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Abstract

Introduction: AI-based autocontouring products claim to be able to segment organs with
accuracy comparable to humans. We compare the geometric and dosimetric performance of
three AI-based autocontouring packages (Autocontour 2.5.6, (“RF”); Annotate 2.3.1, (“TP”)
and RT-Mind_AI 1.0, (“MM”)) in the head and neck region.
Methods: We generated 14 organ at risk (OAR) autocontours on 13 computed tomography
(CT) image sets. They were compared with clinical (human-generated) contours. The
geometric differences were quantified by calculating Dice coefficients and Hausdorff distances.
The autocontours were compared visually with the clinical controus by an expert physician. The
autocontour sets were also ranked for accuracy by two physicians. The dosimetric effects were
evaluated by recalculating treatment plans on the autocontoured CT sets.
Results: RF and TP slightly outperformed MM in geometric metrics (the percentage of OARs
having mean Dice coefficients> 0.7 was RF 57.1 %, TP 64.3 % and MM 50.0%). The physician
judged RF and TP contours to be more anatomically accurate, on average, than the manual
contours (manual contour mean accuracy score 2.49, RF 2.28, MM 3.24, TP 1.93). The mean
scores given to the autocontours by the two physicians were better for RF and TP, compared to
MM (RF 1.86, MM 2.36, TP 1.77). The dosimetric differences were similar for all three
programs and were not strongly correlated with the geometric differences.
Conclusions: The performance of the three autocontouring packages in the head and neck
region is similar, with TP and RF slightly outperforming MM. The correlation between
geometric and dosimetric metrics is not strong, and dosimetric evaluation is therefore
recommended before clinical use of autocontouring software.

Introduction

Contouring organs at risk (OARs) is a crucial task in radiation therapy – the treatment plan and
the dose–volume histogram (DVH) are only as good as the contours and generating the
contours is a major time commitment.1,2 Atlas-based autocontouring has been available for
more than two decades, but its usefulness outside the brain is limited.3,4 Recently, artificial
intelligence (AI)-based autocontouring tools have become commercially available.5–7 They
promise improved accuracy, greatly reduced variation and significant efficiency gains.8–10

Although AI-generated contours will always have to be reviewed and, if necessary, adjusted by
humans,11 they may enable considerable time savings.12 This is especially true for the head and
neck region, for which a large number of OARs are often contoured13 and a delay in the start of
radiotherapy is associated with an increased risk of local recurrence.14,15 Adaptive radiotherapy,
in particular, would benefit greatly from fast OAR contour generation.16,17

We study the performance of three commercially available AI-based autocontouring
packages (Autocontour 2.5.6, RADformation Inc. (“RF”), New York, NY, USA; Annotate 2.3.1,
Therapanacea (“TP”), Paris, France; RT-Mind_AI 1.0, MedMind Inc. (“MM”), Delaware, USA)
in the head and neck region. Head and neck contouring is a useful test case for several reasons.
The large number of OARs translates to a high potential for time savings, the patients have often
had prior surgery, meaning their anatomy may be distorted and organs may have been fully or
partially removed and the presence of metallic dental work results in artifacts that make
contouring challenging. We compare the autocontours with those generated manually by
experienced dosimetrists and quantify the geometric and dosimetric effects of using
autocontouring and rank the autocontours for anatomical accuracy.

Methods

The computed tomography (CT) treatment planning image sets of 13 head and neck cancer
patients (5 oropharynx, 2 sinonasal, 2 oral cavity, 2 orbit, 1 buccal and 1 frontal face) consenting
for the use of their patient information in research were randomly selected (according to a
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retrospective research protocol, approved by the institutional
review board). The slice thickness of the CT scans was 2 mm; the
dose calculation grid resolution was 2–3 mm, depending on the
patient. The contours for 14 OARs (brainstem, L parotid, R
parotid, chiasm, L optic nerve, R optic nerve, esophagus, mandible,
oral cavity, L cochlea, R cochlea, L submandibular gland, R
submandibular gland, spinal cord) were generated by the three
autocontouring packages and compared with the clinical (human-
generated) contours, generated by experienced dosimetrists and
reviewed by physicians. The clinical set did not include every OAR
for every patient, and the autocontours were only evaluated if a
corresponding clinical contour existed.

The RF and TP autocontouring packages are not trainable,
while MM can be adjusted to mimic a particular physician’s
contouring. We used MM with the default settings, to keep the
comparison fair and because one of the common aims of using
autocontouring is to enforce uniformity in OAR structures across
an institution.

