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ON THE NONEMPTINESS
OF THE ADJOINT LINEAR SYSTEM
OF POLARIZED MANIFOLDS

YOSHIAKI FUKUMA

ABsTRACT.  Let (X,L) be a polarized manifold over the complex number field
with dimX = n. In this paper, we consider a conjecture of M. C. Beltrametti and
A. J. Sommese and we obtain that this conjecture is true if n = 3 and ho(L) > 2,
or dimBs|L| < O0for any n > 3. Moreover we can generalize the result of Sommese.

0. Introduction. Let X be a smooth projective variety over the complex number
field C with dimX = n and let L be a (Cartier) divisor on X. Then (X,L) is caled a
polarized (resp. quasi-polarized) manifold if L is ample (resp. nef-big). Beltrametti and
Sommese conjectured the following in their book (Conjecture 7.2.7 in [BY]):

CONJECTUREA. Let (X, L) beapolarized manifold with dimX = n. If Ky +(n— 1)L
is nef, then h°(Ky + (n— 1)L) > 0.

Thisconjectureistrueif n = 2 or L isspanned. But in general, it is unknown whether
this conjecture is true or not. In order to solve this conjectureit is necessary to consider
the casein which (X, L) isaquasi-polarized manifold. If L is ample and Conjecture A is
true, then we can prove that Kx + (n — 1)L is nef if and only if hO(KX +(n— 1)L) > 0.
But if L is nef-big, then there exists an example such that Kx + (n — 1)L is not nef but
hO(KX +(n— 1)L) > 0. So we propose the following conjecture for any quasi-polarized
manifold:

CONJECTURE NB.  Let (X, L) be a quasi-polarized manifold withdimX = n > 2. If
k(Kx+(n—1)L) >0, then h®(Kx + (n— 1)L) > 0.

We remark that Conjecture A is equivalent to Conjecture NB for any polarized man-
ifold. In this paper, we will prove that Conjecture A is true if one of the following is
satisfied:

(1) n=3andh’(L) > 2,

(2) Bs|L| isfinite,
and by this result, we can generalize a result of Sommese (Theorem 4.1 in [S02)]). |
think that in order to prove Conjecture A for dimX = n it is necessary to consider
Conjecture NB for dmX = n— 1.
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Furthermore we will propose a conjecture (Conjecture 3.8) which gives the relation-
ship between h%(Kx + (n — 1)L) and g(L). We use the customary notations in algebraic
geometry.

ACKNOWLEDGMENT. The author would like to express his hearty gratitude to Pro-
fessors Takao Fujita and Masanori K obayashi for giving some useful comments.

1. Preliminaries.

DerINITION 1.1. Let X be a smooth projective variety with dimX > dimY > 1.
Then amorphism f: X — Y is afiber spaceif f is surjective with connected fibers. Let
L beaCartier divisor on X. Then (f, X, Y, L) iscalled a polarized (resp. quasi-polarized)
fiber spaceif f: X — Yisafiber spaceand L is ample (resp. nef-big).

DEFINITION 1.2. Let X be a smooth projective variety with dimX = nand let L be
aline bundle on X. Then we say that (X, L) isascroll over Y if there exists a fiber space
7: X — Y such that any fiber of 7 isisomorphic to P™™ and L|r = Opn-n(1), where
1 <m=dimY < dimX. A quasi-polarized fiber space (f, X, Y, L) is caled a scroll if
(F,Lg) = (P™™, Opn-m(1)) for any fiber F of f, wheredimX = nanddimY = m.

NOTATION 1.3. Let D; and D, be divisors on a smooth projective manifold X. We
denote D, > D, if D; — Dy islinearly equivalent to an effective divisor on X.

DeFINITION 1.4 (SEE[FK1]). (1) Let(X,L)beaquasi-polarized surface. Then (X, L)
iscalled L-minimal if LE > O for any (-1)-curve E on X.

