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Abstract. For an integer n ≥ 7, let �(n) denote the (2, 3, n)-triangle group, and let
M(n) be the positive integer determined by the conditions that �(n) has a subgroup of
index m for all m ≥ M(n), but no subgroup of index M(n) − 1. The main purpose of the
paper is to obtain information (bounds, in some cases explicit values) concerning the
function M(n) (cf. Theorem 1). We also show that �(n) is replete (i.e., has a subgroup
of index m for every integer m ≥ 1) if, and only if, n is divisible by 20 or by 30 (see
Theorem 2).

2000 Mathematics Subject Classification. 20D60, 20F67.

1. Introduction and main results. For a positive integer n, let

�(n) = 〈
x, y | x2 = y3 = (xy)n = 1

〉

be the (2, 3, n)-triangle group; that is, the quotient of the inhomogeneous modular
group

� = 〈
x, y | x2 = y3 = 1

〉

by the normal closure of the relator (xy)n. For n < 6, the group �(n) is finite, whereas for
n = 6 it is an infinite soluble group associated with symmetries of the Euclidean plane.
For n > 6, �(n) is an infinite insoluble group associated with a hyperbolic triangle with
angles π

2 , π
3 and π

n . It is this last case that we are interested in.
It follows in particular from [5, Theorem 3] that, given n ≥ 7, there exists a positive

integer M(n) such that �(n) has a subgroup of index m for all m ≥ M(n), but no
subgroup of index M(n) − 1; this also follows from [2], where it is shown that all but
finitely many alternating groups Ak occur as quotients of �(n) for each fixed n ≥ 7.
Determining the numbers M(n) precisely appears, in general, very difficult; the main
purpose of the present paper is to establish the following information on M(n), where
we include some previously know facts re-proven here for the sake of completeness.

THEOREM 1. Let n be an integer with n ≥ 7.
(i) For n ≥ 53, we have M(n) ≤ 6n, with equality holding if n is a prime.

(ii) For 21 ≤ n ≤ 52, we have M(n) ≤ 20n.
(iii) For 17 ≤ n ≤ 20, we have M(n) ≤ 19n.
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(iv) For 7 ≤ n ≤ 16, we have
M(7) = 168, M(12) ≤ 240,

M(8) ≤ 240, M(13) ≤ 143,

M(9) ≤ 180, M(14) ≤ 154,

M(10) = 10, M(15) ≤ 210,

M(11) ≤ 110, M(16) ≤ 128.

Call a group replete if it contains a subgroup of index m for every integer m ≥ 1.
For instance, the modular group � is replete, whereas �(7) has no proper subgroup of
index less than 7. Our second main result determines those n for which �(n) is replete.

THEOREM 2. Let n ≥ 7 be an integer. Then the hyperbolic triangle group �(n) is
replete if and only if n is divisible by 20 or by 30.

The paper is organised as follows. In the next section we recall those facts
concerning coset diagrams needed in our present context, and we show by means
of the genus formula for � that for n ≥ 7 prime the triangle group �(n) does not have
a subgroup of index 6n − 1 (Proposition 3).

Section 3 describes two surgery processes (join and composition of diagrams) that
produce new coset diagrams from given ones. These processes and their properties,
explained in Lemmas 6 and 8, respectively, are basic for most of what follows: In
Section 4, these processes are used to obtain a generic existence result (for n ≥ 53);
in Section 5, we apply them to establish a corresponding existence result in the range
17 ≤ n ≤ 52 (see Parts (ii) and (iii) of Theorem 1); while Section 6 uses these processses
to derive the estimates given in Part (iv) of Theorem 1 for n = 8, 9 and 11 ≤ n ≤ 16.
Moreover, Proposition 28 in Section 8 establishes the exact value of M(10), again
relying on the processes of join and composition.

Section 7 is of a somewhat different flavour; its main purpose is the computation
of M(7), which is accomplished by somewhat more general arguments of an arithmetic
nature pertaining to the genus formula for �(n). The fact itself that M(7) = 168 is not
new; it follows, for instance, from Conder’s analysis of permutation representations of
the (2, 3, 7)-triangle group in [1]. We include a somewhat different argument for the
sake of completeness.

The paper concludes with the proof of Theorem 2 in Section 9.

2. Permutations and coset diagrams. Our main tool will be coset diagrams over �

and �(n), and operations involving them. This technique was systematically developed
by Graham Higman in the 1960s and 1970s, and is explained, for instance, in [1] and
[2]; a thorough introduction to coset diagrams over the Hecke groups C2 ∗ Cq with
q prime can be found in [3, Section 3]. Here we recall only those facts needed in the
present context.

Let G be a subgroup of the modular group � with index (� : G) = m. Then �

acts on the m-set �/G of left cosets of G in � by left multiplication, giving rise to
a transitive permutation representation ϕG : � → S(�/G) of � on �/G such that
stabϕG (1 · G) = G. Identifying �/G with the standard m-set [m] = {1, 2, . . . , m} by
means of a bijection ψ : �/G → [m] sending the coset 1 · G to 1, we obtain a transitive
permutation representation ϕ̃G : � → Sm such that stabϕ̃G (1) = G. Since � is generated
by two elements x and y, the representation ϕG is determined up to similarity once
we specify permutations ϕ̃G(x) = σ and ϕ̃G(y) = τ . These permutation σ, τ satisfy the
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relations

σ 2 = τ 3 = 1, (2.1)

and generate a transitive subgroup of Sm. Conversely, given permutations σ, τ ∈ Sm

satisfying relations (2.1) and generating a transitive subgroup 〈σ, τ 〉 of Sm, then
mapping x 	→ σ and y 	→ τ yields a permutation representation ϕ : � → Sm such that
(� : G) = m, where G = stabϕ(1). Hence, existence of a subgroup of index m in � is
equivalent to the existence of permutations σ, τ ∈ Sm satisfying (2.1) and generating a
transitive subgroup in Sm. Similarly, existence of a subgroup of index m in the triangle
group �(n) is equivalent to the existence of permutations σ, τ ∈ Sm satisfying relations

σ 2 = τ 3 = (τσ )n = 1, (2.2)

and generating a transitive subgroup of Sm.
We shall find it convenient to translate the data (σ, τ ) into a geometric language.

More precisely, to a pair (σ, τ ) of permutations specifying a subgroup of index m in �,
there corresponds a diagram D consisting of m labelled vertices, red undirected loops,
blue undirected loops, red undirected edges and blue directed edges, constructed as
follows: The vertices of D are labelled with the elements of the standard set [m]; for
i, j ∈ [m] such that σ (i) = j, the vertices labelled i and j are joined by an undirected red
edge (a loop if i = j); for i, j ∈ [m] with i 
= j and τ (i) = j, we draw a directed blue edge
from vertex i to vertex j, while for i = j we attach an undirected blue loop to vertex i.
Thus, by construction, such a diagram D satisfies the following:

(D1) Each vertex of D either has a red loop, or is incident with exactly one red edge.

(D2) Each vertex of D either has a blue loop, or is contained in precisely one oriented
blue triangle.

(D3) The red and blue edges together give a connected figure.

Conversely, a diagram D satisfying Conditions (D1)–(D3) specifies a pair of
permutations σ, τ ∈ Sm satisfying relations (2.1) and generating a transitive subgroup,
and hence a subgroup of index m in �. In the same vein we can speak of diagrams for
a triangle group �(n). Clearly, every diagram for �(n) can be viewed as a diagram for
� (specifying the preimage of the original subgroup of �(n) in � under the canonical
map � → �(n)), while a diagram for � can be interpreted as a diagram for �(n) if and
only if the cycle lengths of permutation τσ divide n.

