification. Primary 47B38, 46J20; Secondary
30D55.

1. Introduction. Let D be a domain in �, and X, Y be the Banach spaces
consisting of analytic functions on D. Let ϕ be an analytic self-map of D. Suppose that
f ◦ ϕ ∈ Y for every f ∈ X . Then we may define the composition operator Cϕ : X → Y
by Cϕf = f ◦ ϕ for f ∈ X . In the recent four decades, there has been much work on
composition operators on various spaces of analytic functions (see [2, 14]).

Let H∞ be the Banach algebra of bounded analytic functions on the open unit disk
� with the supremum norm ‖ · ‖∞ and M(H∞) be the space of non-zero multiplicative
linear functionals on H∞ with a weak-*topology. We identify a function in H∞ with
its Gelfand transform. For x, y ∈ M(H∞), let

ρ(x, y) = sup{|f (y)| : f ∈ H∞, f (x) = 0, ‖f ‖∞ ≤ 1}

and

P(x) = {ζ ∈ M(H∞) : ρ(x, ζ ) < 1}.

The set P(x) is called the Gleason part containing x. We have ρ(z, w) = |z − w|/|1 −
wz| for z, w ∈ �.
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Let A(�) be the disk algebra on �, that is A(�) is the Banach algebra of continuous
functions on �, which are analytic in �. We denote by B0 the little Bloch space
consisting of analytic functions f on �, provided

lim
|z|→1

(1 − |z|2)|f ′(z)| = 0.

Then f ∈ B0 ∩ H∞ if and only if f is constant on any Gleason part in M(H∞) \ �,
and for this reason M. Behrens (see [3, p. 442]) called this space COP, for constant on
parts, that is

COP = B0 ∩ H∞.

We also identify a function in H∞ with its radial limit function f (eiθ ) = limr→1(reiθ )
a.e. on ∂�. Sarason in [11] proved that H∞ + C is a closed subalgebra of L∞(∂�),
where C stands for the space of continuous functions on ∂�. Let

QA = (H∞ + C) ∩ H∞.

It is known that

QA = VMO ∩ H∞

(see [12]). We have

A(�) � QA � COP � H∞

(see [3, 5, 12, 13]).
We denote by S(�) the set of analytic self-maps of �. For u ∈ H∞ and ϕ ∈ S(�),

we may define the weighted composition operator uCϕ on H∞ by (uCϕ)f = u(f ◦ ϕ)
for f ∈ H∞. It is known that if ϕ ∈ QA, then Cϕ maps QA into QA (see [15]), and if
ϕ ∈ COP, then Cϕ maps COP into COP (see [9]).

Let ϕ1, ϕ2, . . . , ϕN be distinct functions in S(�). Let Z be the family of sequences
{zn}n in � satisfying the following three conditions:
(a) {zn}n is a convergent sequence,

(b) |ϕj(zn)| → 1 as n → ∞ for some 1 ≤ j ≤ N and {ϕj(zn)}n is a convergent sequence
for every 1 ≤ j ≤ N,

(c)
{ ϕi(zn) − ϕj(zn)

1 − ϕi(zn)ϕj(zn)

}
n

is a convergent sequence for every 1 ≤ i, j ≤ N.

Let

I({zn}) = {j : 1 ≤ j ≤ N, |ϕj(zk)| → 1 (k → ∞)}.
For each t ∈ I({zn}), we write

I0({zn}, t) = {j ∈ I({zn}) : ρ(ϕj(zk), ϕt(zk)) → 0 (k → ∞)}.
Then there is a subset {t1, t2, . . . , t�} of I({zn}) such that

I({zn}) =
�⋃

p=1

I0({zn}, tp)
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and I0({zn}, tp) ∩ I0({zn}, tq) = ∅ for p �= q. Izuchi and Ohno in [7] gave a
characterisation of compactness of the linear sum of composition operators

∑N
j=1 ajCϕj

on H∞. For non-zero functions u1, u2, . . . , uN ∈ H∞, Izuchi and Ohno in [8] have
recently shown that

∑N
j=1 ujCϕj is compact on H∞ if and only if

lim
k→∞

∑
j∈I0({zn},t)

uj(zk) = 0 (1.1)

for every {zn}n ∈ Z and t ∈ I({zn}). Condition (1.1) is called an interior condition, for
(1.1) is a condition given in the interior of �.