Geometric performance was quantified by calculating Dice
similarity coefficients (DSCs) and Hausdorff distances (HDs)
between the clinical contours and the autocontours, using the
3D Slicer software. The DSC between structures A and B is
defined as18

DSC ¼ 2� volume ðA \ BÞ=ðvolume ðAÞ þ volume ðBÞÞ

DSC has a value between 0 and 1, with 1 indicating perfect
overlap and 0 no overlap. Values of approximately 0.7 are
generally considered indicating good overlap, but this will depend
on the size of the structure – the overlapping interiors of large
structures will result in a high DSC, even if the boundaries do not
match well.

The two directional, 3-dimensional HD between structures A
and B is defined as the maximum of the minimum distances of
points a on structure A and b on structure B,19 HD(A, B)

¼ max fSupa2A½dða;BÞ�; Sup
b2B½dðA; bÞ�g

HD has a unit of length and a non-negative value, with 0 mm
indicating perfect agreement. We calculated HD95 (95% of the
points on the boundaries of the structures are within HD95 of each
other). In contrast to DSC, it is easier for small structures to get
good (small) HD values, even if they do not overlap at all (a longer
contour makes finding a really bad point more likely). HD is
determined by the part of the contour with the worst agreement,
whereas DSC is affected by all areas that are non-overlapping.

A good DSC or HD indicates good agreement between the
autocontours and clinical contours, but does not by itself guarantee
anatomical accuracy – there is considerable interobserver variation
in clinical contours. This is especially true if the OAR is not
expected to get a significant dose that would justify spending a lot
of time contouring it manually. Therefore, the anatomical accuracy
of the OAR contours was also ranked subjectively by physicians
experienced in treating head and neck cancer. A physician not
involved in the creation of the manual contours compared their
accuracy with the autocontours. The four contour sets were ranked
on a four point Likert scale from most (1) to least accurate (4) for
each patient and organ, and the scores averaged. Two physicians
did a similar ranking for the autocontours only, which were ranked
most (1) to least (3) accurate and the scores averaged.

We also quantified the dosimetric performance of the
autocontouring packages. Intensity Modulated Radiotherapy
(IMRT) treatment plans generated on the clinical contours were
recalculated (without reoptimising) on the autocontoured struc-
tures and the change in the DVH quantified. The treatment
planning system employed was Philips Pinnacle 16.2.1 (Philips
Medical Systems, Gainesville, FL, USA). We did not generate new
treatment plans based on the autocontoured structures, as this
would have added an uncontrolled variable (whether the change in
the DVH is due to a change in the OAR contour or the quality of
optimisation in the new plan).

Table 1. The mean dice similarity coefficient and standard deviation of the autocontours (N = number of patients with the OAR contoured), the best value for each
OAR in bold

Organ N RF Ave RF StDev MM Ave MM StDev TP Ave TP StDev

Brainstem 13 0.863 0.022 0.857 0.031 0.881 0.025

Parotid L 13 0.789 0.092 0.786 0.095 0.801 0.094

Parotid R 12 0.815 0.067 0.770 0.053 0.815 0.050

Chiasm 12 0.227 0.163 0.197 0.157 0.337 0.171

Esophagus 7 0.760 0.103 0.653 0.126 0.739 0.131

OpN L 12 0.561 0.097 0.526 0.064 0.612 0.083

OpN R 12 0.600 0.046 0.547 0.056 0.633 0.047

Mandible 11 0.851 0.028 0.811 0.025 0.875 0.021

OralCav 10 0.769 0.095 0.617 0.060 0.785 0.054

Cochlea L 11 0.412 0.134 N/A N/A 0.509 0.215

Cochlea R 11 0.466 0.133 N/A N/A 0.530 0.161

SubmandR 6 0.817 0.043 0.748 0.103 0.785 0.098

SubmandL 6 0.773 0.124 0.662 0.167 0.778 0.111

Spinal cord 9 0.655 0.163 0.767 0.097 0.773 0.112

Average over all OARs 0.668 0.662 0.704
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Results

The DSCs are presented in Table 1 and HD95 distances in Table 2.
The physician-generated anatomical accuracy scores are listed in
Table 3A (manual contours compared with the autocontours) and
Table 3B (mean of autocontour scores from two physicians), and the
DVH metrics in Table 4. The DVH metrics selected corresponds to
those used at our institution for evaluating clinical plans (D_MAX for
the brainstem, spinal cord, optic nerves and chiasm, D50 for the
parotid and submandibular glands). Figure 1 shows a comparison
between clinical and automatically generated parotid and spine
contours. Figure 2 shows a comparison ofHD95 andDSC for selected
OARs for RF, and a comparison of theDSCsof all the autocontouring
packages for the same OARs. Figure 3 shows the dosimetric change
for the spinal cord and left parotid as a function of HD95 and DSC.