If necessary, we shall keep track of the cycles of the permutation τσ by undirected
green loops and directed green edges. Starting with the vertex a, say, we follow the red
loop or edge at a, to vertex b, say, then follow the blue loop or edge (the latter according
to its orientation) from b to vertex c, say. Then there is an undirected green loop at a
if a = c, and a green edge from a to c otherwise. Each vertex has a green loop, or is a
vertex of exactly one (oriented) green polygon. If τσ has f (r) cycles of length r, and a
total of h cycles, then clearly m = ∑

r≥1 rf (r) and h = ∑
r≥1 f (r). If G is a subgroup of

index m in the modular group �, then the partition m = f (1) + 2f (2) + · · · + mf (m) of
m obtained in this way from the corresponding permutation representation ϕG (or a
representation similar to ϕG, or a diagram for G) is called the cusp-split of G. Denoting
by e(2) and e(3) the number of 1-cycles in σ = ϕG(x) and τ = ϕG(y), respectively, and
by p the genus of the Riemann surface associated with G, we have the genus formula
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(see [8, Formula (2)] or [4])

m = 3e(2) + 4e(3) + 12(p − 1) + 6h. (2.3)

As a first application of the genus formula, we show a result to the effect that �(n)
does not have subgroups for certain indices.

PROPOSITION 3. If n ≥ 7 is prime, then �(n) does not have a subgroup of index 6n − 1.

Proof. Suppose for a contradiction that G is a subgroup of index 6n − 1 in �(n),
and let D be a coset diagram for G. Interpreting D as a diagram over �, the genus
formula (2.3) implies that

6n − 1 ≥ −12 + 6h, (2.4)

since e(2), e(3), p ≥ 0. However, as D is associated with �(n), and n is prime, the cusp-
split of G (or its preimage G̃ in �) must consist of 1s and ns. Considering the resulting
equation

6n − 1 = f (1) + nf (n)

modulo n, we find that f (1) ≡ −1 mod n, so f (1) ≥ n − 1 and, consequently, h ≥ n + 4.
Combining the last inequality with (2.4), we get

6n − 1 ≥ −12 + 6(n + 4) = 6n + 12,

a contradiction. �
REMARK. The results of application of Formula 2.3 may also be achieved by using

necessary conditions for transitivity of a group generated by given permutations, as
derived in [6] or [7].

COROLLARY 4. For n ≥ 7 prime, we have M(n) ≥ 6n.

3. Surgery on diagrams. To simplify our illustrations throughout the paper, we
shall adhere to the following conventions: (i) green edges are omitted; (ii) we assume
that the blue triangles (indicated by bold lines) are oriented clockwise; (iii) red edges
are indicated by light lines; (iv) red and blue loops are omitted (they may be inferred
at vertices not on an edge of the appropriate colour).

In this section, we shall introduce and discuss two basic processes producing new
diagrams from given ones.

DEFINITION 5. The join of diagrams. Let D1 and D2 be coset diagrams over �,

and suppose that D1andD2 have red loops at vertices x1 and x2, respectively. Then
we combine the diagrams D1 and D2 into a new figure by replacing the red loops in
question by an undirected red edge joining x1 and x2. The new (mixed) graph is called
the join of D1 and D2, and is denoted as D1 ∗ D2.

LEMMA 6 (The Joining Lemma). Suppose that D1 is a coset diagram over � with
m1 vertices and with a red loop at vertex x1, with x1 contained in a green polygon of size
k1, and that D2 is a diagram having a total of m2 vertices, with a red loop attached to
vertex x2, where x2 is contained in a green polygon of size k2. Then the join D1 ∗ D2 is a
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Figure 1. The join operation.

coset diagram over � with m1 + m2 vertices, and the green polygon in D1 ∗ D2 containing
x1 has size k1 + k2, and contains x2. The sizes of all other green polygons are unchanged.

Proof. The figure D1 ∗ D2 involves m1 + m2 vertices, and is connected by
construction plus the fact that D1 and D2 are connected. Also, the requirements
(D1)–(D3) concerning red and blue loops, red undirected edges and blue directed
edges are again met so that D1 ∗ D2 is indeed a coset diagram over �. Moreover,
the only green polygons affected by the process of joining are those through
x1 or x2. If the green polygon n D1 containing x1 is (y1, . . . , yk1−1, x1) and
that in D2 containing x2 is (z1, . . . , zk2−1, x2), then D1 ∗ D2 has a green polygon
(y1, . . . , yk1−1, x1, z1, . . . , zk2−1, x2) involving x1 and x2, and of size k1 + k2, as
claimed. �

Figure 1 shows the result of joining a 4-vertex diagram with one green polygon
of size 4, and a 1-vertex diagram (which, of course, has a red, blue and green loops at
its only vertex). The result is a 5-vertex diagram with one green polygon of size 5, in
accordance with Lemma 6.

DEFINITION 7. (Free triangles).
(i) By a free triangle in a coset diagram over � we mean a blue triangle having red

loops attached to (at least) two of its vertices.

(ii) A coset diagram over � is F(r) if it has at least r free triangles.

Clearly, if a coset diagram has more than three vertices, then, by connectedness, a
free triangle cannot have red loops at all three vertices; that is, in such a diagram, each
free triangle has exactly two red loops.

Suppose that we have two coset diagrams over �, D1 with m1 vertices and D2

with m2 vertices, where m1, m2 > 3. We choose disjoint sets of labels 1, 2, . . . , m1, m1 +
1, . . . , m1 + m2. Suppose further that (x2, x3, x4) is a free triangle in D1, and that
(y2, y3, y4) is a free triangle in D2. Then D1 has red loops at x2 and x3, say, and a red
edge (x1, x4). Also, D1 has a blue triangle (x2, x3, x4), and a green polygon, including
. . . x1, x2, x3, x4, . . ., and similarly for D2. We form a new figure D1 + D2 by replacing
the red loops at x2, y2, x3 and y3 with red edges (x2, y2) and x3, y3). The new figure
involves m1 + m2 vertices, is connected and satisfies Conditions (D1)–(D3). Moreover,
the new diagram inherits most of the green structure from D1 and D2; only the green
polygons involving x2, y2, x3, and y3 are affected. Indeed, D1 + D2 has green polygons
. . . x1, x2, y3, x4, . . . and . . . y1, y2, x3, y4, . . .. Note that these two green polygons have
the same sizes as the corresponding ones in D1 and D2. Consequently, if all green
polygons in D1 and D2 have sizes which divide n, then those of D1 + D2 also have sizes
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Figure 2. The composition operation.

dividing n; i.e. all are coset diagrams over �(n). The diagram just constructed is called
the composition of D1 and D2. See Figure 2 for an illustration.

If one of the diagrams D1, D2 has only three vertices, or if both diagrams have only
three vertices, we can still form the composition by choosing two of the three vertices
in the corresponding free triangle, the third vertex keeping its red loop.