Izuchi and Ohno [8] also showed essentially that if uj ∈ A(�) and ϕj ∈ S(�)
with ϕj ∈ A(�) for every 1 ≤ j ≤ N, then (

∑N
j=1 ujCϕj ) (f ) ∈ A(�) for every f ∈ H∞

if and only if (1.1) holds (see also [1, 10]). Since QA and COP are the most
important spaces between A(�) and H∞, we are interesting in properties of weighted
composition operators on QA and COP. Motivated by the above, we have questions
when (

∑N
j=1 ujCϕj )(f ) ∈ A(�) holds for every f ∈ COP (or QA). In this paper, we answer

these questions.
In Section 2, we give interior conditions, and in Section 3 we give boundary

conditions.

2. Sum of weighted composition operators. Let ϕ1, ϕ2, . . . , ϕN be distinct
functions in S(�) satisfying that ϕj ∈ COP and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N. Let
u1, u2, . . . , uN ∈ COP be non-zero functions. Since Cϕj maps COP into COP,

∑N
j=1 ujCϕj

is an operator on COP. Suppose that
∑N

j=1 ujCϕj : COP → COP is compact. Then,

N∑
j=1

ujCϕj : A(�) → COP ⊂ H∞

is compact. By [8], this condition holds if and only if (1.1) holds. Moreover, if uj, ϕj ∈
QA, then similarly

∑N
j=1 ujCϕj : QA → QA is compact if and only if (1.1) holds.

In the rest of this paper, we assume that ϕj ∈ A(�) for every 1 ≤ j ≤ N. Let Z be
the family of sequences {zn}n in � satisfying conditions (a), (b) and (c). Let {zn}n ∈ Z.
By conditions (a) and (b), zn → eiθ0 as n → ∞ for some eiθ0 ∈ ∂�. We have

I({zn}) = {j : 1 ≤ j ≤ N, |ϕj(eiθ0 )| = 1}.
By (c), we write

βi,j = lim
k→∞

ϕi(zk) − ϕj(zk)

1 − ϕi(zk)ϕj(zk)
, 1 ≤ i, j ≤ N.

We have

lim
k→∞

ρ(ϕi(zk), ϕj(zk)) = |βi,j|.

For each t ∈ I({zn}), let

I1({zn}, t) = {j ∈ I({zn}) : |βt,j| < 1}. (2.1)
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For z0, z1, z2 in �, we have

ρ(z0, z1) ≤ ρ(z0, z2) + ρ(z2, z1)
1 + ρ(z0, z2)ρ(z2, z1)

(see [3, p. 4]). Hence, for i, j, t ∈ I({zn}) if |βt,i| < 1 and |βt,j| < 1, then |βi,j| < 1.
This shows that for s, t ∈ I({zn}), we have either I1({zn}, s) = I1({zn}, t) or I1({zn}, s) ∩
I1({zn}, t) = ∅, so there is a subset {t1, t2, . . . , t�} of I({zn}) such that I({zn}) =⋃�

p=1 I1({zn}, tp) and I1({zn}, tp) ∩ I1({zn}, tq) = ∅ for p �= q. We note that |βtp,tq | = 1
for p �= q.

THEOREM 2.1. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and ϕ1, ϕ2, . . . , ϕN ∈
S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N.
Then the following conditions are equivalent.

(i) (
∑N

j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ COP.
(ii) (

∑N
j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ QA.

(iii) lim
k→∞

∑
j∈I1({zn},t) uj(zk) = 0 for every {zn}n ∈ Z and t ∈ I({zn}).

To prove our theorem, we need some lemmas. By [6] (see also [3]), one can easily
see the following.

