
Canad. Math. Bull. Vol. 41 (3), 1998 pp. 267–278

ON THE NONEMPTINESS
OF THE ADJOINT LINEAR SYSTEM

OF POLARIZED MANIFOLDS

YOSHIAKI FUKUMA

ABSTRACT. Let (X, L) be a polarized manifold over the complex number field
with dim X ≥ n. In this paper, we consider a conjecture of M. C. Beltrametti and
A. J. Sommese and we obtain that this conjecture is true if n ≥ 3 and h0(L) ½ 2,
or dim Bs jLj � 0 for any n ½ 3. Moreover we can generalize the result of Sommese.

0. Introduction. Let X be a smooth projective variety over the complex number
field C with dim X ≥ n and let L be a (Cartier) divisor on X. Then (X, L) is called a
polarized (resp. quasi-polarized) manifold if L is ample (resp. nef-big). Beltrametti and
Sommese conjectured the following in their book (Conjecture 7.2.7 in [BS]):

CONJECTURE A. Let (X, L) be a polarized manifold with dim X ≥ n. If KX +(n�1)L
is nef, then h0

�
KX + (n� 1)L

�
Ù 0.

This conjecture is true if n ≥ 2 or L is spanned. But in general, it is unknown whether
this conjecture is true or not. In order to solve this conjecture it is necessary to consider
the case in which (X, L) is a quasi-polarized manifold. If L is ample and Conjecture A is
true, then we can prove that KX + (n � 1)L is nef if and only if h0

�
KX + (n � 1)L

�
Ù 0.

But if L is nef-big, then there exists an example such that KX + (n � 1)L is not nef but
h0
�
KX + (n� 1)L

�
Ù 0. So we propose the following conjecture for any quasi-polarized

manifold:

CONJECTURE NB. Let (X, L) be a quasi-polarized manifold with dim X ≥ n ½ 2. If
î
�
KX + (n� 1)L

�
½ 0, then h0

�
KX + (n� 1)L

�
Ù 0.

We remark that Conjecture A is equivalent to Conjecture NB for any polarized man-
ifold. In this paper, we will prove that Conjecture A is true if one of the following is
satisfied:

(1) n ≥ 3 and h0(L) ½ 2,
(2) Bs jLj is finite,

and by this result, we can generalize a result of Sommese (Theorem 4.1 in [So2]). I
think that in order to prove Conjecture A for dimX ≥ n it is necessary to consider
Conjecture NB for dim X ≥ n� 1.
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268 YOSHIAKI FUKUMA

Furthermore we will propose a conjecture (Conjecture 3.8) which gives the relation-
ship between h0

�
KX + (n � 1)L

�
and g(L). We use the customary notations in algebraic

geometry.

ACKNOWLEDGMENT. The author would like to express his hearty gratitude to Pro-
fessors Takao Fujita and Masanori Kobayashi for giving some useful comments.

1. Preliminaries.

DEFINITION 1.1. Let X be a smooth projective variety with dim X Ù dim Y ½ 1.
Then a morphism f : X ! Y is a fiber space if f is surjective with connected fibers. Let
L be a Cartier divisor on X. Then (f , X, Y, L) is called a polarized (resp. quasi-polarized)
fiber space if f : X ! Y is a fiber space and L is ample (resp. nef-big).

DEFINITION 1.2. Let X be a smooth projective variety with dim X ≥ n and let L be
a line bundle on X. Then we say that (X, L) is a scroll over Y if there exists a fiber space
ô: X ! Y such that any fiber of ô is isomorphic to Pn�m and LjF ≥ OPn�m(1), where
1 � m ≥ dim Y Ú dim X. A quasi-polarized fiber space (f , X, Y, L) is called a scroll if
(F, LF) ¾≥

�
Pn�m, OPn�m(1)

�
for any fiber F of f , where dim X ≥ n and dim Y ≥ m.

NOTATION 1.3. Let D1 and D2 be divisors on a smooth projective manifold X. We
denote D1 ½ D2 if D1 � D2 is linearly equivalent to an effective divisor on X.

DEFINITION 1.4 (SEE [FK1]). (1) Let (X, L) be a quasi-polarized surface. Then (X, L)
is called L-minimal if LE Ù 0 for any (-1)-curve E on X.

(2) For any quasi-polarized surface (X, L), there is a quasi-polarized surface (X1, L1)
and a birational morphism ñ: X ! X1 such that L ≥ ñŁ(L1) and (X1, L1) is L1-minimal.
Then we call (X1, L1) an L-minimalization of (X, L).

DEFINITION 1.5. (1) Let (X, L) and (X0, L0) be polarized manifolds and ñ: X ! X0

a birational morphism. Then ñ is called a simple blowing up if ñ is a blowing up at one
point on X0 and L ≥ ñŁL0 � E, where E is the ñ-exceptional effective reduced divisor.