(2) For any quasi-polarized surface (X, L), thereis a quasi-polarized surface (X, L1)
and a birational morphism p: X — X; such that L = p*(L1) and (X1, L;) isLi-minimal.
Thenwecall (Xz,L1) an L-minimalization of (X, L).

DerINITION 1.5. (1) Let (X,L) and (X’,L’) be polarized manifolds and p: X — X’
abirational morphism. Then p is called a simple blowing up if 1 is ablowing up at one
point on X’ and L = p*L’ — E, where E isthe p-exceptional effective reduced divisor.

(2) Let (X, L) beapolarized manifold. Then (X, L) iscalled aminimal reduction model
if (X,L) is not obtained by a finite number of simple blowing ups of ancther polarized
manifold. If (X, L) isnot aminimal reduction model, then there exist a smooth projective
variety Y, an ampledivisor Aon Y, and afinite number of simple blowingupspu: X — Y
such that (Y, A) is a minimal reduction model. We call (Y,A) a minimal reduction of
(X, L).

REMARK 1.5.1. Let (X, L) be apolarized manifold with dimX = n and let (Y, A) be
aminimal reduction of (X, L). Then ho(m(Kx +(n— 1)L)) = h°<m(Ky +(n— 1)A)) for
any natural number m.

THEOREM 1.6.  Let (X, L) bea polarized manifold with dimX = n > 3. Assumethat

Kx +(n— 1)L isnef. If Kx + (n — 2)L is not nef, then (X, L) is one of the following types.
a) (X,L) isobtained by a simple blowing up of another polarized manifold.
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b0) (X,L) is a Del Pezzo manifold with by(X) = 1, (P, 0()) withj = 2 or 3,
(P*,0(2)), or ahyperquadricin P* with L = O(2).
bl) Thereisafibration ®: X — C over acurveC with oneof thefollowing properties:
bl-v) (F,Lr) = (P?,0(2)) for any fiber F of .
bl-g) Everyfiber F of ® isanirreducible hyperquadricin P" having only isolated sin-
gularities.
b2) (X, L) isascroll over a smooth surface S

PROCOF. See[Fj1] or [l].

LEMMA 1.7. Let (S A) be a quasi-polarized surface. Then the following are equiv-
alent:

(1) h°(Ks+A) =0.

(2) h°(m(Ks+A)) = Ofor any natural number m.

PrOOF (cf. PROPOSITION 3.5 IN [LP]). It is sufficient to prove that condition (1)
implies (2). By Riemann-Roch Theorem, Serre duality, and Kawamata-Viehweg Van-
ishing Theorem, we obtain h°(Ks + A) = g(A) — (S + h°(Kg). If hi°(Ks+ A) = 0,
then g(A) = q(S) — h(Ks). If k(S > 0, then q(S — h°(Ks) < 1 and so we have
g(A) < 1. But thisisimpossible since x(S) > 0. Hence k(S) = —oo. Let (S, A1) bean
A-minimalization of (S A) and let ;: S— S beits birational morphism. We remark that
A= (u) (Ag).

CLam 1.8, ho(m(Ks+A)) = h°(m(Kg, + A1) for any natural number m.

PROOF.
h%(m(Ks +A)) = h°(m(u*(Ks, + A1) + E,))

= ho(m(Ks, + A1),

where E,, is an effective p-exceptional divisor such that Ks = p*(Kg ) + E,. This com-
pletes the proof of Claim 1.8.

Assume that h%(Ks + A) = 0. Then by Claim 1.8, we obtain h%(Ks, + A;) = 0. On the
other hand, by Riemann-Roch Theorem, Serre duality, and Kawamata-Viehweg Van-
ishing Theorem, we obtain \°(Ks, + A1) = g(A1) — q(S1) since x(S1) = —oo. Since
h%(Ks, + A1) = 0, we have g(A1) = q(Sy). Hence (Sy, Ay) isisomorphic to (P2, O(r)) for
r = 1 or 2, or ascroll over asmooth curve by Theorem 3.1 in [Fk1].