LEMMA 2.2. Let f ∈ H∞. Then the following conditions are equivalent:

(i) f ∈ COP.
(ii) For any sequences {zn}n, {wn}n in � satisfying that |zn| → 1 and supn ρ(zn, wn) < 1,

then f (zn) − f (wn) → 0 as n → ∞.

A sequence {zn}n in � is called sparse (or thin) if

lim
k→∞

∏
n;n�=k

ρ(zn, zk) = 1.

In [4], Gorkin showed that for a sequence {zn}n in � satisfying |zn| → 1 as n → ∞,
there exists a sparse subsequence of {zn}n. By appropriate modifications of it, we may
prove the following.

LEMMA 2.3. Let {zt,n}n be a sequence in � satisfying |zt,n| → 1 as n → ∞ for every
1 ≤ t ≤ �. Suppose that ρ(zt,n, zs,n) → 1 as n → ∞ for t �= s. Then there is a subsequence
{ni}i such that {zt,ni : 1 ≤ t ≤ �, i ≥ 1} is a sparse sequence.

In [16], Sundberg and Wolff proved the following.

LEMMA 2.4. If {zn}n is a sparse sequence in �, then for every bounded sequence {an}n

of complex numbers there is f ∈ QA such that f (zn) = an for every n ≥ 1.

Proof of Theorem 2.1. (i) ⇒ (ii) follows from QA ⊂ COP.
Suppose that (ii) holds. Let {zn}n ∈ Z and t ∈ I({zn}). We may write zn → eiθ0 ∈

∂�. There is a subset {t1, t2, . . . , t�} of I({zn}) such that I({zn}) = ⋃�
p=1 I1({zn}, tp)
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and I1({zn}, tp) ∩ I1({zn}, tq) = ∅ for p �= q. By (ii), for every f ∈ QA we have∑N
j=1 uj(z)f (ϕj(z)) ∈ A(�). Then the above function is continuous at z = eiθ0 . For each

j /∈ I({zn}), we have |ϕj(eiθ0 )| < 1, so uj(z)f (ϕj(z)) is continuous at z = eiθ0 . Hence,

∑
j∈I({zn})

uj(z)f (ϕj(z)) =
�∑

p=1

∑
j∈I1({zn},tp)

uj(z)f (ϕj(z)) (2.2)

is continuous at z = eiθ0 .
For each j ∈ I1({zn}, tp), by (2.1) we have |βtp,j| < 1, so

lim
k→∞

ρ(ϕtp (zk), ϕj(zk)) = |βtp,j| < 1.

Since QA ⊂ COP, by Lemma 2.2 we have f (ϕj(zk)) − f (ϕtp (zk)) → 0 as k → ∞ for
every f ∈ QA. By (2.2), there exists the following limit

lim
k→∞

�∑
p=1

∑
j∈I1({zn},tp)

uj(zk)f (ϕj(zk)) = lim
k→∞

�∑
p=1

f (ϕtp (zk))
∑

j∈I1({zn},tp)

uj(zk)

for every f ∈ QA. Since |βtp,tq | = 1, we have ρ(ϕtp (zk), ϕtq (zk)) → 1 as k → ∞ for p �= q.
Since |ϕtp (zk)| → 1 as k → ∞, by Lemma 2.3 considering a subsequence we may
assume that {ϕtp (zk) : k ≥ 1, 1 ≤ p ≤ �} is a sparse sequence.

Since t ∈ I({zn}), t ∈ I1({zn}, tp0 ) for some 1 ≤ p0 ≤ �. By Lemma 2.4, there is f ∈
QA such that f (ϕtp (zk)) = 0 for every p �= p0, f (ϕtp0

(z2k)) = 1 and f (ϕtp0
(z2k+1)) = −1

for every k ≥ 1. Then there is the following limit

( ∑
j∈I1({zn},tp0 )

uj(eiθ0 )
)

(−1)k (k → ∞).