LEMMA 8 (The Composition Lemma). Let r1 and r2 be positive integers, let
D1 be an m1-vertex F(r1) diagram with cusp-split {f (i)}i≥1, and let D2 be an F(r2)
diagram with m2 vertices and cusp-split {g(i)}i≥1. Then the composition D1 + D2 is an
(m1 + m2)-vertex F(r1 + r2 − 2) diagram with cusp-split {f (i) + g(i)}i≥1. Moreover, if D1

and D2 are diagrams over �(n), so is D1 + D2.

Proof. The observations preceding the lemma, together with the fact that the
process of composition uses two free triangles, establish all claims in the case when
m1, m2 > 3. The remaining cases require a separate analysis, which is however quite
similar to the above, and is left to the reader. �

4. An existence theorem. Our aim here is to show the following generic existence
result.

PROPOSITION 9. If n ≥ 53 and m ≥ 6n, then �(n) has a subgroup of index m.
Equivalently, for n ≥ 53, we have M(n) ≤ 6n.

The proof of Proposition 9 requires some preparation.
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x2

x1

x3

y1

y3 y2

Figure 3. The 6-vertex diagram S.

LEMMA 10. Let T be a 3-vertex diagram consisting of one blue triangle, with all three
vertices carrying red loops, and let t be a positive integer. Then the join

D = T ∗ · · · ∗ T︸ ︷︷ ︸
t copies

of t disjoint copies of T gives a diagram with 3t vertices and one green cycle of size 3t.

Proof. We use induction on t. If t = 1, i.e. D = T , one immediately checks that all
three vertices of D are contained in the same green cycle. Suppose that the assertion of
Lemma 10 holds for t = t0 with some integer t0 ≥ 1, and let D be the join of t0 copies
of T . By the induction hypothesis, D has a green cycle of length 3t0; hence, by the
joining lemma, D ∗ T has a green cycle of length 3t0 + 3 = 3(t0 + 1), as required. �

LEMMA 11. Let S be the 6-vertex diagram over � consisting of two disjoint blue
triangles T1 = (x1, x2, x3) and T2 = (y1, y2, y3), oriented clockwise, with red edges
(x2, x3) and (x1, y1), and red loops at y2 and y3 (i.e. S = T ∗ T ′, where T ′ is a 3-
vertex diagram with exactly one red loop); see Figure 3. Let r be a positive integer, and
let D = S ∗ · · · ∗ S be the join of r disjoint copies of S. Then D is a diagram with a
total of 6r vertices and cusp-split (1r, 5r), where the green loops sit at x3 and the vertices
corresponding to x3.

Proof. We use induction on r. If r = 1, that is, D = S, then one immediately checks
that S has a green 5-cycle (x1, y2, y3, y1, x2), and a green loop at x3. Suppose that the
assertion of the lemma holds for r = r0 with some integer r0 ≥ 1, and let D be the join
of r0 copies of S. By the induction hypothesis, D has a green cycle of size 5r0, and
green loops at x3, and the vertices corresponding to x3. By the joining lemma, since
the two vertices joined by a new red edge both sit in long cycles, D ∗ S has a green
cycle of length 5r0 + 5 = 5(r0 + 1), and we have green loops at x3, and at all vertices
corresponding to x3, as claimed. �

LEMMA 12. If n ≥ 5r + 12, or if n = 5r + 6, 5r + 9, 5r + 10, then there exists an
F(2) diagram with n + r vertices and cusp-split (1r, n1).

Proof. Construct a diagram D by first joining r copies of the 6-vertex diagram S to
obtain a diagram Sr, then join a copy of the 3-vertex diagram T to Sr from the left, and
three copies of T from the right. By Lemmas 10 and 11 plus the joining lemma, the
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resulting diagram D has r green loops and a green cycle of size 5r + 12. Moreover, the
first and the last triangle are free, so D is F(2), and the first two triangles on the right
of Sr each carry a red loop. If we have n ≥ 5r + 12, set n = 5r + 12 + 3s + t, where s is
a non-negative integer, and t ∈ {0, 1, 2}. Then we join s copies of T at the right-hand
side of D, and t copies of the 1-vertex diagram at the first two triangles to the right
of Sr. By Lemma 10 plus the joining lemma, the result is an F(2) diagram with n + r
vertices and the desired cusp-split.

If n = 5r + 6, we again construct the diagram Sr (i.e. the join of r copies of the
6-vertex diagram S), and then join one copy of T each from the left and the right to Sr

to get the desired diagram.
Finally, if n = 5r + 9 or 5r + 10, then we join one copy of T to Sr from the left,

and two copies of T from the right, and, in the latter case, also join a 1-vertex diagram
to the first triangle on the right of Sr. �

LEMMA 13. If n ≥ 5r + 6, or if n = 5r with some r > 0, or if n = 5r + 3, 5r + 4,

then there exists an F(1) diagram with n + r vertices and cusp-split (1r, n1).

Proof. For n = 5r + 3, 5r + 4, we begin by forming the diagram Sr, and then join
a copy of T to Sr from the left. This gives the desired diagram for n = 5r + 3; while for
n = 5r + 4, we also join a 1-vertex diagram to T ∗ Sr from the right.

For n ≥ 5r + 6, we set n = 5r + 6 + 3s + t with s ≥ 0 and t ∈ {0, 1, 2}. We form
the diagram D = T ∗ Sr ∗ T , and join s copies of T to D from the right. By Lemma 10
plus the joining lemma, this yields a diagram with 6r + 6 + 3s vertices, r green loops
and a green cycle of length 5r + 6 + 3s. Moreover, the first triangle is free. If s = 0, the
triangle on the right of Sr at this stage is also free, so we can join t copies of the 1-vertex
diagram on the right to obtain the desired F(1) diagram. For s = 1, and t ∈ {0, 1},
we join t 1-vertex diagrams to the first triangle on the right of Sr, to obtain an F(2)
diagram with the desired cusp-split, while for s = 1 and t = 2 we get an F(1) diagram
of the required type. Finally, if s ≥ 2, we again obtain in this way an F(2) diagram with
cusp-split (1r, n1), as required.

Finally, for n = 5r with r ≥ 1, we first form D = Sr−1, a diagram with 6(r − 1)
vertices, r − 1 green loops and a green cycle of size 5(r − 1). We then join a copy of
T to D from the left (thus, in particular, obtaining a free triangle), and a copy of T ′

from the right, where, as before, T ′ is a 3-vertex diagram with exactly one red loop.
The result is an F(1) diagram with 6r vertices, r green loops and a green cycle of size
5(r − 1) + 3 + 2 = 5r, as desired. �

Proof of Proposition 9. We distinguish cases according to the residue of n modulo 5.
CASE 1. n = 5k. By Lemma 12, there exists an F(2) diagram with cusp-split (1r, n1)

for every r with 0 ≤ r ≤ k − 2. More precisely, we use here the special case of Lemma 12
where n = 5r + 10 with r = k − 2, and the case where n ≥ 5r + 12 for 0 ≤ r ≤ k − 3.
Composing K such diagrams for various suitably chosen r, we can get a diagram
over �(n) with cusp-split (1S, nK ) for every integer S with 0 ≤ S ≤ K(k − 2). Setting
m = Kn + R with 0 ≤ R < n, we will be able to produce a diagram over �(n) with m
vertices for all m satisfying Kn ≤ m ≤ Kn + n − 1, provided that

K(k − 2) ≥ n − 1 = 5k − 1,
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or, equivalently, whenever

k ≥ 2K − 1
K − 5

. (4.1)

Note that the function g : (5,∞) → (0,∞) given by g(x) = 2x−1
x−5 is strictly decreasing

for x > 5. Hence, Condition (4.1) on k is the strongest for K = 6, and we have shown
existence, in Case 1, of an m-vertex diagram over �(n) for every m ≥ 6n, whenever
k ≥ 11, that is, whenever n ≥ 55.