(A) Thecaseinwhich (S, A1) = (P2, Opa(r)) forr = Lor 2.

ThenKs, +A; = Opz(—3) + Opz(r) = Opz(r — 3). Hence h°(m(Ks, +A;)) = 0 for any
natural number msincer < 2.

(B) Thecaseinwhich (S, A;) isascroll over asmooth curve.

Let m:S; — B be the P!-bundle, where B is a smooth curve. Let E be alocally free
sheaf of rank 2 on B suchthat E isnormalized and S; = Pg(E). Let Cy be asection of
suchthat Cy € |OPB(E)(1)|, where O[P’B(E)(l) is the tautological line bundle on S, and let
F, beafiber of 7. Wepute = —Cg. Then A; = Cy+DbF ., where = denotesthe numerical
equivalence and b is an integer. On the other hand, K, = —2C + (29(C) — 2 — e)F..
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HenceKg +A; = —Co+(29(C)—2—e+h)F,. If IQ(KSl +A;) > 0, then (Ksl +A)F, >0

since F, is nef. But (Ks, + Aq)F, = —1. So we obtain x(Kg, + A1) = —oo, that is,
ho(m(Ks,l + Al)) = 0for any natural number m. By Claim 1.8, this completes the proof
of Lemmal.7. n

By Lemma 1.7, we can prove the following:

COROLLARY 1.9. Let (X,L) be a quasi-polarized manifold. Assume that L is
spanned. Then Conjecture NB is true.

LEMMA 1.10. Let L be anef-big Cartier divisor on a normal projective variety X.
Then

(1) H(X,—L) = 0for i < min{dimX, 2},

(2) H'(X,Kx +L) = 0for i > max{0,dimlrr(X)},
where Irr(X) denotestheirrational locus of X.

PROOF. See Theorem0.2.1in[S02]. ]

DerINITION1.11. Let X beanormal projectivevariety. Letr: X, — Xbearesolution
of X. Then we say that the Albanese mapping is defined for X if there is a morphism
B: X — Alb(X;) such that « = 8 o r, where Alb(X;) denotes the Albanese variety of
Xr and a: X, — Alb(X;) is the Albanese map of X;. In this case, 3 and Alb(X) are
independent of the resolution of X.

LEMMA 1.12. Let X bea normal projective variety and let X, be a resolution of X.
If h1(Ox) = h*(Oy,), then the Albanese mapping is defined for X.

PROOF. SeelLemma0.3.3in[So2] or LemmaZ2.4.1and Remark 2.4.2in[BS]. =

2. Thecasein which dimX = 3and ho(L) > 2.

THEOREM 2.1.  Let (X, L) be a quasi-polarized 3-fold with hO(L) > 2. If Kx + L is
nef, then hO(Kx + 2L) > 0.

PrROOF. Let |M| be the movable part of |L|, and let Z be the fixed part of |L|. Let
p: X" — Xbeabirational morphism such that Bs|M’| = ¢, where M’ isthe movable part
of u*M. Let L' = p*L.

Since Bs|M’| = ¢, by Bertini's theorem, a general member D’ of |M’| is smooth.
We remark that D’ is not irreducible in general. Let S' be one irreducible component of
D’ such that (L")2S > 0. (We can take this S since (L)°M’ > 0.) We also remark that
O(mD’)|g = O(mS)|g for any natural number m because D’ is smooth.

For any natural number m,

m(Ks +L'|s) = (M(Kx +S +L))|s
= (m(KX, +D + L/)) ls
= (" (M(Kx +L)) + mD’ + mE, )]s,
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where E,, is an effective p-exceptional divisor such that Ky, = p*Kx + E,..

By base point free theorem ([KMM]), Bs|m(Kx + L)| = ¢ for somem > 0 because
Kx+Lisnef. HenceBs|u* (M(Kx+L))| = ¢. SinceBs|u* (m(Kx+L))| = ¢ andBs|mD’| =
6, We obtain hO(m (M(Kx +L)) |3) > 0, h%((mD’)|s) > 0, and WO(ME,.)|s) > 0. There-
fore h°(m(Kg +L'|s)) > 0 for somem > 0.