(2) Let (X, L) be a polarized manifold. Then (X, L) is called a minimal reduction model
if (X, L) is not obtained by a finite number of simple blowing ups of another polarized
manifold. If (X, L) is not a minimal reduction model, then there exist a smooth projective
variety Y, an ample divisor A on Y, and a finite number of simple blowing ups ñ: X ! Y
such that (Y, A) is a minimal reduction model. We call (Y, A) a minimal reduction of
(X, L).

REMARK 1.5.1. Let (X, L) be a polarized manifold with dim X ≥ n and let (Y, A) be

a minimal reduction of (X, L). Then h0
�

m
�
KX + (n� 1)L

��
≥ h0

�
m
�
KY + (n� 1)A

��
for

any natural number m.

THEOREM 1.6. Let (X, L) be a polarized manifold with dim X ≥ n ½ 3. Assume that
KX + (n� 1)L is nef. If KX + (n� 2)L is not nef, then (X, L) is one of the following types.

a) (X, L) is obtained by a simple blowing up of another polarized manifold.
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b0) (X, L) is a Del Pezzo manifold with b2(X) ≥ 1,
�
P3, O(j)

�
with j ≥ 2 or 3,�

P4, O(2)
�
, or a hyperquadric in P4 with L ≥ O(2).

b1) There is a fibration Φ: X ! C over a curve C with one of the following properties:
b1-v) (F, LF) ¾≥

�
P2, O(2)

�
for any fiber F of Φ.

b1-q) Every fiber F of Φ is an irreducible hyperquadric in Pn having only isolated sin-
gularities.

b2) (X, L) is a scroll over a smooth surface S.

PROOF. See [Fj1] or [I].

LEMMA 1.7. Let (S, A) be a quasi-polarized surface. Then the following are equiv-
alent:

(1) h0(KS + A) ≥ 0.
(2) h0

�
m(KS + A)

�
≥ 0 for any natural number m.

PROOF (cf. PROPOSITION 3.5 IN [LP]). It is sufficient to prove that condition (1)
implies (2). By Riemann-Roch Theorem, Serre duality, and Kawamata-Viehweg Van-
ishing Theorem, we obtain h0(KS + A) ≥ g(A) � q(S) + h0(KS). If h0(KS + A) ≥ 0,
then g(A) ≥ q(S) � h0(KS). If î(S) ½ 0, then q(S) � h0(KS) � 1 and so we have
g(A) � 1. But this is impossible since î(S) ½ 0. Hence î(S) ≥ �1. Let (S1, A1) be an
A-minimalization of (S, A) and let ñ: S ! S1 be its birational morphism. We remark that
A ≥ (ñ)Ł(A1).

CLAIM 1.8. h0
�
m(KS + A)

�
≥ h0

�
m(KS1 + A1)

�
for any natural number m.

PROOF.
h0
�
m(KS + A)

�
≥ h0

�
m(ñŁ(KS1 + A1) + Eñ)

�

≥ h0
�
m(KS1 + A1)

�
,

where Eñ is an effective ñ-exceptional divisor such that KS ≥ ñŁ(KS1 ) + Eñ. This com-
pletes the proof of Claim 1.8.

Assume that h0(KS + A) ≥ 0. Then by Claim 1.8, we obtain h0(KS1 + A1) ≥ 0. On the
other hand, by Riemann-Roch Theorem, Serre duality, and Kawamata-Viehweg Van-
ishing Theorem, we obtain h0(KS1 + A1) ≥ g(A1) � q(S1) since î(S1) ≥ �1. Since
h0(KS1 + A1) ≥ 0, we have g(A1) ≥ q(S1). Hence (S1, A1) is isomorphic to

�
P2, O(r)

�
for

r ≥ 1 or 2, or a scroll over a smooth curve by Theorem 3.1 in [Fk1].
(A) The case in which (S1, A1) ≥

�
P2, OP2 (r)

�
for r ≥ 1 or 2.

Then KS1 + A1 ≥ OP2(�3) + OP2 (r) ≥ OP2 (r� 3). Hence h0
�
m(KS1 + A1)

�
≥ 0 for any

natural number m since r � 2.
(B) The case in which (S1, A1) is a scroll over a smooth curve.
Let ô: S1 ! B be the P1-bundle, where B is a smooth curve. Let E be a locally free

sheaf of rank 2 on B such that E is normalized and S1 ≥ PB(E). Let C0 be a section of ô
such that C0 2 jOPB(E)(1)j, where OPB(E)(1) is the tautological line bundle on S1, and let
Fô be a fiber of ô. We put e ≥ �C2

0. Then A1 � C0 +bFô, where� denotes the numerical
equivalence and b is an integer. On the other hand, KS1 � �2C0 + (2g(C) � 2 � e)Fô.
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Hence KS1 +A1 � �C0 + (2g(C)�2�e +b)Fô. If î(KS1 +A1) ½ 0, then (KS1 +A1)Fô ½ 0
since Fô is nef. But (KS1 + A1)Fô ≥ �1. So we obtain î(KS1 + A1) ≥ �1, that is,
h0
�
m(KS1 + A1)

�
≥ 0 for any natural number m. By Claim 1.8, this completes the proof

of Lemma 1.7.