CASE 2. n = 5k + 1. Using Lemma 12 in the case where n = 5r + 6 with r = k − 1,
we obtain an F(2) diagram with cusp-split (1k−1, n1). Similarly, using the case where
n ≥ 5r + 12 and 0 ≤ r ≤ k − 3, we find F(2) diagrams with cusp-split (1r, n1) for all
integers r such that 0 ≤ r ≤ k − 3. Moreover, by Lemma 13 in the special case where
n ≥ 5r + 6 and r = k − 2, there also exists an F(1) diagram with cusp-split (1k−2, n1).

We claim that by composing K such diagrams we can obtain diagrams with cusp-
split (1S, nK ) for every integer S with 0 ≤ S ≤ K(k − 1). Indeed, composing K F(2)
diagrams with suitably chosen rs in the range 0 ≤ r ≤ k − 3, we can reach every S with
0 ≤ S ≤ K(k − 3). Now suppose that we have chosen K F(2) diagrams with r = k − 3.
Replacing j of these by an F(2) diagram with r = k − 1, for j = 1, 2, . . . , K , we reach
the values

S = (K − j)(k − 3) + j(k − 1) = K(k − 3) + 2j, j = 1, 2, . . . , K.

On the other hand, replacing j − 1 of F(2) diagrams (from the second one onwards)
by an F(2) diagram with r = k − 1, for j = 1, 2, . . . , K , and replacing the first diagram
by an F(1) diagram with r = k − 2, we reach every S-value of the form

S = (K − j)(k − 3) + (j − 1)(k − 1) + (k − 2) = K(k − 3) + 2j − 1, j = 1, 2, . . . , K.

This proves our claim.
Consequently, we are able to produce an m-vertex diagram over �(n) for all m with

Kn ≤ m ≤ Kn + (n − 1), provided that

K(k − 1) ≥ n − 1 = 5k;

or, equivalently, whenever

k ≥ K
K − 5

.

Since the function g(x) = x
x−5 is decreasing for x > 5, we can thus, in Case 2, find a

diagram over �(n) with m vertices for every m ≥ 6n, provided that k ≥ 6 or n ≥ 31.
CASE 3. n = 5k + 2. Using Lemma 12 in the case where n ≥ 5r + 12 and with r in

the range 0 ≤ r ≤ k − 2, we find an F(2) diagram with cusp-split (1r, n1) for each r with
0 ≤ r ≤ k − 2. Moreover, from Lemma 13 in the case where n ≥ 5r + 6 and r = k − 1,
we obtain an F(1) diagram with cusp-split (1k−1, n1). Composing K F(2) diagrams
with suitably chosen rs in the rangle 0 ≤ r ≤ k − 2, we obtain an F(2) diagram with
cusp-split (1S, nK ) for all S such that 0 ≤ S ≤ K(k − 2). Further, replacing one or two
of these diagrams (at the beginning or end of the chain) with an F(1) diagram for
r = k − 1, we can also reach the values S = K(k − 2) + 1, K(k − 2) + 2. Arguing as
before, we thus find an m-vertex diagram over �(n) for all m ≥ 6n, provided that k ≥ 11
or n ≥ 57.
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CASE 4. n = 5k + 3. Using Lemma 12 in the case where n ≥ 5r + 12 and with
r = 0, 1, . . . , k − 2, we find F(2) diagrams with cusp-split (1r, n1) for all integers r such
that 0 ≤ r ≤ k − 2. Also, from Lemma 13 in the special cases where n = 5r + 3 (with
r = k), and where n ≥ 5r + 6 with 0 ≤ r ≤ k − 1, we obtain F(1) diagrams with cusp-
split (1r, n1) for all r such that 0 ≤ r ≤ k. Composing K F(2) diagrams with various
suitably chosen rs in the range 0 ≤ r ≤ k − 2, we get F(2) diagrams with cusp-split
(1S, nK ) for all S in the range 0 ≤ S ≤ K(k − 2). Furthermore, replacing one or both
of the free traingles (at the beginning and end of the chain) by an F(1) diagram
with cusp-split (1k−1, n1) or (1k, n1), we can also cover the values S = K(k − 2) + j for
j = 1, 2, 3, 4. This yields the sufficient condition

K(k − 2) + 4 ≥ n − 1 = 5k + 2,

or, equivalently,

k ≥ 2K − 2
K − 5

,

for the existence of m-vertex diagrams over �(n) for all m in the range Kn ≤ m ≤
Kn + (n − 1); and arguing as before we find that an m-vertex diagram over �(n) exists
in Case 4 for all m ≥ 6n, provided that k ≥ 10 or n ≥ 53.

CASE 5. n = 5k + 4. From Lemma 12, in the cases where n ≥ 5r + 12 (with 0 ≤
r ≤ k − 2) and n = 5r + 9 (with r = k − 1), we obtain F(2) diagrams with cusp-split
(1r, n1) for all r such that 0 ≤ r ≤ k − 1. Similarly, from Lemma 13 in the cases where
n = 5r + 4 (with r = k) and n ≥ 5r + 6 with 0 ≤ r ≤ k − 1, we find F(1) diagrams with
cusp-split (1r, n1) for all r in the range 0 ≤ r ≤ k. Composing K F(2) diagrams with
various suitably chosen values of r, we get F(2) diagrams with cusp-split (1S, nK )
for all integers S such that 0 ≤ S ≤ K(k − 1). Replacing one or two of these F(2)
diagrams with an F(1) diagram for r = k, we see that we can also cover the values
S = K(k − 1) + j for j = 1, 2. Thus, our sufficient condition for existence of an m-
vertex diagram over �(n) with m covering the range Kn ≤ m ≤ Kn + (n − 1) becomes

K(k − 1) + 2 ≥ n − 1 = 5k + 3,

and we find that an m-vertex diagram over �(n) exists for all m ≥ 6n, provided that
k ≥ 7 or n ≥ 39.

Combining our findings of Cases 1–5, we see that an m-vertex diagram over �(n)
(and hence a subgroup of index m in �(n)) exists for all m ≥ 6n, provided that n ≥ 53,
which is the assertion of Proposition 9. �

Proposition 9 just established in conjunction with Corollary 4 now yields the
following.

COROLLARY 14. For prime n ≥ 53, we have M(n) = 6n.

Proposition 9 and Corollary 14, when taken together, establish Part (i) of
Theorem 1.

5. A further existence theorem for n ≥ 17. In order to cover the range where
17 ≤ n ≤ 56, we show the following result, thus establishing Parts (ii) and (iii) of
Theorem 1.
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PROPOSITION 15.
(a) If n ≥ 21 and m ≥ 20n, then �(n) has a subgroup of index m.

(b) For 17 ≤ n ≤ 20, and every m with m ≥ 19n, the triangle group �(n) has a
subgroup of index m.