We remark that (S,L’'|g) is a quasi-polarized surface. Indeed the nefness of L'|g is
trivial, and L|g is big because (L|s)? = (L')>S > 0.

By Lemma 1.7, we obtain h°(Kg + L'|g) > 0.

Next we consider the following exact sequence:

0 — HO(Ky + L") — H(Kx + L'+ S) — H(Kg + L'|g) — H*(Kx +L).

By Kawamata-Viehweg vanishing Theorem, we have h'(Ky + L) = 0. Therefore
ho(Ky + L’ + S) > 0 since h%(Kg + L'|g) > 0. On the other hand,

Ky +L"+S <Ky +L'+D’

<Ky +2L'
= " (Kx +2L) +E,.
Therefore
0<h(Ky +L'+S)
< hO(p*(Kx +2L) +E,)
= h9(Kx + 2L).
This completes the proof of Theorem 2.1. ]

REMARK 2.2. By the same argument as the proof of Theorem 2.1, we can prove
the following: Let (X, L) be a quasi-polarized manifold with dimX = nand ho(L) > 2.
Assumethat Conjecture NB istrue for any quasi-polarized manifold (Y, A) withdimY =
n— 1and h%(A) > 0. If Kx + (n — 2)L is nef, then h°(Kx + (n — L)L) > 0.

THEOREM 2.3.  Let (X, L) be a polarized manifold with dimX = n. If (X, L) is the
type b0), b1), and b2) in Theorem 1.6, then h%(Kx + (n— 1)L) > 0.

PrROOF. We use Theorem 1.6 and its notations.

(b0-1) Thecaseinwhich (X, L) isaDel Pezzo manifold: Then Ky + (n — 1)L ~ Ox
and h°(Kx +(n—1)L) = 1.

(b0-2) The case in which (X,L) = (IP3,OP3(j)) forj = 2or 3: ThenKy + 2L =
Ops(—4) + 205:(j) = O0p:(2] — 4). Hence hO(Ky + 2L) > 1 sincej = 2 or 3.

(b0-3) Thecaseinwhich X isahyperquadricin P* with L = Ox(2): ThenKx + 2L =
Ox(—3) + 20)((2) = O)((l) Therefore hO(Kx +2L) > 0.

(b0-4) Thecaseinwhich (X, L) = (P*, Op(2)): ThenKx+3L = Ops(—5)+30p(2) =
0;4(2). Hence hO(Kx +3L) = 5.

(b1-1) The casein which (X, L) is the type b1-v) in Theorem 1.6: (See (13.10) in
[FiQ], or § 3in[ls].) Let H = Kx + 2L. Then (X, H) is a scroll over a smooth curve C.
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Let E bealocally free sheaf of rank 3 on C suchthat X = Pc(E) and H = Op_E)(2),
where Op (g (1) is the tautological line bundle on Pc(E). Let e = degE. ThenL =
20p,(E)(1) + 7*(D), where m: X = Pc(E) — C is the natural projection and D is a
divisor on C such that degD = —g(C) + 1 — (e/2). In particular eis even. By the above
construction,

h%(Kx +2L) = h°(Op (1)) = h°(E).

By Riemann-Roch Theorem, we have
ho(E) = h}(E) + 3(1 — g(C)) +e
>3(1-9(0) +e.
(b1-1-1) Thecaseinwhich g(C) > 1: We remark that
0 < L?® = (20p.)(1) + 7'D)°
3 2,

= 8(Op(E)(1)” +12(Op)(1)) 7D
= 8e—129(C) + 12 — 6e

= 2e— 129(C) +12.