Consequently we have

0 =
∑

j∈I1({zn},tp0 )

uj(eiθ0 ) =
∑

j∈I1({zn},t)
uj(eiθ0 ).

Thus, we get (iii).
Next, suppose that (iii) holds. To prove (i), let f ∈ COP and {zn}n be a sequence

in � such that zn → eiθ0 ∈ ∂�. It is sufficient to prove that limn→∞
∑N

j=1 uj(zn)f (ϕj(zn))
has a limit involving only the point eiθ0 . We may assume that {zn}n ∈ Z. There is a
subset {t1, t2, . . . , t�} of I({zn}) such that I({zn}) = ⋃�

p=1 I1({zn}, tp) and I1({zn}, tp) ∩
I1({zn}, tq) = ∅ for p �= q. We note that |ϕj(eiθ0 )| = 1 for j ∈ I({zn}) and |ϕj(eiθ0 )| < 1 for
j /∈ I({zn}). We have

N∑
j=1

uj(zk)f (ϕj(zk)) =
∑

j∈I({zn})
uj(zk)f (ϕj(zk)) +

∑
j/∈I({zn})

uj(zk)f (ϕj(zk))
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and

lim
k→∞

∑
j/∈I({zn})

uj(zk)f (ϕj(zk)) =
∑

j/∈I({zn})
uj(eiθ0 )f (ϕj(eiθ0 )).

We also have

lim sup
k→∞

∣∣∣
∑

j∈I({zn})
uj(zk)f (ϕj(zk))

∣∣∣ = lim sup
k→∞

∣∣∣
�∑

p=1

∑
j∈I1({zn},tp)

uj(zk)f (ϕj(zk))
∣∣∣.

Since f ∈ COP, by Lemma 2.2 we have f (ϕj(zk)) − f (ϕtp (zk)) → 0 (k → ∞) for j ∈
I1({zn}, tp). Hence,

lim sup
k→∞

∣∣∣
∑

j∈I({zn})
uj(zk)f (ϕj(zk))

∣∣∣

= lim sup
k→∞

∣∣∣
�∑

p=1

f (ϕtp (zk))
∑

j∈I1({zn},tp)

uj(zk)
∣∣∣

≤ lim sup
k→∞

�∑
p=1

‖f ◦ ϕtp‖∞
∣∣∣

∑
j∈I1({zn},tp)

uj(zk)
∣∣∣

= 0 by (iii).

Thus, we have

lim
k→∞

N∑
j=1

uj(zk)f (ϕj(zk)) =
∑

j/∈I({zn})
uj(eiθ0 )f (ϕj(eiθ0 )),

so we get (i). �
Under the assumptions of Theorem 2.1, generally

∑N
j=1 ujCϕj : COP → A(�) is

not compact in spite of that condition (i) holds. But it is considered that condition (i)
leads compactness of

∑N
j=1 ujCϕj : COP → A(�) in some weak sense. We denote by

B(COP) the closed unit ball of COP. We have the following.

THEOREM 2.5. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and ϕ1, ϕ2, . . . , ϕN ∈
S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N.
Then the following conditions are equivalent.

(i) (
∑N

j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ COP.
(ii) lim

k→∞
∑

j∈I1({zn},t) uj(zk) = 0 for every {zn}n ∈ Z and t ∈ I({zn}).
(iii) If {fm}m is a sequence in B(COP), which converges uniformly to zero on any compact

subset of �, then

lim
m→∞ lim sup

k→∞

∣∣∣
( N∑

j=1

ujCϕj

)
(fm)(zk)

∣∣∣ = 0

for every {zn}n ∈ Z.

Proof. By Theorem 2.1, we have (i) ⇔ (ii). Suppose that (ii) holds. To show (iii),
let {fm}m be a sequence in B(COP), which converges uniformly to zero on any compact
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subset of � and {zn}n ∈ Z. We have

N∑
j=1

uj(zk)fm(ϕj(zk)) =
∑

j∈I({zn})
uj(zk)fm(ϕj(zk)) +

∑
j/∈I({zn})

uj(zk)fm(ϕj(zk)).