By Lemma 1.7, we can prove the following:

COROLLARY 1.9. Let (X, L) be a quasi-polarized manifold. Assume that L is
spanned. Then Conjecture NB is true.

LEMMA 1.10. Let L be a nef-big Cartier divisor on a normal projective variety X.
Then

(1) Hi(X,�L) ≥ 0 for i Ú minfdim X, 2g,
(2) Hi(X, KX + L) ≥ 0 for i Ù maxf0, dim Irr(X)g,

where Irr(X) denotes the irrational locus of X.

PROOF. See Theorem 0.2.1 in [So2].

DEFINITION 1.11. Let X be a normal projective variety. Let r: Xr ! X be a resolution
of X. Then we say that the Albanese mapping is defined for X if there is a morphism
å: X ! Alb(Xr) such that ã ≥ å Ž r, where Alb(Xr) denotes the Albanese variety of
Xr and ã: Xr ! Alb(Xr) is the Albanese map of Xr. In this case, å and Alb(Xr) are
independent of the resolution of X.

LEMMA 1.12. Let X be a normal projective variety and let Xr be a resolution of X.
If h1(OX) ≥ h1(OXr), then the Albanese mapping is defined for X.

PROOF. See Lemma 0.3.3 in [So2] or Lemma 2.4.1 and Remark 2.4.2 in [BS].

2. The case in which dim X ≥ 3 and h0(L) ½ 2.

THEOREM 2.1. Let (X, L) be a quasi-polarized 3-fold with h0(L) ½ 2. If KX + L is
nef, then h0(KX + 2L) Ù 0.

PROOF. Let jMj be the movable part of jLj, and let Z be the fixed part of jLj. Let
ñ: X0 ! X be a birational morphism such that Bs jM0j ≥ û, where M0 is the movable part
of ñŁM. Let L0 ≥ ñŁL.

Since Bs jM0j ≥ û, by Bertini’s theorem, a general member D0 of jM0j is smooth.
We remark that D0 is not irreducible in general. Let S0 be one irreducible component of
D0 such that (L0)2S0 Ù 0. (We can take this S0 since (L0)2M0 Ù 0.) We also remark that
O(mD0)jS0 ≥ O(mS0)jS0 for any natural number m because D0 is smooth.

For any natural number m,

m(KS0 + L0jS0 ) ≥
�
m(KX0 + S0 + L0)

�
jS0

≥
�
m(KX0 + D0 + L0)

�
jS0

≥ (ñŁ
�
m(KX + L)

�
+ mD0 + mEñ)jS0 ,
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where Eñ is an effective ñ-exceptional divisor such that KX0 ≥ ñŁKX + Eñ.
By base point free theorem ([KMM]), Bs jm(KX + L)j ≥ û for some m Ù 0 because

KX+L is nef. Hence Bs
þþþñŁ�m(KX+L)

�þþþ ≥ û. Since Bs
þþþñŁ�m(KX+L)

�þþþ ≥ û and Bs jmD0j ≥

û, we obtain h0
�
ñŁ

�
m(KX + L)

�
jS0
�
Ù 0, h0((mD0)jS0 ) Ù 0, and h0((mEñ)jS0 ) Ù 0. There-

fore h0
�
m(KS0 + L0jS0)

�
Ù 0 for some m Ù 0.

We remark that (S0, L0jS0) is a quasi-polarized surface. Indeed the nefness of L0jS0 is
trivial, and L0jS0 is big because (L0jS0 )2 ≥ (L0)2S0 Ù 0.

By Lemma 1.7, we obtain h0(KS0 + L0jS0 ) Ù 0.
Next we consider the following exact sequence:

0 �! H0(KX0 + L0) �! H0(KX0 + L0 + S0) �! H0(KS0 + L0jS0 ) �! H1(KX0 + L0).

By Kawamata-Viehweg vanishing Theorem, we have h1(KX0 + L0) ≥ 0. Therefore
h0(KX0 + L0 + S0) Ù 0 since h0(KS0 + L0jS0 ) Ù 0. On the other hand,

KX0 + L0 + S0 � KX0 + L0 + D0

� KX0 + 2L0

≥ ñŁ(KX + 2L) + Eñ.