Hencee > 6g(C) — 6.
Therefore

h%(Kx +2L) > 3(1—g(C)) +e> 3(g(C) — 1) > 0.
(b1-1-2) Thecaseinwhich g(C) = 0.
CLAIM24. e> 2.
PROOF. Weremark that 2Kx + 3L is nef in the case (b1-1). On the other hand,
2Kx +3L = (21" (Kc + detE) + 37°(D))
= 1" (2K¢ + 2det E + 3D).

Since 2Ky + 3L is nef, we obtain that deg(2Kc + 2detE + 3D) > 0. Hencee > 2 since
0(C) = 0. This completesthe proof of Claim 2.4.

Therefore
h°(Kx +2L) > 3(1—g(C)) +e > 5.

(b1-2) The case in which (X,L) is the type b1-g) in Theorem 1.6: Let f: X — C
be the hyperquadric fibration, where C is a smooth curve. Then there is an embedding
1:X — Pc(E) such that .*Op g)(1) = L, where E = f.L is alocally free sheaf of
rank n+1 and Op_(gy(1) is the tautological line bundle of Pc(E). Then X is adivisor on
Pc(E) andisamember of |20p g, (1) + 7*B|, where 7: Pc(E) — Cisthe projection and
B € PicC. ThenKy = —(n — 1)L + f*A, where A = Kc + det E + B (see (3.5) in [Fj2]).
Let e = degE and b = degB.
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CLAIM 25. e+b>0.

PrOOF. By (3.3) in [Fj2], we obtain 2e + (n+ 1)b > 0. By (3.4) in [F2], we have
2e+b > 0. By theseinequalities, we have 2e + 2b > 0.

If etb = O, thenb < Obecause2e+b > 0. Butthen2e+(n+1)b = (2e+2b)+(h—1)b <
0. Thisisa contradiction. Therefore e+ b > 0. This completes the proof of Claim 2.5.

By Riemann-Roch Theorem,
h°(—(detE +B)) = h'(—(det E +B)) + 1 — g(C) + (—e — b).

By Claim 2.5, h°(—(detE +B)) = 0
Therefore by Serre duality,

ho%(Kc + detE +B) = g(C) — 1+e+h.
On the other hand,

(Kx +(n—1)L)L? = f*(Kc + detE +B)L?
=2(29(C)—2+e+b).

CLAIM 2.6. g(L) > g(C).

PROOF. Lets= 2e+ (n+ 1)b. Thens > 0by (3.3) in [F2]. On the other hand, we
obtain (n— 1)d +s+4ng(C) = 2n(g(L) + 1) by easy calculation, whered = L". Assume
that g(L) = g(C). Then (n — 1)d + s+ 2ng(C) = 2n. Since Kx + (n — 1)L is nef, we have
0(C) = g(L) > 1. But thisis a contradiction since (n — 1)d + s+ 2ng(C) > 2n. This
completes the proof of Claim 2.6. n

By Claim 2.6, we obtain 2(2g(C) — 2+e+b) = (Kx +(n — 1)L)L? = 2g(L) — 2 >
2g(C) — 2, and henceg(C) — 1+e+b > 0.
Therefore
h%(Kx + (n— 1)L) = h°(f*(Kc + detE +B))
= h%(Kc +detE +B)
=g(C)—1+e+b
> 0.

(b2) Thecaseinwhich (X, L) isthetype b2) in Theorem 1.6.

Let m: X — Sbethe P"~2-bundle, where Sis a smooth surface. Let X = P(E) such
that L = OpyEy(1), where E is a locally free sheaf of rank n-1 and Opg)(1) is the
tautological line bundle of Ps(E). Then E is ample. By the canonical bundle formula,
Kx = m*(Ks+detE) — (n — 1)Op gy (1). HenceKx + (N — 1)L = 7*(Ks + det E) and we
have

h%(Kx +(n— 1)L) = h°(7*(Ks + det E))
= h%(Ks + det E).
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Since Kx + (n — 1)L is nef, soisKs + det E. Hence k(Ks + det E) > 0 and so we obtain
h%(Ks+det E) > 0by Lemma1.7 sincedet E isample. Therefore h?(Kx +(n—1)L) > 0.
This completes the proof of Theorem 2.3. ]

COROLLARY 2.7. Let (X,L) bea polarized 3-fold with h°(L) > 2. If Ky + 2L is nef,
then hO(Kx +2L) > 0.