By the assumption on {fm}m,

lim
m→∞ sup

k≥1

∣∣∣
∑

j/∈I({zn})
uj(zk)fm(ϕj(zk))

∣∣∣ = 0.

Let {t1, t2, . . . , t�} ⊂ I({zn}) such that I({zn}) = ⋃�
p=1 I1({zn}, tp) and I1({zn}, tp) ∩

I1({zn}, tq) = ∅ for p �= q. Since fm ∈ COP, we have fm(ϕj(zk)) − fm(ϕtp (zk)) → 0 as
k → ∞ for j ∈ I1({zn}, t). Then

lim sup
m→∞

lim sup
k→∞

∣∣∣
( N∑

j=1

ujCϕj

)
(fm)(zk)

∣∣∣

= lim sup
m→∞

lim sup
k→∞

∣∣∣
�∑

p=1

∑
j∈I1({zn},tp)

uj(zk)fm(ϕj(zk))
∣∣∣

≤ lim sup
k→∞

�∑
p=1

∣∣∣
∑

j∈I1({zn},tp)

uj(zk)
∣∣∣

= 0 by (ii).

Thus, we get (iii).
Suppose that (iii) holds. To show (ii), let {zn}n ∈ Z and t ∈ I({zn}). Take

{t1, t2, . . . , t�} in I({zn}) such that I({zn}) = ⋃�
p=1 I1({zn}, tp) and I1({zn}, tp) ∩

I1({zn}, tq) = ∅ for p �= q. Let {fm}m be a sequence in B(COP), which converges to
0 uniformly on any compact subset of �. In the same way as the first paragraph of this
proof, we have

lim sup
k→∞

∣∣∣
( N∑

j=1

ujCϕj

)
(fm)(zk)

∣∣∣ = lim sup
k→∞

∣∣∣
�∑

p=1

fm(ϕtp (zk))
∑

j∈I1({zn},tp)

uj(zk)
∣∣∣.

By Lemma 2.3, considering a subsequence we may assume that {ϕtp (zk) : k ≥ 1, 1 ≤ p ≤
�} is a sparse sequence. Note that t ∈ I1({zn}, tp0 ) for some 1 ≤ p0 ≤ �. By Lemma 2.4,
there exists h ∈ QA such that h(ϕtp (zk)) = 0 for every p �= p0 and h(ϕtp0

(zk)) = 1 for every

k ≥ 1. We may put ϕtp0
(zk) → eiθ0 ∈ ∂� as k → ∞. Let q(z) ∈ A(�) satisfy q(eiθ0 ) = 1

and |q(z)| < 1 for z ∈ � \ {eiθ0}. For each positive integer m, let fm = hqm ∈ A(�). Then
{fm}m is a bounded sequence in COP and fm → 0 uniformly on any compact subset of
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�. Thus, we get

lim sup
m→∞

lim sup
k→∞

∣∣∣
( N∑

j=1

ujCϕj

)
(fm)(zk)

∣∣∣

= lim sup
m→∞

lim sup
k→∞

∣∣∣fm(ϕtp0
(zk))

∑
j∈I1({zn},tp0 )

uj(zk)
∣∣∣

= lim sup
m→∞

lim sup
k→∞

∣∣∣qm(ϕtp0
(zk))

∑
j∈I1({zn},tp0 )

uj(zk)
∣∣∣

= lim sup
k→∞

∣∣∣
∑

j∈I1({zn},tp0 )

uj(zk)
∣∣∣

= lim sup
k→∞

∣∣∣
∑

j∈I1({zn},t)
uj(zk)

∣∣∣.

By conditon (iii), we obtain (ii). �

We denote by m the normalised Lebesgue measure on ∂�. In the same way as the
proof of Corollary 2.4 in [8], we have the following.

