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ON A FAMILY OF GENERALIZED NUMERICAL 
RANGES 

C.-S. LIN 

1. Introduction and basic properties of operator radii. Throughout 
this note, an operator will always mean a bounded linear operator acting on 
a Hilbert space X into itself, unless otherwise stated. The class Cp (0 < p < oo ) 
of operators, considered by Sz.-Nagy and Foias [5], is defined as follows: An 
operator T is in Cp if T^x = pPUnx for all x £ X, n = 1, 2, . . . , where U is a 
unitary operator on some Hilbert space Y containing X as a subspace, and P 
is the orthogonal projection of Y onto X. In [2] Holbrook defined the operator 
radii wp(-) (0 < p ^ oo ) as the generalized Minkowski distance functionals 
on the Banach algebra of bounded linear operators on X, i.e., 

wp(T) = infjw : u > 0 and u~lT £ Cp}, 0 < p < oo, 

and wœ(T) = r(T), the spectral radius of T [2, Theorem 5.1]. 
The numerical range of an operator is a useful tool in operator theory, 

mainly because it is convex and its closure contains the spectrum. In the 
development, first comes the numerical range, then the numerical radius. 
With this in mind, it seems natural to ask whether there exists a family of 
generalized numerical ranges corresponding to the operator radii of Holbrook 
in such a way that naturally defined numerical radii coincide with his radii. 
We shall answer this question partially in this note. 

A generalized numerical range of an operator T is defined as 

WP(T) = H {u: \u — v\ < wp(T — vl), u and v G C}, 1 < p < oo, 
V 

where C denotes the complex plane, and / the identity operator. For a fixed 
operator T, the family \WP(T) : 1 ^ p ^ oo} turns out to be a complete 
chain whose minimal element is Wœ(T) = 2 (T) , the convex hull of the 
spectrum of T, and whose maximal element WP(T) (1 ^ p ^ 2) is the closure 
of the usual numerical range of T. We discuss consequences of imposing 
growth conditions upon an operator radius of the resolvent of T, rather than 
upon its norm as usual. From this we obtain some new characterizations of a 
self-adjoint operator, and some new expressions of r(T) are given. We also 
investigate the consequences of requiring wp(T) = r(T) or WP(T) = 2(7"), 
which yields a study of generalized normaloid, spectraloid and convexoid 
operators. 
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Let 

W(T) = {(Tx, x)/\\x\\> : 0 * x 6 X}~ 
( = {(Tx,x) i n l a n d \\x\\ = 1}-) 

denote the closure of the usual numerical range and 

w(T) = supfM : u £ W(T)} 

the usual numerical radius of T. For later reference we cite the following 
primary results from [2; 3]: 

(a) If 0 < p < oo, then wp(T) > 0 unless T = 0, and wp(T) ^ 1 if and 
only if T G Cp; 

(b) Wl(T) = \\T\\, w2(T) = w(T) and l i m ^ w p ( r ) = wœ(T) = r(T); 
(c) if 0 < p ^ oo, t h e n a r ) = |c|wp(D, w p ( r ) < co, wp(T) ^wp(I)r(T), 

wp(T) ^wp(I)\\T\\ and ^ ( r » ) ^ wP(r)n , » = 1, 2, . . . , where c ^ C , 
wp(J) = 1 if p ^ 1, and (2 - P)/P if 0 < p £ 1; 

(d) if 0 < p < a S oo, then w a ( r ) ^ w P ( r ) ; 
(e) if 0 < /3 < p ^ oo and wp(T) = w$(T), then wa(T) = Wp(T) whenever 

]8 ^ a ^ oo. 

Acknowledgement. The author wishes to express his gratitude to Professor 
Gustavus E. Huige for his advice and valuable suggestions, and to the referee 
for his comments and suggesting the references to the papers by C. Davis, 
The shell of a Hilbert-space operator, Acta Sci. Math. 29 (1968), 69-86; 31 
(1970), 301-318, and also that by T. Furuta and R. Nakamoto, On the 
numerical ranges of an operator, Proc. Japan Acad. Ifl (1971), 279^284. None 
of these references was known to the author when this paper was written. 

2. A family of generalized numerical ranges. A generalized numerical 
range of an operator T, in symbols WP(T), is defined by 

WP{T) = Pi {u: \u -v\ <wp{T -vl),utmdv 6 C}, 1 < p < oo. 
V 

THEOREM 1. Wp(-) has the following properties: 
(1) WP(T) is a compact convex subset of C; 
(2) WP(T) is nonempty; in fact, WP(T) 2 2 ( r ) ; 
(3) Wp(cT + bl) = cWp(T) +b,bandc £ C. 