Proof. (a) Let m = Kn + R, where R is such that 0 ≤ R < n. We show how to build
a diagram with cusp-split (1R, nK ). Suppose that

r ≤ N :=
[n − 12

5

]
,

where, for a real number x, [x] denotes the largest integer less than or equal to x. By
Lemma 12, there exists an F(2) diagram with cusp-split (1r, n1). If we compose K such
diagrams, for various suitably chosen values of r, then, according to the composition
lemma (Lemma 8), we obtain diagrams with cusp-split (1S, nK ) for every integer S
such that 0 ≤ S ≤ KN. Hence, in order to ensure existence of an m-vertex diagram
over �(n) for all m in the range Kn ≤ m ≤ Kn + (n − 1), it thus suffices to require that

KN ≥ n − 1. (5.1)

Since N ≥ n−16
5 , we get the sufficient condition

K(n − 16) ≥ 5(n − 1),

or, equivalently,

n ≥ 16K − 5
K − 5

. (5.2)

For K = 20, Inequality (5.2) gives n ≥ 21, and, since the function 16x−5
x−5 is decreasing

for x > 5, the condition that n ≥ 21 is enough to ensure the conclusion of Part (a).
(b) For n = 17, 18, 19, 20, we go back to the original condition (5.1). Observing

that, for n ≥ 17, we have N ≥ 1, we see that (5.1) is satisfied for 17 ≤ n ≤ 20 and every
K satisfying K ≥ 19. This establishes the assertion of Part (b). �

6. The cases where 8 ≤ n ≤ 16. In order to complete the proof of Theorem 1, it
remains to estimate the function M(n) in the range where 7 ≤ n ≤ 16. For 8 ≤ n ≤ 16,
this is done in a series of lemmas in the present section. The case of the (2, 3, 7)-
triangle group is considered from a somewhat different, more arithmetic, perspective
in Section 7. Here we shall give complete details for Lemmas 16–18, while for the
remaining results of this section we confine ourselves to listing relevant diagrams,
leaving details of the construction to the interested reader.

LEMMA 16. The triangle group �(8) has a subgroup of index m for every m ≥ 240.

Proof. The argument depends on three specific diagrams:
(i) D(8): An 8-vertex F(1) diagram with cusp-split (81), obtained by joining two

copies of T , and then joining two 1-vertex diagrams to the right-hand blue
triangle.

(ii) D(9) = T ∗ T ∗ T ′: A 9-vertex F(1) diagram with cusp-split (11, 81).
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F1 T1 T2 T4

T5 F2 T3

F3

Figure 4. The diagram D(24) for �(8).

(iii) D(24): A 24-vertex F(3) diagram with cusp-split (83), obtained as follows.
Imagine five blue triangles T1–T5 connected by red edges in the following
way: T1 is connected to T2 and T3; T2 is connected to T1, T4 and T5; T3 is
connected to T1, T4 and T5. This implies that T4 is connected to T2 and T3,
that T5 is connected to T2 and T3, and leaves three free vertices (i.e. vertices not
involved in a red edge), belonging to triangles T1, T4 and T5, where we attach
a free triangle each (denoted F1–F3); see Figure 4.

Now suppose that m ≥ 240, and set m = 8k + r with 0 ≤ r ≤ 7. Then k ≥ 30. Let
k − r = 3s + t with 0 ≤ t ≤ 2. As r ≤ 7, we have k − r ≥ 23, so s ≥ 7. Take s copies of
D(24), and combine them into a single diagram D by applying composition. By the
composition lemma, D is a 24s-vertex F(s + 2) diagram with cusp-split (83s). Again
using composition, we can add t copies of D(8) and r copies of D(9), since t + r ≤ 9
and D is F(9). The result is a single diagram with m vertices and cusp-split

(1r, 83s+r+t) = (1r, 8(m−r)/8),

which shows that �(8) has a subgroup of index m. �
LEMMA 17. The triangle group �(9) has a subgroup of index m for every m ≥ 180.

Proof. Here the argument depends on the following diagrams:1

(i) D(9) = T ∗ T ∗ T : A 9-vertex F(2) diagram with cusp-split (91) (cf. Lemma 10).

(ii) D(10): A 10-vertex F(1) diagram with cusp-split (11, 91) obtained from the join
T ∗ T ∗ T ′ by joining a 1-vertex diagram to the triangle in the middle.

(iii) D(36): A 36-vertex F(4) diagram with cusp-split (94), obtained in the following
way. Let T1–T8 be eight blue triangles connected by red edges as follows: T1 is
connected to T2 and T3; T2 is connected to T1, T4 and T5; T3 is connected to
T1, T6 and T8; T4 is connected to T2 and T8; T5 is connected to T2, T6 and T7;

1The reader will observe that, in the interest of flexibility of notation, D(9) here denotes a 9-vertex diagram
different from the one used in the proof of Lemma 16; a similar abuse of notation occurring in other places
without explicit mention.
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F1 T1 T2 T4 T8 T3

F3 T7 T5 T6 F2

F4

Figure 5. The diagram D(36) for �(9).

T1 T2 T3 T4

T

F2F1

Figure 6. The diagram D(21) for �(10).

and T8 is connected to T3, T4 and T7. This implies that T6 is connected to T3

and T5; and that T7 is connected to T5 and T8; and leaves four free vertices, one
each at triangles T1, T4, T6 and T7, at each of which we attach a free triangle
(denoted F1–F4) to obtain the required F(4) diagram with cusp-split (94); see
Figure 5.

Now suppose that m ≥ 180, and let m = 9k + r with 0 ≤ r ≤ 8. Then k ≥ 20.
Composing three copies of D(36), we obtain an F(8) diagram D with cusp-split (912).
Next, we compose D with (k − r − 12) copies of D(9) to get an F(8) diagram D′ with
cusp-split (9k−r); and finally, since r ≤ 8, we can compose D′ with r copies of D(10) to
arrive at a diagram with m vertices and cusp-split (1r, 9k), which shows that �(9) has
a subgroup of index m. �

LEMMA 18. If m ≥ 180, then �(10) has a subgroup of index m.

Proof. The diagrams we use are as follows:
(i) D(10): A 10-vertex F(2) diagram with cusp-split (101), obtained from T ∗ T ∗ T

by joining a 1-vertex diagram to the middle triangle;

(ii) D(21): A 21-vertex F(2) diagram with cusp-split (11, 102), obtained in the
following way. Consider four blue triangles T1–T4 connected by red edges as
follows: T1 is connected to T2 and T3; T2 is connected to T1, T3 and T4. This
leaves four free vertices, one each at triangles T1 and T3, and two at T4, which
we use to attach two free triangles, a copy of T ′, and a loop (at T4); see Figure 6.
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T1 T2 T3 T4

F2

F3F1

Figure 7. The diagram D(22) for �(11).

Suppose that m ≥ 180, and let m = 10k + r with 0 ≤ r ≤ 9. Then k ≥ 18. For
r > 0, we first compose r copies of D(21) to obtain an F(2) diagram D with 21r vertices
and cusp-split (1r, 102r). If we now compose D with k − 2r copies of D(10), we get a
diagram with m vertices and cusp-split

(1r, 102r+(k−2r)) = (1r, 10k),

which gives the required subgroup of index m in the triangle group �(10). �
LEMMA 19. The triangle group �(11) has a subgroup of index m for every m ≥ 110.

Proof. The required diagrams are as follows:
(i) D(11): An 11-vertex F(1) diagram with cusp-split (111), obtained from T ∗ T ∗

T by joining two 1-vertex diagrams to the second and third blue triangle.

(ii) D(12): A 12-vertex F(2) diagram with cusp-split (11, 111), obtained from T ∗
T ∗ T by joining a copy of T ′ to the triangle in the middle.