Therefore
0 Ú h0(KX0 + L0 + S0)

� h0
�
ñŁ(KX + 2L) + Eñ

�

≥ h0(KX + 2L).

This completes the proof of Theorem 2.1.

REMARK 2.2. By the same argument as the proof of Theorem 2.1, we can prove
the following: Let (X, L) be a quasi-polarized manifold with dim X ≥ n and h0(L) ½ 2.
Assume that Conjecture NB is true for any quasi-polarized manifold (Y, A) with dim Y ≥
n� 1 and h0(A) Ù 0. If KX + (n� 2)L is nef, then h0

�
KX + (n � 1)L

�
Ù 0.

THEOREM 2.3. Let (X, L) be a polarized manifold with dim X ≥ n. If (X, L) is the
type b0), b1), and b2) in Theorem 1.6, then h0

�
KX + (n� 1)L

�
Ù 0.

PROOF. We use Theorem 1.6 and its notations.
(b0-1) The case in which (X, L) is a Del Pezzo manifold: Then KX + (n � 1)L ¾ OX

and h0
�
KX + (n � 1)L

�
≥ 1.

(b0-2) The case in which (X, L) ≥
�
P3, OP3 (j)

�
for j ≥ 2 or 3: Then KX + 2L ≥

OP3 (�4) + 2OP3 (j) ≥ OP3 (2j� 4). Hence h0(KX + 2L) ½ 1 since j ≥ 2 or 3.
(b0-3) The case in which X is a hyperquadric in P4 with L ≥ OX(2): Then KX + 2L ≥

OX(�3) + 2OX(2) ≥ OX(1). Therefore h0(KX + 2L) Ù 0.
(b0-4) The case in which (X, L) ≥

�
P4, OP4 (2)

�
: Then KX +3L ≥ OP4 (�5)+3OP4(2) ≥

OP4 (1). Hence h0(KX + 3L) ≥ 5.
(b1-1) The case in which (X, L) is the type b1-v) in Theorem 1.6: (See (13.10) in

[Fj0], or x 3 in [Is].) Let H ≥ KX + 2L. Then (X, H) is a scroll over a smooth curve C.
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Let E be a locally free sheaf of rank 3 on C such that X ≥ PC(E) and H ≥ OPC(E)(1),
where OPC(E)(1) is the tautological line bundle on PC(E). Let e ≥ deg E. Then L ≥
2OPC(E)(1) + ôŁ(D), where ô: X ≥ PC(E) ! C is the natural projection and D is a
divisor on C such that deg D ≥ �g(C) + 1� (eÛ2). In particular e is even. By the above
construction,

h0(KX + 2L) ≥ h0
�
OPC(E)(1)

�
≥ h0(E).

By Riemann-Roch Theorem, we have

h0(E) ≥ h1(E) + 3
�
1� g(C)

�
+ e

½ 3
�
1� g(C)

�
+ e.

(b1-1-1) The case in which g(C) ½ 1: We remark that

0 Ú L3 ≥ (2OPC(E)(1) + ôŁD)3

≥ 8
�
OPC(E)(1)

�3
+ 12

�
OPC(E)(1)

�2
ôŁD

≥ 8e� 12g(C) + 12� 6e

≥ 2e� 12g(C) + 12.

Hence e Ù 6g(C)� 6.
Therefore

h0(KX + 2L) ½ 3
�
1� g(C)

�
+ e Ù 3

�
g(C)� 1

�
½ 0.

(b1-1-2) The case in which g(C) ≥ 0.

CLAIM 2.4. e ½ 2.

PROOF. We remark that 2KX + 3L is nef in the case (b1-1). On the other hand,

2KX + 3L ≥
�
2ôŁ(KC + det E) + 3ôŁ(D)

�

≥ ôŁ(2KC + 2 det E + 3D).

Since 2KX + 3L is nef, we obtain that deg(2KC + 2 det E + 3D) ½ 0. Hence e ½ 2 since
g(C) ≥ 0. This completes the proof of Claim 2.4.

Therefore
h0(KX + 2L) ½ 3

�
1� g(C)

�
+ e ½ 5.

(b1-2) The case in which (X, L) is the type b1-q) in Theorem 1.6: Let f : X ! C
be the hyperquadric fibration, where C is a smooth curve. Then there is an embedding
ì: X ! PC(E) such that ìŁOPC(E)(1) ≥ L, where E ≥ fŁL is a locally free sheaf of
rank n+1 and OPC(E)(1) is the tautological line bundle of PC(E). Then X is a divisor on
PC(E) and is a member of j2OPC(E)(1) +ôŁBj, where ô:PC(E) ! C is the projection and
B 2 Pic C. Then KX ≥ �(n � 1)L + f ŁA, where A ≥ KC + det E + B (see (3.5) in [Fj2]).
Let e ≥ deg E and b ≥ deg B.
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CLAIM 2.5. e + b Ù 0.