All three autocontouring packages posted similar DSC results
(the mean DSC of all OARs is RF 0.668, TP 0.704, MM 0.662).
23/40 (57.5%) of the DSCs were above 0.7 and 35/40 (87.5%) above
0.5, the exceptions being the chiasm and the cochlea. These are
small structures, so a low DSC is not surprising.

RF had the best DSC for 2 OARs, TP for 11 and for 1, RF and TP
were equally good (MM does not generate cochlear contours on a CT
scan). The percentage of OARs having mean Dice coefficients> 0.7
was RF 57.1 %, TP 64.3 %, MM 50.0%). With the exception of the
chiasm, the DSC values for RF and TP were similar to those reported
in the literature for earlier versions of these programs.20–22

RF and TP had slightly lower HD95 values than MM (mean
HD95 of all OARs is RF 4.6 mm, TP 4.6 mm,MM 6.7 mm). RF had
the best HD95 for 7 OARs, TP for 5, MM for 1 and for 1, TP and
MM were equally good (MM does not generate cochlear contours
on a CT scan). In particular, the oral cavity and the optical
structures generated by RF and TP matched the clinical contours
better than the MM. The structures with the highest mean HD95
were the oral cavity and esophagus, with the parotids and chiasm
also having relatively large HDs, despite their smaller size.

The physician-generated anatomical accuracy scores, averaged
over all OARs, were clinical contours 2.49, RF 2.28, TP 1.93 and

MM 3.24. Similarly to HD95, RF and TP outperformed MM and
were in fact judged slightly more anatomically accurate than the
clinical contours. Similar results of AI-based autocontouring being
more accurate than clinical contours have been reported by other
authors for various body sites.20 The clinical contours were judged
most accurate for 3 OARs, RF for 4, TP for 6 and for one OAR, RF
and TP were equally accurate. When the two physicians compared
the autocontouring sets only, the results were very similar (RF 1.86,
TP 1.77, MM 2.36), with RF most accurate for 7 OARs, TP for 6
and MM for 1.

Table 2. The mean HD95 and standard deviation [mm] of the autocontours (N = number of patients with the OAR contoured), the best value for each organ in bold

Organ N RF Ave RF StDev MM Ave MM StDev TP Ave TP StDev

Brainstem 13 4.0 1.2 3.8 1.5 3.9 1.3

Parotid L 13 6.4 2.1 5.9 2.2 5.8 2.9

Parotid R 12 5.8 2.6 6.2 1.7 5.4 2.0

Chiasm 12 5.6 1.6 5.7 1.9 4.6 1.2

Esophagus 7 7.7 8.6 9.2 7.9 8.0 8.4

OpN L 12 3.2 1.1 5.9 2.2 2.6 0.7

OpN R 12 2.6 0.5 6.4 2.6 2.5 0.4

Mandible 11 3.7 3.2 5.7 3.3 3.9 3.9

OralCav 10 8.9 4.1 18.5 2.9 10.7 2.7

Cochlea L 11 2.6 0.7 N/A N/A 2.9 1.0

Cochlea R 11 2.5 0.6 N/A N/A 2.6 0.7

SubmandR 6 3.2 0.8 3.8 1.3 3.7 1.5

SubmandL 6 3.7 1.2 6.0 2.2 3.8 1.0

Spinal cord 9 5.2 1.3 3.7 1.8 3.7 1.9

Average over all OARs 4.6 6.7 4.6

Table 3A. Anatomical accuracy of the contours, compared to clinical contours
(a lower number denotes higher accuracy, the best value for each organ in bold)