Proof. (1) The closedness of WP(T) is easily verified. It is also bounded 
since \u\ ^ wp(T) < oo for every u £ WP(T). To show the convexity, let U\ 
and u2 6 WP(T). For any number / with 0 ^ / S 1 and any v 6 C, we have 

\tux + (1 - t)u2 - v\£t\u! - v\ + (l - t)\u2 - v\ ^ twp(T - vl) 
+ (1 - t)wp{T - vl) = wp(T - vl). 

Hence WP(T) is convex. 
(2) Letu £ S ( r ) . T h e n w - v 6 2(T - vl) and hence \u - v\^r(T - vl) 

^ wp(T — vl) for every ^ C , i.e., u £ WP(T). 
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(3) The case when c = 0 is trivial, i.e., Wp(bl) = C\v{u:\u — v\ S \b — v\, 
u and v £ C} = {b}. We shall suppose therefore that c ^ 0. So, 

u 6 IFp(cr + bl) <& \u - v\ g wp(cr + (6 - *;)/) 

for all 0 Ç C «=» |(w - 6)A + (6 ~ v)/c\ ^ ^ p ( r + (6 - v)I/c) for all 

i; € C «=» (w - b)/c e WP(T) ^u £ cWp(T) + b. 

For an operator T we shall define wp°(T) as 

wp°(T) = supfM : u G WP(T)}, 1 ^ P ^ oo. 

In view of Theorem 1, the following results are easily obtained: 

r(T) g wp°(T) g w P ( r ) , wJ(T) = r(T) and wp°(cr) = \c\wp°(T), 
c Ç C. 

Indeed, it is readily verified that 

WP(T) = H { :̂ |w — */| < wp°(T — vl), u and u £ C}, 1 < p < oo. 

We will show later that w2(T) = wp°(T), 1 g p g 2. 

LEMMA 1. 

lim wp°(r + */) - / = sup Re PFp(r), 1 < p < oo. 
t-)co 

In particular, l im^œ w(T + tl) — t = sup Re PT(2") and 

l i m ^ r(T + tl) - t = sup Re 2 (F) = sup Re W œ ( r ) . 

Proo/. Since Wp(T + tI) =WP(T) + t,wp°(T + tl) ^Re(u + t) = Reu + t 
for u G WP(P). Hence wp°(P + / / ) - / è sup Re TFP(P). On the other hand, 
if a + bi = w G ^ ( P ) , where a and 6 are real, then |w + /| — £ — Re u = 
\(a + i) + 6i| — (a + /) . So, given e > 0, we have |w + /| — t — R e ^ ^ € 
for large/ > 0. Therefore, lim ^ œ wp°(T + tl) — t ^ sup Re WP(T) + e. Since 
e was arbitrary, we have l im^^ wp°(T + tl) — t ^ sup Re WP(T) and hence 
the equality holds. Now, with the aid of previous remarks, the particular cases 
are clear. 

THEOREM 2. W2(T) = W{T) and Wœ(T) = 2 ( P ) . 

Proof. If u £ W(T), then |# — u| z^ w(T — vl) = w2(T — vl) for every 
u 6 C and hence u Ç W2(P). If w (? W(P), because of the convexity of W(T), 
we may assume without loss of generality that W(T) lies in the left half-plane 
Re z g 0, and that u > 0. For large J > 0, w(P + tl) — t < u by Lemma 1, 
i.e., WÏ(T + tl) — t < u and hence w $ P72(P). The second result follows 
similarly. 

I t was proved in [7, Theorem 4] that W(T) = W\{T) by using a remarkable 
result, limfH>0O | |P + tl\\ — t = sup Re W(T) which is due to Lumer [7, 
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Lemma 2]. Therefore, we conclude that for 1 ^ p ^ 2, W(T) = WP(T) and 
w(T) = wp°(T). Also, for a fixed operator T, the family { WP(T) : 1 ^ p ^ oo } 
is a complete chain with the minimal and the maximal elements Wœ(T) = 
S ( r ) and TFp(r) = TF(r), 1 ^ p ^ 2, respectively. 