COROLLARY 2.6. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and
ϕ1, ϕ2, . . . , ϕN ∈ S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1
for every 1 ≤ j ≤ N. Let 	(ϕj) = {eiθ ∈ ∂� : |ϕj(eiθ )| = 1}. If (

∑N
j=1 ujCϕj )(f ) ∈ A(�)

for every f ∈ COP, then m(	(ϕj)) = 0 for every 1 ≤ j ≤ N.

3. Boundary conditions. Let ϕ1, ϕ2, . . . , ϕN ∈ S(�) be distinct functions
satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N. By Corollary 2.6, we
may consider a similar concept of Z on ∂�. Suppose that m(	(ϕj)) = 0 for every
1 ≤ j ≤ N. Let Y be the family of sequences {eiθn}n in ∂� satisfying

(d) {eiθn}n is a convergent sequence.

(e) |ϕj(eiθn )| < 1 for every 1 ≤ j ≤ N and n ≥ 1, {ϕj(eiθn )}n is a convergent sequence for
every 1 ≤ j ≤ N and |ϕj(eiθn )| → 1 as n → ∞ for some 1 ≤ j ≤ N.

(f)
{ ϕi(eiθn ) − ϕj(eiθn )

1 − ϕi(eiθn )ϕj(eiθn )

}
n

is a convergent sequence for every 1 ≤ i, j ≤ N.

Let

J({eiθn}) = {j : 1 ≤ j ≤ N, |ϕj(eiθk )| → 1 (k → ∞)}.

By (f), we write

βi,j = lim
k→∞

ϕi(eiθk ) − ϕj(eiθk )

1 − ϕi(eiθk )ϕj(eiθk )
, 1 ≤ i, j ≤ N.

We have limk→∞ ρ(ϕi(eiθk ), ϕj(eiθk )) = |βi,j|. For each t ∈ J({zn}), let

J1({eiθn}, t) = {j ∈ J({eiθn}) : |βt,j| < 1}.
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Then in the same way as in Section 2, there is a subset {t1, t2, . . . , t�} of J({zn}) such
that J({eiθn}) = ⋃�

p=1 J1({eiθn}, tp) and J1({eiθn}, tp) ∩ J1({eiθn}, tq) = ∅ for p �= q. In the
similar way as the proof of Theorem 2.1, we may show the following.

THEOREM 3.1. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and ϕ1, ϕ2, . . . , ϕN ∈
S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N.
We assume that m(	(ϕj)) = 0 for every 1 ≤ j ≤ N. Then the following conditions are
equivalent:

(i) (
∑N

j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ COP.
(ii) lim

k→∞
∑

j∈I1({zn},t) uj(zk) = 0 for every {zn}n ∈ Z and t ∈ I({zn}).
(iii) lim

k→∞
∑

j∈J1({eiθn },t) uj(eiθk ) = 0 for every {eiθn}n ∈ Y and t ∈ J({eiθn}).

Proof. (i) ⇔ (ii) is proven in Theorem 2.1.
Suppose that (ii) holds. To show (iii), let {eiθn}n ∈ Y and t ∈ J({eiθn}). For each

positive integer n, let {rn,k}k be a sequence of numbers such that 0 < rn,k < 1 and
rn,k → 1 as k → ∞. Put zn,k = rn,keiθn . We may choose a sequence {kn}n such that

lim
n→∞ zn,kn = lim

n→∞ eiθn , lim
n→∞ ϕj(zn,kn ) = lim

n→∞ ϕj(eiθn ) (1 ≤ j ≤ N)

and

lim
n→∞

ϕi(zn,kn ) − ϕj(zn,kn )

1 − ϕi(zn,kn )ϕj(zn,kn )
= lim

n→∞
ϕi(eiθn ) − ϕj(eiθn )

1 − ϕi(eiθn )ϕj(eiθn )
(1 ≤ i, j ≤ N).

Put zn = zn,kn . Then {zn}n ∈ Z, t ∈ I({zn}) and I1({zn}, t) = J1({eiθn}, t). By condition
(ii), we have

lim
k→∞

∑
j∈J1({eiθn },t)

uj(eiθk ) = lim
k→∞

∑
j∈I1({zn},t)

uj(zk) = 0.