PROOF. By (3.3) in [Fj2], we obtain 2e + (n + 1)b ½ 0. By (3.4) in [Fj2], we have
2e + b Ù 0. By these inequalities, we have 2e + 2b ½ 0.

If e+b ≥ 0, then b Ú 0 because 2e+b Ù 0. But then 2e+(n+1)b ≥ (2e+2b)+(n�1)b Ú
0. This is a contradiction. Therefore e + b Ù 0. This completes the proof of Claim 2.5.

By Riemann-Roch Theorem,

h0
�
�(det E + B)

�
≥ h1

�
�(det E + B)

�
+ 1� g(C) + (�e � b).

By Claim 2.5, h0
�
�(det E + B)

�
≥ 0.

Therefore by Serre duality,

h0(KC + det E + B) ≥ g(C)� 1 + e + b.

On the other hand,
�
KX + (n � 1)L

�
L2 ≥ f Ł(KC + det E + B)L2

≥ 2
�
2g(C)� 2 + e + b

�
.

CLAIM 2.6. g(L) Ù g(C).

PROOF. Let s ≥ 2e + (n + 1)b. Then s ½ 0 by (3.3) in [Fj2]. On the other hand, we
obtain (n� 1)d + s + 4ng(C) ≥ 2n

�
g(L) + 1

�
by easy calculation, where d ≥ Ln. Assume

that g(L) ≥ g(C). Then (n� 1)d + s + 2ng(C) ≥ 2n. Since KX + (n� 1)L is nef, we have
g(C) ≥ g(L) ½ 1. But this is a contradiction since (n � 1)d + s + 2ng(C) Ù 2n. This
completes the proof of Claim 2.6.

By Claim 2.6, we obtain 2
�
2g(C)� 2 + e + b

�
≥

�
KX + (n � 1)L

�
L2 ≥ 2g(L)� 2 Ù

2g(C)� 2, and hence g(C)� 1 + e + b Ù 0.
Therefore

h0
�
KX + (n � 1)L

�
≥ h0

�
f Ł(KC + det E + B)

�

≥ h0(KC + det E + B)

≥ g(C)� 1 + e + b

Ù 0.

(b2) The case in which (X, L) is the type b2) in Theorem 1.6.
Let ô: X ! S be the Pn�2-bundle, where S is a smooth surface. Let X ≥ PS(E) such

that L ≥ OPS(E)(1), where E is a locally free sheaf of rank n-1 and OPS(E)(1) is the
tautological line bundle of PS(E). Then E is ample. By the canonical bundle formula,
KX ≥ ôŁ(KS + det E)� (n� 1)OPS(E)(1). Hence KX + (n� 1)L ≥ ôŁ(KS + det E) and we
have

h0
�
KX + (n � 1)L

�
≥ h0

�
ôŁ(KS + det E)

�

≥ h0(KS + det E).

https://doi.org/10.4153/CMB-1998-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-039-9


274 YOSHIAKI FUKUMA

Since KX + (n� 1)L is nef, so is KS + det E. Hence î(KS + det E) ½ 0 and so we obtain
h0(KS +det E) Ù 0 by Lemma 1.7 since det E is ample. Therefore h0

�
KX +(n�1)L

�
Ù 0.

This completes the proof of Theorem 2.3.

COROLLARY 2.7. Let (X, L) be a polarized 3-fold with h0(L) ½ 2. If KX + 2L is nef,
then h0(KX + 2L) Ù 0.

PROOF. (A) The case in which (X, L) is a minimal reduction model: If KX + L is nef,
then h0(KX + 2L) Ù 0 by Theorem 2.1. If KX + L is not nef, then h0(KX + 2L) Ù 0 by
Theorem 1.6 and Theorem 2.3.

(B) The case in which (X, L) is not a minimal reduction model: Let (Y, A) be a minimal
reduction of (X, L) and let ñ: X ! Y be its morphism. Then KY + 2A is nef because
KX + 2L ≥ ñŁ(KY + 2A) and KX + 2L is nef. But then h0(KY + 2A) Ù 0 by the above case
(A). Therefore h0(KX + 2L) Ù 0. This completes the proof of Corollary 2.7.

REMARK 2.8. By the same argument as the proof of Corollary 2.7, we can prove
the following (see Remark 2.2): Let (X, L) be a polarized manifold with dim X ≥ n and
h0(L) ½ 2. Assume that Conjecture NB is true for any quasi-polarized manifold (Y, A)
with dim Y ≥ n� 1 and h0(A) Ù 0. If KX + (n� 1)L is nef, then h0

�
KX + (n� 1)L

�
Ù 0.