Organ N Clinical RF MM TP

Brainstem 13 1.77 2.38 3.08 2.77

Parotid L 13 2.62 2.46 3.08 1.62

Parotid R 12 3.08 1.85 3.23 1.85

Chiasm 12 3.08 2.38 2.54 2.00

Esophagus 7 1.75 2.67 3.44 1.89

OpN L 12 2.46 2.62 3.54 1.38

OpN R 12 2.31 2.38 3.62 1.69

Mandible 11 2.33 2.46 3.00 2.00

OralCav 10 2.73 1.36 3.91 2.00

Cochlea L 11 1.67 1.83 N/A 2.50

Cochlea R 11 2.38 1.77 N/A 1.85

SubmandR 6 2.86 1.57 3.43 2.14

SubmandL 6 3.00 1.29 3.71 2.00

Spinal cord 9 1.91 3.91 2.36 1.82

Average 2.49 2.28 3.24 1.93
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Discussion

Generally, a high DSC corresponds to a low HD95, but the
relationship between the twometrics is not very strong, for reasons
noted in the Methods section. This is illustrated for RF in
Figure 2A. Figures 2B and 2C compare the DSC and HD95 values
of the three autocontouring packages; this time the correlations are
evident, all three have similar DSC and HD95 for the same patient.

The autocontouring packages will always attempt to generate a
contour, even for OARs that have been surgically removed (e.g.,
some patients in our set had their submandibular glands removed
prior to the simulation CT scan). The person reviewing the
autocontours should be cognizant of this and remove the contours
for OARs that are not present, lest target coverage be compromised
in an attempt to spare a non-existent OAR.

A possible reason for RF and TP outperforming the clinical
contours is that if the OAR is far from the target and not expected
to get a significant dose, a person manually contouring it may not
want to spend a lot of time maximising the anatomical accuracy.
The accuracy of OAR contours is important even in these cases, for
example if the patient requires reirradiation at a location closer to
the OAR or a retrospective dose response study is carried out at a
later date.

It is known that contouring is subject to a degree of
interobserver variability; separate physicians may draw the same
OAR quite differently. This is particularly relevant to the
physician-generated anatomical accuracy scores. A detailed study
of the effects of interobserver variability would require blinded
comparisons of clinical and AI generated contours by a large
number of physicians and is unfortunately outside the scope of this
article.

Although several authors have studied the performance of AI-
based autocontouring algorithms, they have usually quantified
only the geometric differences, not the dosimetric ones.13,20,23–27

The relationship between the two, however, is not as straight
forward as onemight suppose. As shown in Figure 3, a high DSC or
a lowHD95 do not always correspond to a small dosimetric effect –

if the OAR is in a high dose gradient, even good geometric
agreement can result in a large dosimetric effect and vice versa. If
the user is interested in the magnitude of the dosimetric effects, a
dose calculation with the autocontours should always be
performed when testing autocontouring packages.

The mean difference in the D50 values does not depend
strongly on the exact shape of the contour and are typically on the
order of a few percent. For individual patients, the change in
parotid D50 can be big, as indicated by the large standard deviation
listed in Table 4. The changes in mean DMAX values are typically
bigger since they are determined by the voxel receiving the
largest dose.

The MM autocontouring package is trainable, whereas the
other two are not. Had we trained MM on our institution’s prior
patients, its geometric agreement with the clinical contours most
likely would have improved.

Chiasm and optic nerves

While the clinical chiasm contours were X-shaped in the axial
plane, the autocontours were more elliptical. The chiasm and
optic nerves in the clinical contours always overlapped, and the
autocontoured ones did not always do so and the transition point
from chiasm to optic nerve varied. This resulted in worse
geometric metrics, even if the optic pathway as a whole was well
contoured. The DSC values of the chiasm were the lowest of any
OAR, due partly to its small size but also to the fact that all the
autocontouring packages posted better anatomical accuracy
scores than the clinical contours for this structure. Other
investigators have also reported low DSCs for autocontoured
chiasms, possibly due to its poor visualisation on a CT scan.23,24

We had the clinical contours for the chiasm retrospectively
reviewed by a group of physicians; they agreed that the
anatomical accuracy of the contours was not as good as for the
other OARs. The HD95 values for nerves were low for RF and TP,
but over 5 mm for MM.

The DMAX values for the autocontoured optic nerves and
chiasms are, on average, smaller than for the clinical contour. The
location of the hotspot in the nerve was usually at the chiasm end;
since the clinical nerve contours always overlapped with chiasm,
the DMAX for the clinical contours was, on average, higher.