Because of above remarks, from now on we will consider WP(T) (and 
wp°(T)) only for 2 ^ p ^ oo. We shall give another expression of WP(T) as 
follows. LetXP(T) = U \EU(T) : u G WP(T)}, where£ t t(r) = {x : (7s ,* ) = 
u\\x\\2, x G X}. Clearly, EU(T) C\ EV{T) = {0} if M ^ w, and XP(T) C 
X 2 ( r ) = X. Also, if x G X p ( r ) , then ex G X p ( r ) for c G C. It follows easily 
that 

TFp(r) = {(Tx, x)/ | |x| |2 : 0 ^ x G X p ( r ) } ~ 

= {(Tx, x) : x G X p ( r ) and ||x|| = 1}~. 

In view of above remarks and the fact that T = 0 if and only if (Tx, x) = 0 
for all x G X, we note that if wp° (T) = 0, then T = 0 if and only if (Tx, x) = 0 
for all x G X \ X p ( r ) . 

In the next theorem, we observe that with ||-|| and W(-) in place of wp(-) 
and Wp(-), respectively, (1), (2) and (3) are originally due to Lumer, Rota 
and Hildebrandt [1, p. 22], respectively. We shall omit proofs since they can 
be easily done by slight modifications of original results, previous remarks 
and the relation r(Tn) — r(T)n, n = 1, 2, . . . . , which is a well-known 
consequence of the spectral mapping theorem. Let R(X) denote the set of 
invertible operators on X. 

THEOREM 3. (1) l im^œ wp(T + tl) - t = sup Re W(T), 1 ^ p ^ 2; 
(2) r(T) = infslw^S-'TS) : 5 G R(X)}, 1 S P ^ °o ; 
(3) S ( r ) = DslW^S-'TS) : 5 G R(X)},2 ^ p ^ oo ; 
(4) r(T) = mîs\w«(S-lTS) : S G R(X)}, 2 ^ p ^ oo ; 
(5) r ( r ) = Yimn^wp°(Tnyn, 2 ^ p ^ oo ; 
(6) r ( r ) = Yimn^wp(T

ny\ 1 ^ p ^ oo. 

3. Growth conditions. Let us now investigate growth conditions on the 
resolvent of an operator T in terms of wp°(-) and wp(-), rather than the usual 
case of norm. The theorem below is an extension, in the sense of operators in 
Hilbert space, of Theorem 2 [7], where the numerical range in an arbitrary 
Banach algebra with unit is studied. Incidentally, an operator T is invertible 
if there exists a scalar v T^ 0 such that wp°(T — vl) < \v\. 

In what follows, let d(v, N) denote the distance between a point v and a 
subset N in the plane C. Also, let \T\ denote the minimum modulus of T, i.e., 
\T\ = inf{||7*|| : x G X and ||x|| = 1}. Clearly we have d(0, W(T)) ^ \T\. It 
is well-known and easy to prove that \T\ | | r _ 1 | | = 1 if T is invertible. 

THEOREM 4. Let D be a closed convex subset of C, and p and a be fixed numbers 
in the described ranges. 
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(1) For 2 ^ p ^ oo, if wp°((T - vl)~l) S d(v, D)"1 for all v g D, then 
D 3 WP{T). 

(2) The following statements are equivalent: 
(i) D 2 W(T); 

(ii) wa((T - vl)-1) ^ d(v, D)~lfor all v g D, 1 g a g 2; 
(iii) T — vl is invertible and \T — vl\ ^ d(z>, D) /or a// v (£ D. 

Proof. (1) We need only show that every half-plane if which contains D 
also contains WP(T). By a preliminary translation and rotation we may 
choose H as the right half-plane Re s ^ 0. Since D Q H, and — v~l ^ D ii 
v > 0, we have wp°((T + z; -1/) -1) ^ d( —zr-1, P ) _ 1 by assumption. I t follows 
by the homogeneity of wp°(-) that 

wp°((vT + I)-1) = irlw*((T + Ï T - 1 / ) - 1 ) S v~H(-v-\ D)~l ^ 1. 

This shows that Re u ^ 1 for u £ Wp((vT + I ) - 1 ) . But we have 

1 - Wp((vT + I)-1) = WP(I - (vT + J)"1) = vWp((vT + iy'T). 

So, 0 ^ R e ^ for u £ Wp((i;r + J ) - i r ) . By letting v -> 0, we see that 
0 ^ Re w for « G T7p(r). Therefore, H 3 W p ( r ) . 

(2) (i) => (ii). The condition £> 3 T^(D implies that ( r - vl)~l exists 
and 11(7" — fl-O"1!! = \T — ^ / | - 1 for all v d D by above remark. Hence 
w a ( ( r - vl)-1) ^ d(v, -D)"1 for all v £ D. 