Suppose that (iii) holds. To show (i), let f ∈ COP. We have

( N∑
j=1

ujCϕj

)
(f )(z) =

N∑
j=1

uj(z)f (ϕj(z)), z ∈ � \
N⋃

j=1

	(ϕj).

Hence, (
∑N

j=1 ujCϕj )(f ) is well defined and continuous on � \ ⋃N
j=1 	(ϕj). To show

(
∑N

j=1 ujCϕj )(f ) ∈ A(�), since (
∑N

j=1 ujCϕj )(f ) ∈ H∞, it is sufficient to show that the

function (
∑N

j=1 ujCϕj )(f ) on ∂� \ ⋃N
j=1 	(ϕj) is continuously extendable to ∂�. Since

m(	(ϕj)) = 0 for 1 ≤ j ≤ N, it is sufficient to show that for a sequence {eiθn}n in ∂� \⋃N
j=1 	(ϕj) satisfying eiθn → eiθ0 ∈ ⋃N

j=1 	(ϕj),

lim
n→∞

N∑
j=1

uj(eiθn )f (ϕj(eiθn ))

has a limit involving only the point eiθ0 . The remaining is the same as the proof of
Theorem 2.1. �
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We do not know a direct proof of (iii) ⇒ (ii).
The following is a boundary version of Theorem 2.5, which may be proven in the

same way of it.

THEOREM 3.2. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and ϕ1, ϕ2, . . . , ϕN ∈
S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N.
We assume that m(	(ϕj)) = 0 for every 1 ≤ j ≤ N. Then the following conditions are
equivalent.

(i) (
∑N

j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ COP.

(ii) lim
k→∞

∑
j∈I1({zn},t)

uj(zk) = 0 for every {zn}n ∈ Z and t ∈ I({zn}).

(iii) If {fm}m is a sequence in B(COP), which converges uniformly on any compact subset
of �, then

lim
m→∞ lim sup

k→∞

∣∣∣
( N∑

j=1

ujCϕj

)
(fm)(eiθk )

∣∣∣ = 0

for every {eiθn}n ∈ Y .

We may also give a boundary condition, which is equivalent to condition (1.1).
Let {eiθn}n ∈ Y . For each t ∈ J({eiθn}), let

J0({eiθn}, t) = {j ∈ J({eiθn}) : ρ(ϕj(eiθk ), ϕt(eiθk )) → 0 (k → ∞)}.

Then there is a subset {t1, t2, . . . , t�} of J({eiθn}) such that J({eiθn}) = ⋃�
p=1 J0({eiθn}, tp)

and J0({eiθn}, tp) ∩ J0({eiθn}, tq) = ∅ for p �= q.

THEOREM 3.3. Let u1, u2, . . . , uN ∈ A(�) be non-zero functions and ϕ1, ϕ2, . . . , ϕN ∈
S(�) be distinct functions satisfying that ϕj ∈ A(�) and ‖ϕj‖∞ = 1 for every 1 ≤ j ≤ N.
We assume that m(	(ϕj)) = 0 for every 1 ≤ j ≤ N. Then the following conditions are
equivalent.

(i)
∑N

j=1 ujCϕj is compact on H∞.
(ii) (

∑N
j=1 ujCϕj )(f ) ∈ A(�) for every f ∈ H∞.

(iii) lim
k→∞

∑
j∈I0({zn},t)

uj(zk) = 0 for every {zn}n ∈ Z and t ∈ I({zn}).

(iv) lim
k→∞

∑
j∈J0({eiθn },t)

uj(eiθk ) = 0 for every {eiθn}n ∈ Y and t ∈ J({eiθn}).

Sketch of Proof. In [8], equivalencies of (i) ⇔ (ii) ⇔ (iii) were proven. In the same
way as the proof of Theorem 3.1, we may prove that (iii) ⇒ (iv) ⇒ (ii). �
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