PROOF. (A) Thecaseinwhich (X, L) isaminimal reduction model: If Kx +L is nef,
then hO(Kx + 2L) > 0 by Theorem 2.1. If Kx + L is not nef, then h(Kyx + 2L) > 0 by
Theorem 1.6 and Theorem 2.3.

(B) Thecaseinwhich (X, L) isnotaminimal reduction model: Let (Y, A) beaminimal
reduction of (X,L) and let ;: X — Y be its morphism. Then Ky + 2A is nef because
Kx + 2L = p*(Ky +2A) and Ky + 2L is nef. But then h%(Ky + 2A) > 0 by the above case
(A). Therefore h°(Kx + 2L) > 0. This completes the proof of Corollary 2.7. ]

REMARK 2.8. By the same argument as the proof of Corollary 2.7, we can prove
the following (see Remark 2.2): Let (X, L) be a polarized manifold with dim X = n and
h%(L) > 2. Assume that Conjecture NB is true for any quasi-polarized manifold (Y, A)
with dimY = n— 1 and h°(A) > 0. If Kx + (n — 1)L isnef, then h°(Kx + (n— 1)L) > 0.

COROLLARY 2.9. Let(X, L) beapolarized 3-foldwith h°(L) > 2. Thenthefollowing
are equivalent:

(1) A(L) =0o0r (X,L)isascroll over a smooth curve.

(2) ho(m(Kx +2L)) = 0for any natural number m.

(3) h°(Kx +2L) = 0.

(4) Kx +2L isnot nef.

(5) Kx +2L isnot semiample.
Moreover if h%(L) > 3, then the following is equivalent to the above;

(6) 9(L) = a(X).

PROCF. It is easy to prove that (1) = (6), (1) = (3), (1) = (2), (2) = (3), and
(1) & (4) & (5) without the assumption that h°(L) > 2. By Corollary 2.7, we obtain that
(3) implies (4) if h°(L) > 2. By Theorem 2.12 in [Fk3], we obtain that (6) implies (1) if
h%(L) > 3. This completesthe proof of Corollary 2.9. ]

3. Thecasein which Bs|L| isfinite. In this section, we consider the casein which
Bs|L| isfinite. First we fix the notations used |ater.

NoOTATION 3.1. Let (X,L) be a polarized manifold with dimX = n > 3. Assume
that Bs|L| isfinite. Let S; € |L| be a general member. Then S; is anormal Gorenstein
projective variety withdm$S, = n— 1 and dimSing(S;) < 0, where Sing(S;) denotes
the singular locus of S;. We remark that the base locus of Ly = Lg isfinite. Fori =
2,...,n—2,let§ € |Li_;1| beageneral member. Then § isanormal Gorenstein projective
variety withdim§ = n —i and dimSing(S) < 0 by Bertini’s Theorem, and the base
locusof Lj = Lij_4]|g isfinite.
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We remark that (S,—2, Ln—2) isapolarized surface, where S,_, isanormal Gorenstein
projective surface. Letr: S, , — S,—» be a minimal resolution of S, and L/, =
T*Ln_z.

THEOREM 3.2.  Let (X,L) be a polarized manifold with dimX = n > 3. Assume
that Bs|L| isfinite. Then g(L) > q(X). If g(L) = q(X), then (X, L) satisfies one of the
following:

(1) AL) =0.

(2) (X,L) isascroll over a smooth curve.

PrOOF. We use Notation 3.1. First we have g(L) = g(L1) = --- = d(Ln—2) by
construction. By Lemma 1.10 (2) and Serre duality, we obtain that g(X) = h*(Og) =
--- = hY(Os,_,). On the other hand, g(Ln—2) = 9(L, ) > o(S, ) > h'(Os,,) since
ho(L),_,) > 0. Thereforeg(L) = g(Ln-2) > h'(Os, ) = a(X).