(iii) D(22): A 22-vertex F(3) diagram with cusp-split (112), obtained as described
next. Take four blue triangles T1–T4 and connect them by red edges as follows:
T1 is connected to T2 and T3; T2 is connected to T1, T3 and T4. This leaves
four free vertices, one each at triangles T1 and T3, and two at triangle T4; and
we attach a free triangle each at T1 and T3, and another free triangle plus a
1-vertex diagram at T4; see Figure 7.

�
LEMMA 20. If m ≥ 240, then �(12) has a subgroup of index m.

Proof. Here the required diagrams are as follows:
(i) D(12): A 12-vertex F(3) diagram with cusp-split (121), obtained by joining three

free triangles to a blue triangle in the middle.

(ii) D(13): A 13-vertex F(1) diagram with cusp-split (11, 121), obtained by joining
a 1-vertex diagram to one of the two middle triangles in the diagram T ∗ T ∗
T ∗ T ′.

�
LEMMA 21. The triangle group �(13) has a subgroup of index m for every m ≥ 143.

Proof. The required diagrams are as follows:
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T1 T2 T4 T5 T3

F2 F3F1

Figure 8. The diagram D(26) for �(13).

(i) D(13): A 13-vertex F(2) diagram with cusp-split (131), obtained by joining a 1-
vertex diagram to one of the two middle triangles in the diagram T ∗ T ∗ T ∗ T .

(ii) D(14): A 14-vertex F(1) diagram with cusp-split (11, 131), obtained by joining
two 1-vertex diagrams to the middle triangles in the diagram T ∗ T ∗ T ∗ T ′.

(iii) D(15): A 15-vertex F(1) diagram with cusp-split (12, 131), obtained by joining
two copies of T ′ to the second and third triangle of a diagram of the form
T ∗ T ∗ T .

(iv) D(26): A 26-vertex F(3) diagram with cusp-split (132), obtained in the following
way. Take five blue triangles T1–T5, and connect them by red edges as follows:
T1 is connected to T2 and T3; T2 is connected to T1 and T4; T3 is connected to
T1 and T5; T4 is connected to T2 and T5. This leaves five free vertices, one on
each triangle, where we attach two copies of a 1-vertex diagram (at T3 and T5),
and three free triangles (at T1, T2, and T4); cf. Figure 8.

(v) D(27): A 27-vertex F(3) diagram with cusp-split (11, 132), obtained as described
next. Take five blue triangles T1–T5, and connect them by red edges as follows:
T1 is connected by a red edge to T2 and T3; T2 is connected to T1 (as mentioned)
and T4; T3 is connected to T1 and T5; T4 is connected to T2 and T5; finally, T5 is
connected to T3 and T4 (as stated before). This leaves five free vertices, one for
each triangle T1–T5. We attach free triangles at T1, T3 and T4, a red loop at T2

and a blue triangle with an internal edge at T5 to obtain the desired diagram;
see Figure 9.

�
LEMMA 22. If m ≥ 154, then �(14) has a subgroup of index m.

Proof. The required diagrams are as follows:
(i) D(14): A 14-vertex F(2) diagram with cusp-split (141), obtained by joining

two 1-vertex diagrams to the two middle triangles of a diagram of the form
T ∗ T ∗ T ∗ T .

(ii) D(15): A 15-vertex F(2) diagram with cusp-split (11, 141), obtained from a
diagram of the form T ∗ T ∗ T ∗ T by joining a copy of T ′ at one of the two
middle triangles.

(iii) D(16): A 16-vertex F(1) diagram with cusp-split (12, 141), obtained as follows.
Form a 9-vertex diagram D of the form D = T ∗ T ∗ T ′, as well as a 6-vertex
diagram D′ = T ∗ T ′, join D and D′, and join a 1-vertex diagram to the first
triangle of D′.

�

https://doi.org/10.1017/S0017089512000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000298


708 W. WILSON STOTHERS

T3 T1 T2

F1 T4T5

F2

T F3

Figure 9. The diagram D(27) for �(13).

LEMMA 23. The triangle group �(15) has a subgroup of index m for each m ≥ 210.

Proof. The required diagrams are as follows:
(i) D(15): A 15-vertex F(3) diagram with cusp split (151), obtained by first building

diagrams D, D′ of the form D = T ∗ T ∗ T and D′ = T ∗ T , and then joining
D via its middle triangle to D′.

(ii) D(16): A 16-vertex F(2) diagram with cusp-split (11, 151), obtained as follows.
First produce a diagram D of the form T ∗ T ∗ T , and a diagram D′ built by
joining a 1-vertex diagram to a diagram of the form T ∗ T ′, then join D via the
middle triangle to D′, thus getting the desired 16-vertex diagram.

�
LEMMA 24. If m ≥ 128, then �(16) has a subgroup of index m.

Proof. Suitable diagrams are as follows:
(i) D(16): A 16-vertex F(3) diagram with cusp-split (161), obtained by building

an F(2) diagram D of the form T ∗ T ∗ T , and an F(1) diagram D′ by starting
from a diagram of the form T ∗ T and joining a 1-vertex diagram to the left
triangle, then joining D via the middle triangle to the left triangle of D′.

(ii) D(17): A 17-vertex F(1) diagram with cusp-split (11, 161), obtained by first
building a diagram D of the form T ∗ T ∗ T ∗ T ∗ T ′, and then joining 1-vertex
diagrams to two of the three interior triangles of D.

(iii) D(18): An 18-vertex F(2) diagram with cusp-split (12, 161), obtained by first
building diagrams D, D′ of the form T ∗ T ∗ T and T ′ ∗ T ∗ T ′, respectively,
and then joining D and D′ via their middle triangles. �

7. Some remarks on the genus formula for �(n). Let G be a subgroup of index m
in �(n), and let D be a corresponding diagram over �(n). If D has e(2) red loops, e(3)
blue loops and cusp-split {f (d)}d|n, and if p denotes the genus of the Riemann surface
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associated with G, then these data are related by the formula

(n − 6)m = 3ne(2) + 4ne(3) + 6
∑
d|n
d<n

(n − d)f (d) + 12n(p − 1). (7.1)

This is the genus formula for �(n); cf. [4].
A subgroup of finite index in �(n) is called full if it has a cusp-split consisting only

of 1s and ns. Of course, if n is prime, then every finite-index subgroup is full. Our next
result records some observations concerning the non-negative integers m, e(2), e(3),
f (1) and p associated with a full subgroup in �(n).

LEMMA 25. For a full subgroup of index m in �(n), we have

(n − 6)m = 3ne(2) + 4ne(3) + 6(n − 1)f (1) + 12n(p − 1). (7.2)

Moreover, we have

m ≡ e(2) (mod 2), (7.3)

m ≡ e(3) (mod 3), (7.4)

m ≡ f (1) (mod n), (7.5)

as well as

r + (n − 1)t ≡ 0 (mod 2), (7.6)

where

m = e(2) + 2r = e(3) + 3s = f (1) + nt. (7.7)

Furthermore, for n odd, we have m ≡ e(2) (mod 4). Also, for n even, r and t have the
same parity so that e(2) is determined modulo 4 from the knowledge of m and f (1) (as
integers).

Proof. Equation (7.2) is just the genus formula (7.1) in the case when all green
polygons have size 1 or n.