COROLLARY 2.9. Let (X, L) be a polarized 3-fold with h0(L) ½ 2. Then the following
are equivalent:

(1) ∆(L) ≥ 0 or (X, L) is a scroll over a smooth curve.
(2) h0

�
m(KX + 2L)

�
≥ 0 for any natural number m.

(3) h0(KX + 2L) ≥ 0.
(4) KX + 2L is not nef.
(5) KX + 2L is not semiample.

Moreover if h0(L) ½ 3, then the following is equivalent to the above;
(6) g(L) ≥ q(X).

PROOF. It is easy to prove that (1) ) (6), (1) ) (3), (1) ) (2), (2) ) (3), and
(1), (4), (5) without the assumption that h0(L) ½ 2. By Corollary 2.7, we obtain that
(3) implies (4) if h0(L) ½ 2. By Theorem 2.12 in [Fk3], we obtain that (6) implies (1) if
h0(L) ½ 3. This completes the proof of Corollary 2.9.

3. The case in which Bs jLj is finite. In this section, we consider the case in which
Bs jLj is finite. First we fix the notations used later.

NOTATION 3.1. Let (X, L) be a polarized manifold with dim X ≥ n ½ 3. Assume
that Bs jLj is finite. Let S1 2 jLj be a general member. Then S1 is a normal Gorenstein
projective variety with dim S1 ≥ n � 1 and dim Sing(S1) � 0, where Sing(S1) denotes
the singular locus of S1. We remark that the base locus of L1 ≥ LS1 is finite. For i ≥
2, . . . , n�2, let Si 2 jLi�1j be a general member. Then Si is a normal Gorenstein projective
variety with dim Si ≥ n � i and dim Sing(Si) � 0 by Bertini’s Theorem, and the base
locus of Li ≥ Li�1jSi is finite.
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We remark that (Sn�2, Ln�2) is a polarized surface, where Sn�2 is a normal Gorenstein
projective surface. Let r: S0n�2 ! Sn�2 be a minimal resolution of Sn�2 and L0

n�2 ≥
rŁLn�2.

THEOREM 3.2. Let (X, L) be a polarized manifold with dim X ≥ n ½ 3. Assume
that Bs jLj is finite. Then g(L) ½ q(X). If g(L) ≥ q(X), then (X, L) satisfies one of the
following:

(1) ∆(L) ≥ 0.
(2) (X, L) is a scroll over a smooth curve.

PROOF. We use Notation 3.1. First we have g(L) ≥ g(L1) ≥ Ð Ð Ð ≥ g(Ln�2) by
construction. By Lemma 1.10 (2) and Serre duality, we obtain that q(X) ≥ h1(OS1 ) ≥
Ð Ð Ð ≥ h1(OSn�2 ). On the other hand, g(Ln�2) ≥ g(L0

n�2) ½ q(S0n�2) ½ h1(OSn�2 ) since
h0(L0

n�2) Ù 0. Therefore g(L) ≥ g(Ln�2) ½ h1(OSn�2 ) ≥ q(X).
Assume that g(L) ≥ q(X). If q(X) ≥ 0, then g(L) ≥ 0 implies ∆(L) ≥ 0 by Corollary 1

in [Fj1]. So we assume q(X) ½ 1. Then g(Ln�2) ≥ g(L0
n�2) ≥ q(S0n�2) ≥ h1(OSn�2 ) ½ 1

by the above inequalities. Hence by Lemma 1.12, the Albanese mapping is defined for
Sn�2.

CLAIM 3.3. î(S0n�2) ≥ �1.

PROOF. By the above inequalities, g(L) ≥ q(X) implies g(L0
n�2) ≥ q(S0n�2). On the

other hand, since Bs jLn�2j is finite, we have h0(L0
n�2) ≥ h0(Ln�2) ½ 2. Hence î(S0n�2) ≥

�1. This completes the proof of Claim 3.3.

Since S0n�2 is a minimal resolution of Sn�2 and Ln�2 is ample, (S0n�2, L0
n�2) is L0

n�2-
minimal. So by Theorem 3.1 in [Fk1], (S0n�2, L0

n�2) is a scroll over a smooth curve since
q(S0n�2) ½ 1.

CLAIM 3.4. Sn�2 is smooth.

PROOF. Let ô: S0n�2 ! B be the P1-bundle structure, where B is a smooth curve. Let
E be a locally free sheaf of rank 2 on B such that E is normalized and S0n�2 ≥ PB(E).
Let C0 be a section of ô such that C0 2 jOPB(E)(1)j and e ≥ �C2

0, where OPB(E)(1) is the
tautological line bundle on S0n�2. Then KS0

n�2
� �2C0 +

�
2g(B)� 2� e

�
Fô, where Fô is

a fiber of ô and� denotes the numerical equivalence. We put L0n�2 � C0 + bFô, where b
is an integer.