Brainstem and spinal cord

The brainstem DSC and HD95 values were very good for all the
autocontouring packages. For the spine, the RF contours are bigger
than the others and often approximate the spinal canal, rather than
the true spinal cord. This results in the DMAX values being
systematically higher for the RF contours. It should be noted that
clinical contouring of spinal cord varies from clinic to clinic, a lot of
institutions will intentionally contour the whole canal or add a
margin, while still calling the structure spinal cord.

Parotids and submandibular glands

The parotid and submandibular gland DSC values were very good.
The HD95 values of the submandibular glands were lower than for
the parotids, partly due to their smaller size. These structures are
not very easy to delineate on a CT set and are often affected by
metal artifacts due to dental work. RF and TP were judged to be
more anatomically accurate than the clinical contours.

Table 3B. Anatomical accuracy of the autocontours (mean of scores from two
physicians). The best value for each organ in bold

Organ N RF MM TP

Brainstem 13 1.51 2.28 2.13

Parotid L 13 2.12 2.14 1.70

Parotid R 12 1.93 2.30 1.77

Chiasm 12 1.96 2.12 1.93

Esophagus 7 1.65 2.71 1.64

OpN L 12 2.37 2.22 1.41

OpN R 12 2.21 2.29 1.49

Mandible 11 1.64 2.57 1.79

OralCav 10 1.41 3.00 1.59

Cochlea L 11 1.08 N/A 1.92

Cochlea R 11 1.23 N/A 1.77

SubmandR 6 1.31 2.68 2.01

SubmandL 6 1.24 2.67 2.10

Spinal cord 9 2.95 1.32 1.73

Average 1.86 2.36 1.77
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Table 4. Mean changes in DVH metrics for clinical treatment plans recalculated on autocontour sets. The smallest absolute mean change is printed in bold

Organ N Metric RF Mean Diff [%] RF StDev [%] MM Mean Diff [%] MM StDev [%] TP Mean Diff [%] TP StDev [%]

Brainstem 13 D_MAX 3.3 9.7 3.1 17.1 7.7 14.5

Parotid L 13 D50 3.5 15.3 −0.1 11.9 0.5 13.1

Parotid R 12 D50 −1.8 12.9 −7.1 7.9 −3.9 8.1

Chiasm 12 D_MAX −6.0 12.2 −4.5 8.5 −6.0 10.0

OpN L 12 D_MAX 0.1 8.4 −6.8 11.8 −3.5 7.3

OpN R 12 D_MAX −10.4 19.5 −12.1 13.3 −10.1 14.9

SubmandR 6 D50 −1.9 2.8 −4.5 6.0 −2.0 3.2

SubmandL 6 D50 −0.2 3.2 −0.2 3.8 −0.6 2.0

Spinal cord 9 D_MAX 12.7 9.1 2.5 7.0 −1.8 8.2

Figure 1. Parotid, oral cavity and spinal cord contours for a sample patient. Clinical contours: green, RF: blue, TP: yellow, MM: orange.
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Bottom: HD95s of MM and TP, compared to RF.
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Oral cavity, mandible and esophagus

The DSC values for these structures were very good. The HD95 for
the oral cavity and esophagus were relatively high, partly due to
their large size. RF and TP outperformedMM for these OARs. The
MM oral cavity contours had larger volumes and extended further
in the posterior and inferior directions. The caveats that were noted
for clinical spinal cord contours also apply to oral cavity (a lot of
institutions intentionally err on the side of a generous contour).

Conclusions

This study evaluated the geometric and dosimetric performance of
three AI-based autocontouring packages in the head and neck
region. The geometric agreement between the clinical contours and
RF and TPwas slightly better than withMM. Themean anatomical
accuracy of the two (RF and TP) of the three autocontouring
packages was judged to be better than the original clinical contours;
the dosimetric performance of all three was very similar. Had MM
been trained on previous contours of the physicians at our
institution, its performance would most likely have improved.

The dosimetric effects depend on both the quality of auto
contours and the dose gradients in the plan, thus the correlation
between geometric and dosimetric metrics was not strong. All

three autocontoring packages can be used to generate OAR
contours that can be used clinically with a modest amount of
human editing, resulting in treatment planning time savings and
uniformity of contouring. All autocontouring packages should be
evaluated against the current contouring practice of the institution
and checked for systematic differences (e.g., spinal canal vs. spinal
cord, the superior/inferior level at which the cord contour ends)
before being put it into clinical use; dosimetric comparisons are
also recommended.
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