Assumethat g(L) = q(X). If q(X) = 0, theng(L) = OimpliesA(L) = 0 by Corollary 1
in[Fj1]. Sowe assumeq(X) > 1. Theng(Ln—2) = 9(L;,_») = a(S, ») = h*(Os_,) > 1
by the above inequalities. Hence by Lemma 1.12, the Albanese mapping is defined for
S

CLaM 3.3, K(S,_,) = —oo.

PrOOF. By the aboveinequalities, g(L) = q(X) implies g(L;,_,) = q(S,_,). On the
other hand, since Bs|Ln_»| isfinite, wehave h?(L),_,) = h%(Ln_2) > 2. Hencex(S,_,) =
—o00. This completes the proof of Claim 3.3. L]

Since §,_, isaminimal resolution of S,_, and Ln—» is ample, (S,_,,L;_,) isL;_,-
minimal. So by Theorem 3.1in [Fk1], (S,_,,L/_,) isascroll over asmooth curve since

as,. ) > 1

CLAIM 3.4. S, issmooth.

PROOF. Let7:S, , — B betheP-bundle structure, where B is a smooth curve. Let
E be alocally free sheaf of rank 2 on B such that E is normalized and §,_, = Pg(E).
Let Co beasection of 7 such that Cy € |Op, (1) and e = —C3, where Op, g)(1) isthe
tautological linebundleon S, ,. ThenKg = —2Co + (29(B) — 2 — €)F,, where F is
afiber of 7 and = denotesthe numerical equivalence. Weput L;,_, = Co +bF,, whereb
is an integer.

(1) Thecaseinwhiche < 0: ThenL;_, isnef-big if and only if L;_, isample. So
L/ ,isample. Butsincel/ , = r*L,_», weobtainr = id, that is, S,— is smooth.

(2) Thecaseinwhiche > 0: Thenb > esincel/_, isnef-big. If b > e, thenL]_, is
ample. So we obtain that S,_, is smooth by the same argument as the case (1).

If b = e thenL; ,Co = 0. So Cy is an r-exceptional curve. But if Cy is contracted
by r, then the Albanese mapping is not defined for S,—, because Cy ishot containedin a
fiber of 7. Thisis a contradiction. This completesthe proof of Claim 3.4. ]

By Claim 3.4, (S,—2, Ln—2) is scroll over asmooth curvesinceg(Ln—2) = h*(Og, ,) >
land hO(Ln_p) > 2. HenceKs, , +Ln2 isnot nef. Therefore Ky + (n— 1)L is not nef. By
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Theorem2in [Fj1], (X, L) isascroll over asmooth curvesince q(X) > 1. Thiscompletes
the proof of Theorem 3.2. n

THEOREM 3.5.  Let (X, L) bea polarized manifold with dim X = n > 3. Assumethat
Bs|L| isfinite. If Kx + (n — 1)L is nef, then h%(Kx + (n — 1)L) > .

PrROOF. We use Notation 3.1. Then §,_, is a normal Gorenstein surface. By the
Riemann-Roch Theorem for normal Gorenstein surfaces (see Theorem 0.6.2 in [Sol]),
Serre dudlity, and Lemma 1.10, we obtain that i°(Kg,_, + Ln—2) = g(Ln-2) — h*(Os, ,) +
h°(Ks, ). If i°(Ks,, + Ln-2) > 0, then h°(Kx + (n — 1)L) > 0 s easily proved by
Lemma 1.10. So we may assume h%(Ks, , + Ln—2) = 0. Then h°(Kg_,) = O since
ho(Ln_2) > 2. Hence by the above equality, g(Ln_») = h'(Os,_,). Sinceg(L) = g(Ln_>2)
and h*(Os,_,) = q(X), we obtain that g(L) = q(X). By Theorem 3.2, K + (n — 1)L isnot
nef. But this contradicts the hypothesis. This completes the proof of Theorem 3.5. ]

By the above Theorems we can prove the following:

COROLLARY 3.6. Let (X,L) be a polarized n-fold with dimBs|L| = 0. Then the
following are equivalent:

(D aL) = aX).