(1) The case in which e Ú 0: Then L0
n�2 is nef-big if and only if L0

n�2 is ample. So
L0

n�2 is ample. But since L0
n�2 ≥ rŁLn�2, we obtain r ≥ id, that is, Sn�2 is smooth.

(2) The case in which e ½ 0: Then b ½ e since L0n�2 is nef-big. If b Ù e, then L0
n�2 is

ample. So we obtain that Sn�2 is smooth by the same argument as the case (1).
If b ≥ e, then L0

n�2C0 ≥ 0. So C0 is an r-exceptional curve. But if C0 is contracted
by r, then the Albanese mapping is not defined for Sn�2 because C0 is not contained in a
fiber of ô. This is a contradiction. This completes the proof of Claim 3.4.

By Claim 3.4, (Sn�2, Ln�2) is scroll over a smooth curve since g(Ln�2) ≥ h1(OSn�2 ) ½
1 and h0(Ln�2) ½ 2. Hence KSn�2 + Ln�2 is not nef. Therefore KX + (n�1)L is not nef. By
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Theorem 2 in [Fj1], (X, L) is a scroll over a smooth curve since q(X) ½ 1. This completes
the proof of Theorem 3.2.

THEOREM 3.5. Let (X, L) be a polarized manifold with dim X ≥ n ½ 3. Assume that
Bs jLj is finite. If KX + (n� 1)L is nef, then h0

�
KX + (n � 1)L

�
Ù 0.

PROOF. We use Notation 3.1. Then Sn�2 is a normal Gorenstein surface. By the
Riemann-Roch Theorem for normal Gorenstein surfaces (see Theorem 0.6.2 in [So1]),
Serre duality, and Lemma 1.10, we obtain that h0(KSn�2 + Ln�2) ≥ g(Ln�2)� h1(OSn�2 ) +
h0(KSn�2 ). If h0(KSn�2 + Ln�2) Ù 0, then h0

�
KX + (n � 1)L

�
Ù 0 is easily proved by

Lemma 1.10. So we may assume h0(KSn�2 + Ln�2) ≥ 0. Then h0(KSn�2 ) ≥ 0 since
h0(Ln�2) ½ 2. Hence by the above equality, g(Ln�2) ≥ h1(OSn�2 ). Since g(L) ≥ g(Ln�2)
and h1(OSn�2 ) ≥ q(X), we obtain that g(L) ≥ q(X). By Theorem 3.2, KX + (n� 1)L is not
nef. But this contradicts the hypothesis. This completes the proof of Theorem 3.5.

By the above Theorems we can prove the following:

COROLLARY 3.6. Let (X, L) be a polarized n-fold with dim Bs jLj ≥ 0. Then the
following are equivalent:

(1) g(L) ≥ q(X).
(2) ∆(L) ≥ 0 or (X, L) is a scroll over a smooth curve.

(3) h0
�

m
�
KX + (n � 1)L

��
≥ 0 for any natural number m.

(4) h0
�
KX + (n� 1)L

�
≥ 0.

(5) KX + (n� 1)L is not nef.
(6) KX + (n� 1)L is not semiample.

In fact, we can prove the following theorem.

THEOREM 3.7. Let (X, L) be a quasi-polarized manifold. Assume that Bs jLj is finite.
Then Conjecture NB is true.

PROOF. We use Notation 3.1. Assume that h0
�

m
�
KX + (n � 1)L

��
Ù 0 for some

m 2 N. By taking a general element S1 2 jLj, we obtain h0
�

m
�
KS1 + (n � 2)L1

��
≥

h0
�

m
�
KX + (n � 1)L

�
jS1

�
Ù 0 since dim Bs jLj ≥ 0. Since dim Bs jLi�1j � 0, we obtain

h0
�

m
�
KSi + (n� i� 1)Li

��
≥ h0

�
m
�
KSi�1 + (n� i)Li�1

�
jSi

�
Ù 0.

In particular, h0
�
m(KSn�2 + Ln�2)

�
Ù 0.

We assume h0(KSn�2 + Ln�2) ≥ 0. Since h0(Ln�2) Ù 0, we have h0(KSn�2 ) ≥ 0. So
we obtain g(Ln�2) ≥ h1(OSn�2 ) by the same argument as the proof of Theorem 3.5. If
h1(OSn�2 ) ≥ 0, then g(Ln�2) ≥ 0 and g(L) ≥ 0. But then î