Consider a coset diagram D for the subgroup in question. Then the congruences
(7.3)–(7.5) follow by looking at the partition of the m vertices of D affected by the red,
blue and green structures, respectively.

If we use equation (7.7) to substitute for e(2), e(3) and f (1) in (7.2), then we find,
after division by 6n, that

−2m + r + 2s + (n − 1)t = 2(p − 1),

from which we deduce the congruence (7.6). The remaining assertions are now
immediate. �

REMARK. In certain cases, for instance if n is prime to 6, the congruences in
Lemma 25 follow from Formula (7.2), so we can simply study the equation in these
cases. In general, we have to consider the system of equation and congruences.

Our next result provides sufficient conditions for the existence of (non-negative)
solutions to this system of equation and congruences.
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LEMMA 26.
(a) If m > 6n − 1 + 18n/(n − 6), then the system of equation and congruences in

Lemma 25 has a solution in non-negative integers e(2), e(3), f (1), p.
(b) If n ≥ 25, then there are non-negative solutions for all m ≥ 6n.

Proof. (a) Suppose that we have a (non-negative) solution (e(2), e(3), f (1), p) to the
system under consideration. If e(2) ≥ 4, then we can decrease it by 4 and increase p by
1 to get another solution. In this way we can reduce e(2) modulo 4, and ensure that
e(2) ≤ 3. Likewise, we may assume that e(3) ≤ 2. Now suppose that we have a solution
with e(2) ≤ 3, e(3) ≤ 2 and f (1) ≥ n. If n is odd, we can decrease f (1) by n, and increase
p by n−1

2 ; if n is even and e(2) ≤ 1, then we decrease f (1) by n, increase e(2) by 2 and
increase p by n−2

2 ; if n is even and e(2) ≥ 2, then we decrease f (1) by n, decrease e(2) by
2 and increase p by n

2 . On readily checks, in each case we obtain a new solution meeting
the bounds e(2) ≤ 3 and e(3) ≤ 2. Thus, we may further assume that f (1) ≤ n − 1.

Now choose non-negative integers e(2), e(3), f (1), r and t such that e(2) ≤ 3,
e(3) ≤ 2, f (1) ≤ n − 1 such that Congruence (7.6) and equation (7.7) are satisfied.
Substituting for e(2), e(3) and f (1) by means of equation (7.7), we find that expression

N := (n − 6)m − 3ne(2) − 4ne(3) − 6(n − 1)f (1)

is a multiple of 12n, so we only have to ensure that p is non-negative, i.e. N > −24n, in
order to get a solution to the system. However, by our assumptions on e(2), e(3), f (1)
and m, we have

N ≥ (n − 6)m − 9n − 8n − 6(n − 1)2

> (n − 6)
(
6n − 1 + 18n/(n − 6)

) − 17n − 6(n − 1)2 = −24n,

establishing Part (a).
(b) Suppose that n ≥ 25. Then Part (a) gives solutions for all m ≥ 7n − 1. Now

let m = 6n + k with 0 ≤ k ≤ n − 2. Since m ≡ f (1) (mod n), we may take f (1) = k.
Defining N as before, we now have

N ≥ (n − 6)m − 9n − 8n − 6k(n − 1)

= (n − 6)(6n + k) − 17n − 6k(n − 1).

As before, a sufficient condition for the existence of a solution for such m is that
N > −24n, from which we obtain the sufficient condition

(n − 6)(6n + k) − 17n − 6k(n − 1) > −24n,

or, equivalently,

6n − 29 > 5k.

However, since k ≤ n − 2, the last condition is satisfied, provided that

5(n − 2) < 6n − 29,

or n > 19. �
COROLLARY 27. We have M(7) = 168.
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Proof. By Part (a) of Lemma 26, we have non-negative solutions to equation (7.2)
for all m > 167. By [9, Theorem 4.1], this implies existence of a subgroup of index m
in �(7) for all m ≥ 168. On the other hand, it is easy to check that equation (7.2) does
not have a solution for m = 167; thus, a fortiori, there is no subgroup of that index.2 �

REMARK. The genus formula (7.1) can also be used to obtain non-trivial lower
bounds for M(n) in certain cases. For instance, one shows by an argument similar
to the proof of Proposition 3 that, for n a prime, �(n) has no subgroup of index
Kn − 1 for all integers K with 1 ≤ K < 6n−23

p−6 . For large prime n, this only yields the
bound M(n) ≥ 6n, which was already observed in Corollary 4; but for p = 7, 11, 13
and 17, we get better results: M(7) ≥ 126, M(11) ≥ 88, M(13) ≥ 91 and M(17) ≥ 119.
One also finds in this way that M(9) ≥ 18, M(25) ≥ 25 and M(49) ≥ 49. For n = qr a
prime power with r = 2 and q > 7, or for q ≥ 2 and exponents r > 2, this method fails
however.

8. Determination of M(10). We begin by observing that the restrictions on images
σ, τ of generators x, y of �(n) coming from the modular relations x2 = y3 = 1 plus the
requirement that 〈σ, τ 〉 be transitive are rather severe for diagrams with few vertices.
For instance, for two vertices, we must have τ = 1 and σ = (1, 2) (two vertices with blue
loops attached to them, connected by a red edge). For three, four and five vertices, τ

must have a single 3-cycle, with any extra vertices linked in via σ . A little analysis shows
that, for m ≤ 5, the only possibilities are as follows, up to the labelling of vertices:
m = 1: σ = τ = τσ = 1;

m = 2: σ = τσ = (1, 2), τ = 1;

m = 3: σ = 1, τ = τσ = (1, 2, 3) or
σ = (1, 2), τ = (1, 2, 3), τσ = (1, 3);

m = 4: σ = (3, 4), τ = (1, 2, 3), τσ = (1, 2, 3, 4) or
σ = (1, 2)(3, 4), τ = (1, 2, 3), τσ = (1, 3, 4);

m = 5: σ = (1, 4)(3, 5), τ = (1, 2, 3), τσ = (1, 4, 2, 3, 5).

We are now ready to establish the following refinement of Lemma 18.

PROPOSITION 28. The triangle group �(10) has a subgroup of index m for each m ≥ 1,

except for m = 4, 8 and 9; in particular, we have M(10) = 10.

Proof. We begin by listing some diagrams, which will be used to build families of
subgroups:

(i) D(6): A 6-vertex F(1) diagram with cusp-split (11, 51), obtained by joining a
copy of T to a copy of T ′.

(ii) D(10): A 10-vertex F(2) diagram with cusp-split (101), obtained by joining a
1-vertex diagram to the middle triangle in a copy of T ∗ T ∗ T .

(iii) D(12): A 12-vertex F(2) diagram with cusp-split (21, 101), obtained from a
6-vertex diagram consisting of two blue triangles with a red double bond by
joining two copies of T .

(iv) D(15): A 15-vertex F(1) diagram with cusp-split (51, 101), obtained by joining a
copy of T ∗ T to a 9-vertex diagram built from a copy of T ∗ T ∗ T by replacing

2We note that Corollary 27 also follows immediately from results in [1].
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the top red loops of the first and the right-hand loop of the last triangle by a
red edge connecting these triangles.