(2) A(L) = 0or (X,L) isascroll over a smooth curve.

(3) h° (m(Kx +(n— 1)L)) = 0 for any natural number m.

(4) hO(Kx+(n—1)L) = 0.

(5) Kx +(n— 1)L isnot nef.

(6) Kx +(n— 1)L isnot semiample.

In fact, we can prove the following theorem.

THEOREM 3.7.  Let (X, L) be aquasi-polarized manifold. Assumethat Bs|L| isfinite.
Then ConjectureNB is true.

PROOF. We use Notation 3.1. Assume that ho(m(Kx +(n— 1)L)) > 0 for some
m € N. By taking a general element S; € |L|, we obtain ho(m(Kg,l +(n— 2)L1)) =
h°<m(Kx +(n— 1)L)|51) > 0sincedimBs|L| = 0. SincedimBs|Li_1| < 0, we obtain

ho(m(KS +(h—i— 1)|_i)) - h0<m(K371 +(n— i)Li,1)|s) >0,

In particular, h°(m(Ks, , +Ln2)) > 0.

We assume h%(Ks, , + Ln_2) = 0. Since h°(L,_») > 0, we have h°(Ks, ,) = 0. So
we obtain g(Ln—2) = h*(Os, ,) by the same argument as the proof of Theorem 3.5. If
h'(Os, ,) = 0, then g(Lr-2) = O and g(L) = 0. But then k(Kx + (n — 1)L) = —o0. So
h'(Os, ,) > 0. Since h°(L/,_,) = h%(Ln_2) > 2, we haveg(L}, ,) > hl(OgH). Therefore
h'(Os,_,) = hl(OgH) = g(L,_,) = 9(Ln-2). Hence by Lemma 1.12, the Albanese
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mappingisdefinedfor S,_». Moreover x(S,_,) = —oosinceh®(L),_,) > 2andg(L,_,) =
h'(Og ). Let 1S, , — B bethe Albanese fibration of §, , and let 2 S,-» — B be
the Albanese fibration of S,_, such that o’ = « o r, where B is a smoath curve. Let
Kg , =r"(Ks_,) — Er, where E; is an r-exceptional effective divisor. Sinceo’ = aorr,
E; is contained in afiber of /. Let F,, be ageneral fiber of o suchthat F,, = r(F,).
Sinceg(L,_,) = h'(Og ) > 1andh®(L;,_,) > 2,anLy,_,-minimalizationof (S, ,, Ly, )
isascroll over asmooth curve by Theorem 3.1 in [Fk1]. Hence (Kgmz +L] )Fy = —1
On the other hand, (Ks, , + Lh—2)Fs = (Kgni2 +L]_,)F., where F, isageneral fiber of
a. Hence (Ks, , + Ln—2)F, = —1. Since F, isnef, we have k(Kg,_, + Ln—2) = —o0. But
thisis a contradiction since \°(m(Ks, , +Ln_2)) > 0.

Hence h°(Ks, , + Ln2) > 0. Therefore h°(Kx + (N — 1)L) > Oby Lemma1.10. =

By considering the above results and their proofs, | think that there is some relation-
ship between h%(Kx + (n — 1)L) and g(L). So we propose the following conjecture:

CONJECTURE 3.8. Let (X,L) be a polarized manifold with dimX = n. Then
hO(Kx + (n— 1)L) > g(L) — q(X).

This conjectureis true if one of the following is satisfied;

(1) dimBs|L| <O0.

(2) dmX = 2.

(3) (X,L) isaminimal reduction model and Kx + (n — 2)L is not nef.
We will study this conjecturein afuture paper.
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