�
KX + (n � 1)L

�
≥ �1. So

h1(OSn�2 ) Ù 0. Since h0(L0
n�2) ≥ h0(Ln�2) ½ 2, we have g(L0

n�2) ½ h1(OS0n�2
). Therefore

h1(OSn�2 ) ≥ h1(OS0n�2
) ≥ g(L0

n�2) ≥ g(Ln�2). Hence by Lemma 1.12, the Albanese
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mapping is defined for Sn�2. Moreoverî(S0n�2) ≥ �1 since h0(L0
n�2) ½ 2 and g(L0

n�2) ≥
h1(OS0n�2

). Let ã0: S0n�2 ! B be the Albanese fibration of S0n�2 and let ã: Sn�2 ! B be
the Albanese fibration of Sn�2 such that ã0 ≥ ã Ž r, where B is a smooth curve. Let
KS0n�2

≥ rŁ(KSn�2 )� Er, where Er is an r-exceptional effective divisor. Since ã0 ≥ ã Ž r,
Er is contained in a fiber of ã0. Let Fã0 be a general fiber of ã0 such that Fã0

¾≥ r(Fã0).
Since g(L0

n�2) ≥ h1(OS0n�2
) ½ 1 and h0(L0

n�2) ½ 2, an L0
n�2-minimalization of (S0n�2, L0

n�2)
is a scroll over a smooth curve by Theorem 3.1 in [Fk1]. Hence (KS0n�2

+ L0
n�2)Fã0 ≥ �1.

On the other hand, (KSn�2 + Ln�2)Fã ≥ (KS0n�2
+ L0

n�2)Fã0 , where Fã is a general fiber of
ã. Hence (KSn�2 + Ln�2)Fã ≥ �1. Since Fã is nef, we have î(KSn�2 + Ln�2) ≥ �1. But
this is a contradiction since h0

�
m(KSn�2 + Ln�2)

�
Ù 0.

Hence h0(KSn�2 + Ln�2) Ù 0. Therefore h0
�
KX + (n � 1)L

�
Ù 0 by Lemma 1.10.

By considering the above results and their proofs, I think that there is some relation-
ship between h0

�
KX + (n� 1)L

�
and g(L). So we propose the following conjecture:

CONJECTURE 3.8. Let (X, L) be a polarized manifold with dim X ≥ n. Then
h0
�
KX + (n� 1)L

�
½ g(L)� q(X).

This conjecture is true if one of the following is satisfied;

(1) dim Bs jLj � 0.

(2) dim X ≥ 2.

(3) (X, L) is a minimal reduction model and KX + (n� 2)L is not nef.

We will study this conjecture in a future paper.

REFERENCES

[BS] M. C. Beltrametti and A. J. Sommese, The adjunction theory of complex projective varieties. de Gruyter
Expositions in Math. 16, Walter de Gruyter, Berlin, New York.

[Fj0] T. Fujita, Classification Theories of Polarized Varieties. London Math. Soc. Lecture Note Series 155
(1990).

[Fj1] , On polarized manifolds whose adjoint bundles are not semipositive. Adv. Stud. Pure Math.
10(1985), 167–178.

[Fj2] , Classification of polarized manifolds of sectional genus two. In: Algebraic Geometry and Com-
mutative Algebra, in Honor of Masayoshi Nagata, Kinokuniya, 1987, 73–98.

[Fk1] Y. Fukuma, A lower bound for the sectional genus of quasi-polarized surfaces. Geom. Dedicata 64(1997),
229–251.

[Fk2] , A lower bound for sectional genus of quasi-polarized manifolds. J. Math. Soc. Japan 49(1997),
339–362.

[Fk3] , On sectional genus of quasi-polarized 3-folds. Trans. Amer. Math. Soc., to appear.
[I] P. Ionescu, Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc. 99(1986), 457–

472.
[Is] H. Ishihara, On polarized manifolds of sectional genus three. Kodai Math. J. 18(1995), 328–343.
[KMM] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem. Adv. Stud.

Pure Math. 10(1987), 283–360.
[LP] A. Lanteri and M. Palleschi, About the adjunction process for polarized algebraic surfaces. J. Reine

Angew. Math. 352(1984), 15–23.

https://doi.org/10.4153/CMB-1998-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-039-9


278 YOSHIAKI FUKUMA

[So1] A. J. Sommese, Ample divisors on normal Gorenstein surfaces. Abh. Math. Sem. Univ. Hamburg 55
(1985), 151–170.

[So2] , On the adjunction theoretic structure of projective varieties. In: Proc. Complex Analysis and
Algebraic Geometry Conf. 1985, Lecture Notes in Math., Springer, 1986, 175–213.

Department of Mathematics
Faculty of Science
Tokyo Institute of Technology
Oh-okayama, Meguro-ku
Tokyo 152
Japan
e-mail: fukuma@math.titech.ac.jp

Current address:
Department of Mathematics
College of Education
Naruto University of Education
Takashima, Naruto-cho, Naruto-shi
772-8502
Japan
e-mail: fukuma@naruto-u.ac.jp

https://doi.org/10.4153/CMB-1998-039-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-039-9