(ii) => (i). We need only show that D 3 W ( r ) i f w ( ( ^ - fl/)"1) ^ d(v,D)~l 

for all v d D. But this is a special case of (1). 
(i) => (iii). This is trivial. 
(iii) =» (ii). wa((r - z;/)-1) s | | ( r - a/)-1!! = | r - ^/h1 ^ </(», D)~I for 

all » g D. 

THEOREM 5. Le/ a and p be fixed numbers in the described ranges. Then the 
following statements are equivalent: 

(1) T is self-adjoint; 
(2) wa((T + vil)-1) ^ lir1! for all real v 9* 0, 1 g a ^ 2; 
(3) 7" + wT w invertible and \T + zn/| ^ |v| /or a// real Î I ^ O . Moreover, if 

this is the case, then 

r{T) = lim wp(T + tl) - t, 1 < p < 2. 
z-400 

Proof. We need first the following two consequences of Theorem 4. Let Z) 
be the upper half-plane. Then it is readily verified that 

Im W(T) ^ 0 «=> w a ( ( r + wJ)"1) ^ i r 1 

for all v > 0 <=> r + vil is invertible and \T + vil\ ^ y for all v > 0. Similarly, 
if Z> is the lower half-plane, then Im W(T) ^ 0 <=> wa((T — vil)*1) ^ v~l 

for all z; > 0 <=> T — w / is invertible and |T — vil\ ^ *; for all v > 0. Now, 
r is self-adjoint <=> Im(rx , x) = 0 for all x G l ^ I m W ( r ) = 0 <=>, 
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wa((T + vil)'1) ^ |fl-1| for all real v 5* 0 «=» T + vil is invertible and 
\T + vil\ è kl for all real v 9e 0. The last assertion follows from Theorem 3 
and the fact that r(T) = w(T) if T is self-adjoint. 

Note that Theorem 5 is an improvement of Nieminen's result [6, Theorem 1] 
which says that if the spectrum <r(T) of T is real and \\(T — wT)_1 | | ^ lir-1! 
for all real v ^ 0, then T is self-adjoint. Incidentally, we can also show, in 
much the same way as above, that the following are valid: 

(1) Re W(T) ^ 0 <=> wa((T + ul)-1) ^ u~x for all u > 0, 1 ^ a ^ 2 <^ 
r + z /̂ is invertible and |T + ul\ §; w for all u > 0; 

(2) Re WXr) ^ 0 <̂> w a ( ( r - w/)-1) ^ M"1 for all w > 0, 1 ^ a ^ 2 <=» 
T — ul is invertible and \T — ul\ ^ u for all w > 0 (this case should be 
compared with [6, Lemma 2]); and 

(3) w(T) S l^wa((T - ci)-1) ^ (\c\ - I ) " 1 for all c G C with |c| > 1, 
1 ^a ^2^T - ci is invertible and \T - cl\ ^ |c| - 1 for all c € C with 
\c\ > 1. 

The following is an analogous result to Theorem 4 which is useful likewise. 

THEOREM 6. Let D be a compact subset of C such that WP(T) Ç D. Then there 
exists an operator S such that wp°(T — vl) ^ r(S — vl) for all v £ C. If 
operators T and S are such that wp°(T — vl) ^ r(S — vl) for all v G C, then 
WP(T) C S(5). 

Proof. We observe that if D is a nonempty compact subset of C, then there 
exists some (diagonal) operator 5 on a separable Hilbert space such that 
a(S) = D [4, Problem 48]. D is nonempty by assumption, thus WP(T — vl) = 
WP(T) -vQ a(S) -v = <r(S - vl) for all v G C. Hence wp°(T - vl) ^ 
r(S — vl) for all v G C. On the other hand, if the condition is satisfied, then 

WP(T) Ç n {u\ \u - v\ < r(S - vl), uandv G C} = 2(S) 
V 

and hence the proof is complete. 

COROLLARY 1. Let a be a fixed number in the described range, and 2 ^ p ^ oo. 
Then the following statements are equivalents: 

(1) W(T) = WP(T); 
(2) w(T - vl) = wp°(T - vl) for all v G C; 
(3) wa((T - vl)-1) S d(v, WpW-iforallv g WP(T), 1 ^ a ^ 2; 
(4) \T -vl\ ^ d(v, Wp(T))for all v £ WP{T). 

The proof can be done by using the same techniques as in the proofs of 
Theorem 4 and 6. We note that a normal operator T satisfies any one of above 
four equivalent conditions. 