(v) D(21): A 21-vertex F(2) diagram with cusp-split (11, 102); see Figure 6.
Now let m ≥ 1, and write m = 10k + r with 0 ≤ r ≤ 9. In each case, we shall give

a collection of diagrams that can be combined by composition to obtain the required
m-vertex diagram, leaving out only certain small numbers m, which need to be handled
separately.
r = 0. Here we have k ≥ 1, so we can compose k copies of D(10) to obtain the desired

diagram.

r = 1. Suppose that k ≥ 2. Then we compose one copy of D(21) and (k − 2) copies of
D(10); this leaves out the cases where m = 1 or m = 11.

r = 2. For k ≥ 1, we may compose (k − 1) copies of D(10) and one copy of D(12); this
leaves out the case where m = 2.

r = 3. For k ≥ 3, we may compose one copy each of D(12) and D(21), and (k − 3)
copies of D(10); this leaves out the cases where m = 3, 13, 23.

r = 4. Suppose that k ≥ 2. Then we compose two copies of D(12) and (k − 2) copies
of D(10) to get the desired (10k + 4)-vertex diagram; this leaves out the cases
where m = 4, 14.

r = 5. For k ≥ 1, we can compose one copy of D(15) with (k − 1) copies of D(10) to
get the required diagram; this leaves out the case where m = 5.

r = 6. Here we compose one copy of D(6) with k copies of D(10).

r = 7. Let k ≥ 2. Then we may compose one copy each of D(12) and D(15), and
(k − 2) copies of D(10); this leaves out the cases where m = 7, 17.

r = 8. For k ≥ 1, we can compose one copy each of D(6) and D(12), and (k − 1) copies
of D(10); this leaves out the case where m = 8.

r = 9. Let k ≥ 3. Then we may compose two copies of D(12), one copy of D(15) and
(k − 3) copies of D(10) to get the desired (10k + 9)-vertex diagram; this leaves
out the cases where m = 9, 19, 29.

To complete the proof, it remains to produce diagrams having cusp-splits compatible
with �(10) for m = 1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 23, 29, and to show that there are no
such diagrams with m = 4, 8, 9. The first task is routine (though fairly tedious for the
later values), and is left as an exercise to the reader.

From our survey of subgroups of small index, we already know that the 4-vertex
diagrams over � have cusp-splits (41) and (11, 31), neither of which is compatible with
�(10). This shows that �(10) does not have a subgroup of index 4.

Next, the genus formula for � shows that an 8-vertex diagram can have at most
two green cycles. However, since 8 � 10, and as 8 cannot be expressed as the sum of
two divisors of 10, no 8-vertex diagram exists over �(10); thus, there is no subgroup
of index 8 in �(10).

The case where m = 9 is somewhat more difficult. By the genus formula, a 9-vertex
diagram can have at most three green cycles, and the only cusp-split compatible with
�(10) and this restriction is (22, 51). Moreover, again by the genus formula, such a
diagram should have three blue triangles, four red edges and a red loop, and it is not
hard to convince oneself that such a diagram does not exist. �

REMARK. By arguments similar to those in the proof of Proposition 28, one can
also show that �(12) has a subgroup of index m for each m ≥ 1, except for m = 5 and
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11; in particular, M(12) = 12. The main ingredients of a proof of this are a 6-vertex
F(2) diagram, and F(1) diagrams with 3 and 4 vertices.

9. Proof of Theorem 2. Combining Lemmas 16 and 17 and 19–24 with
Corollaries 4 and 27, and Propositions 9–28, we obtain the assertion of Theorem 1.

A first useful step in proving Theorem 2 consists in the following observation.

LEMMA 29. Let n and n′ be integers such that n, n′ ≥ 7 and n | n′. In this situation, if
�(n) has a subgroup of index m for some positive integer m, then so has �(n′).

Proof. If �(n) has a subgroup of index m, then there exists an m-vertex diagram
over �(n), whose all green cycles have lengths dividing n. Since n divides n′, the same
diagram may also be viewed as a diagram over �(n′), showing that �(n′) also has a
subgroup of index m. Alternatively, the assertion of the lemma also follows from the
fact that �(n) is a homomorphic image of �(n′). �

With Proposition 28 and Lemma 29 in hand, we can now proceed to the proof of
Theorem 2.

First suppose that �(n) is replete. Then, in particular, it has a subgroup of index
2. From the list before Proposition 28, the corresponding diagram must have a green
cycle of length 2, so 2 | n. Also, �(n) has a subgroup of index 5, and our list shows that
the corresponding diagram must have a green 5-cycle, implying that 5 | n. Combining
these results, we see that 10 | n. Moreover, �(n) must have a subgroup of index 4. From
the list, we see that in this case the corresponding diagram must have either a green
3-cycle or a green 4-cycle so that n is either divisible by 4 or 3, and hence by 20 or 30.

Suppose conversely that n is divisible by 20 or 30. We want to show that in this
case �(n) is replete. By Lemma 29, it suffices to show that �(20) and �(30) are replete.
Proposition 28 in conjunction with Lemma 29 shows that there are subgroups of index
m in �(20) and �(30) for every index m, except possibly for m = 4, 8 or 9. We already
know that there exists a 4-vertex diagram with cusp-split (41), which is compatible with
�(20), and a 4-vertex diagram with cusp-split (11, 31), which is compatible with �(30).
Hence, both �(20) and �(30) contain a subgroup of index 4. Moreover, it is easy to
find 8-vertex diagrams with cusp-splits (42) and (21, 61), and 9-vertex diagrams with
cusp-splits (41, 51) and (31, 61). Thus, �(20) and �(30) are replete, finishing the proof
of Theorem 2.

We conclude this paper with the following.

PROBLEM 1. Determine the exact value of M(n) for all n in the range 8 ≤ n ≤ 52.

ACKNOWLEDGEMENTS. W. Wilson Stothers’ family would like to thank Thomas
Müller of Queen Mary & Westfield College for completing the text of the manuscript
[10] after the former’s death. Thanks are also due to Christian Krattenthaler for
providing the necessary illustrations. Finally, thanks are due to the anonymous referee
for a careful reading and valuable suggestions, which have led to the improvement of
both results and their presentation.

REFERENCES

1. M. D. E. Conder, Generators for alternating and symmetric groups, J. London Math.
Soc. 22 (1980), 75–86.

https://doi.org/10.1017/S0017089512000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000298


714 W. WILSON STOTHERS

2. M. D. E. Conder, More on generators for alternating and symmetric groups, Quart. J.
Math. 32(2) (1981), 137–163.

3. C. Krattenthaler and T. W. Müller, Parity patterns associated with lifts of Hecke groups,
Abh. Math. Semin. Univ. Hambg. 78 (2008), 99–147.

4. J. Lehner, Discontinuous groups and automorphic functions, AMS Surveys No. 8
(American Mathematical Society, Providence, RI, 1964).

5. T. W. Müller and J.-C. Schlage-Puchta, Character theory of symmetric groups, subgroup
growth of Fuchsian groups, and random walks, Adv. Math. 213 (2007), 919–982.

6. R. Ree, A theorem on permutations, J. Comb. Theory Ser. A 10 (1971), 174–175.
7. D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull.

Lond. Math. Soc. 2 (1970), 319–323.
8. W. W. Stothers, Impossible specifications for the modular group, Manuscripta Math. 13

(1974), 415–428.
9. W. W. Stothers, Subgroups of the (2, 3, 7) triangle group, Manuscripta Math. 20 (1977),

323–334.
10. W. W. Stothers, Subgroups of (2, 3, n) triangle groups (unpublished).

https://doi.org/10.1017/S0017089512000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089512000298