4. Generalized normaloid, spectraloid and convexoid operators. 
Recall that an operator T is normaloid if | | r | | = r(T), spectraloid if w(T) = 
r(T), and convexoid if W(T) = 2 ( r ) [4, p. 114]. In view of wp(T) and WP(T), 
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we may naturally generalize these operators as follows: An operator T is 
p-normaloid if wp(T) = r(T), 1 ^ p < oo, and p-convexoid if WP(T) = 
S ( r ) , 2 ^ p < oo. 

THEOREM 7. Let a, fi and y be fixed numbers in the described ranges, and 
1 fg p < oo. Then the following statements are equivalent: 

(1) T is p-normaloid; 
(2) wa{T) = wp(T),p <a^œ; 
(3) wp(Tn) = wp(T)n, p g j8 < oo araZ ^^r^ integer n ^ 1; 
(4) wy(T

n) = wp(T)n, p < 7 ^ oo and et;gry integer » ^ 1 . 

Proo/. (1) =» (2) Because wa(P) g wp(P) = r (P) ^ w a (P) .Tha t (2) =* (1) 
follows immediately from (e). (1) => (3) For p ^ 0 < oo and every integer 
» ^ 1 , we have wp(T)n = r(T)n g ^(2™) g ^ ( P ) * g wp(T)n. (3) => (1) 
Since wp(T)n = WpiT71) ^ ||PW|| for every integer » ^ 1 , 

Wp(r) ^îim^nr»!!1* = KP). 

The opposite inequality always holds. That (1) <=» (4) is now clear. 

In view of the property (3) in Theorem 7, it readily follows that if P is 
p-normaloid, so is Tk for any integer k ^ 1. We note that if p = oo , Corollary 1 
gives characterizations of a convexoid operator. This yields an improvement 
of [6, Theorem 2 and 3]. It is clear that a convexoid operator is p-convexoid, 
however, using Theorem 4 and 6 we can say more. 

THEOREM 8. (1) T is p-convexoid if and only if wp°(T — vl) = r(T — vl) 
for all v Ç C. 

(2) If wp°((T - vl)~l) S d(v, S ( r ) ) - 1 for all v £ 2 (P ) , then T is p-con­
vexoid. 

(3) If T — vl is p-normaloid for all v £ C, 2 ^ p < o o , then T is p-con­
vexoid. 

It is well-known and easily verified that d(vy a(T))~l = r ( ( P — vl)-1) for 
all v $ o-(T). The next result indicates the relation among a convexoid, 
normaloid and spectraloid operators. 

COROLLARY 2. / / T has a convex spectrum, i.e., <x(P) = 2(2"), then the 
following statements are equivalent: 

(1) T is convexoid; 
(2) (P — vl)~l is p-normaloid for all v $ v(T), 1 ^ p ^ 2; 
(3) (P — vl)~l is normaloid for all v $ o"(P); 
(4) (P — zP)_1 is spectraloid for all v $ o"(r). 

5. Remarks. In previous sections we have merely considered cases when 
p e l . Here, we shall explain the treatment of p < 1. I t can be shown that 
w(T) S wp(I)~

lwp(T), 0 < p < 1, where wp(I) = (2 — p)/p by [2, Theorem 
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4.3]. Hence w(T) g, w„ ( / ) - % , ( D g | | r | | by (c). I t follows easily that 

W(T) = O {u: \u - v\ < w,(-0~V<<T - vl),u andz< € CJ, 0 < P < 1. 
V 

Also, with this factor wp(I)~
l in mind, and some obvious modifications of 

proofs in previous sections, the cases when p < 1 can be treated rather easily. 
We give some results as follows. Let p be a fixed number in the range 0 < p < 1. 

(1) sup Re W(T) = l i m ^ [wp(I)^wp(T + tl) - *]; 
(2) if D is a closed convex subset of C, then D 3 W(T) if and only if 

wp(I)-
lwp((T - vl)-1) ^ d(v, D)-1 for all v £ D; and 

(3) T is self-adjoint if and only if ^ p ( 7 ) - % p ( ( r + vil)~l) ^ \v~l\ for all 
real v ^ 0. 

Since 1 > wp(I)-
l
y we see from (c), unless T = 0, that 

wp(T) > wp(I)-
lwp(T) ^ r(T). 

Also recall that WP(T) = W(T), 1 ^ p ^ 2. These will enable us to explain 
why we choose the indicated ranges for p in the definitions of a p-normaloid 
operator and a p-convexoid operator. 
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