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Let K be a subgroup of a finite group G. The probability that an element of G
commutes with an element of K is denoted by Pr(K, G). Assume that Pr(K, G) � ε
for some fixed ε > 0. We show that there is a normal subgroup T � G and a
subgroup B � K such that the indices [G : T ] and [K : B] and the order of the
commutator subgroup [T, B] are ε-bounded. This extends the well-known theorem,
due to P. M. Neumann, that covers the case where K = G. We deduce a number of
corollaries of this result. A typical application is that if K is the generalized Fitting
subgroup F ∗(G) then G has a class-2-nilpotent normal subgroup R such that both
the index [G : R] and the order of the commutator subgroup [R, R] are ε-bounded. In
the same spirit we consider the cases where K is a term of the lower central series of
G, or a Sylow subgroup, etc.
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1. Introduction

The probability that two randomly chosen elements of a finite group G commute
is given by

Pr(G) =
|{(x, y) ∈ G × G : xy = yx}|

|G|2 .

The above number is called the commuting probability (or the commutativity degree)
of G. This is a well-studied concept. In the literature one can find publications
dealing with problems on the set of possible values of Pr(G) and the influence of
Pr(G) over the structure of G (see [9, 15, 17, 22, 23] and references therein).
The reader can consult [25, 32] and references therein for related developments
concerning probabilistic identities in groups.
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P. M. Neumann [29] proved the following theorem (see also [9]).

Theorem 1.1. Let G be a finite group and let ε be a positive number such that
Pr(G) � ε. Then G has a nilpotent normal subgroup R of nilpotency class at most
2 such that both the index [G : R] and the order of the commutator subgroup [R,R]
are ε-bounded.

Throughout the article we use the expression ‘(a, b, . . . )-bounded’ to mean that
a quantity is bounded from above by a number depending only on the parameters
a, b, . . . .

If K is a subgroup of G, write

Pr(K,G) =
|{(x, y) ∈ K × G : xy = yx}|

|K||G| .

This is the probability that an element of G commutes with an element of K
(the relative commutativity degree of K in G).

This notion has been studied in several recent papers (see in particular [10, 26]).
Here we will prove the following proposition.

Proposition 1.2. Let K be a subgroup of a finite group G and let ε be a positive
number such that Pr(K,G) � ε. Then there is a normal subgroup T � G and a
subgroup B � K such that the indices [G : T ] and [K : B], and the order of the
commutator subgroup [T,B] are ε-bounded.

Theorem 1.1 can be easily obtained from the above result taking K = G.
Proposition 1.2 has some interesting consequences. In particular, we will establish

the following results.
Recall that the generalized Fitting subgroup F ∗(G) of a finite group G is the

product of the Fitting subgroup F (G) and all subnormal quasisimple subgroups;
here a group is quasisimple if it is perfect and its quotient by the centre is a non-
abelian simple group. Throughout, by a class-c-nilpotent group we mean a nilpotent
group whose nilpotency class is at most c.

Theorem 1.3. Let G be a finite group such that Pr(F ∗(G), G) � ε, where ε is a
positive number. Then G has a class-2-nilpotent normal subgroup R such that both
the index [G : R] and the order of the commutator subgroup [R,R] are ε-bounded.

A somewhat surprising aspect of the above theorem is that information on the
commuting probability of a subgroup (in this case F ∗(G)) enables one to draw a
conclusion about G as strong as in P. M. Neumann’s theorem. Yet, several other
results with the same conclusion will be established in this paper.

Our next theorem deals with the case where K is a subgroup containing γi(G)
for some i � 1. Here and throughout the paper γi(G) denotes the ith term of the
lower central series of G.

Theorem 1.4. Let K be a subgroup of a finite group G containing γi(G) for some
i � 1. Suppose that Pr(K,G) � ε, where ε is a positive number. Then G has a
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nilpotent normal subgroup R of nilpotency class at most i + 1 such that both the
index [G : R] and the order of γi+1(R) are ε-bounded.

P. M. Neumann’s theorem is a particular case of the above result (take i = 1).
In the same spirit, we conclude that G has a nilpotent subgroup of ε-bounded

index if K is a verbal subgroup corresponding to a word implying virtual nilpotency
such that Pr(K,G) � ε. Given a group-word w, we write w(G) for the correspond-
ing verbal subgroup of a group G, that is the subgroup generated by the values
of w in G. Recall that a group-word w is said to imply virtual nilpotency if every
finitely generated metabelian group G where w is a law, that is w(G) = 1, has a
nilpotent subgroup of finite index. Such words admit several important character-
izations (see [2, 4, 12]). In particular, by a result of Gruenberg [13], the j-Engel
word [x, y, . . . , y], where y appears j � 1 times, implies virtual nilpotency. Burns
and Medvedev proved that for any word w implying virtual nilpotency there exist
integers e and c depending only on w such that every finite group G, in which w
is a law, has a class-c-nilpotent normal subgroup N such that Ge � N [4]. Here
Ge denotes the subgroup generated by all eth powers of elements of G. Our next
theorem provides a probabilistic variation of this result.

Theorem 1.5. Let w be a group-word implying virtual nilpotency. Suppose that K
is a subgroup of a finite group G such that w(G) � K and Pr(K,G) � ε, where ε
is a positive number. There is an (ε, w)-bounded integer e and a w-bounded integer
c such that Ge is nilpotent of class at most c.

We also consider finite groups with a given value of Pr(P,G), where P is a Sylow
p-subgroup of G.

Theorem 1.6. Let P be a Sylow p-subgroup of a finite group G such that
Pr(P,G) � ε, where ε is a positive number. Then G has a class-2-nilpotent normal
p-subgroup L such that both the index [P : L] and the order of [L,L] are ε-bounded.

Once we have information on the commuting probability of all Sylow subgroups
of G, the result is as strong as in P. M. Neumann’s theorem.

Theorem 1.7. Let ε > 0, and let G be a finite group such that Pr(P,G) � ε when-
ever P is a Sylow subgroup. Then G has a nilpotent normal subgroup R of nilpotency
class at most 2 such that both the index [G : R] and the order of the commutator
subgroup [R,R] are ε-bounded.

If φ is an automorphism of a group G, the centralizer CG(φ) is the subgroup
formed by the elements x ∈ G such that xφ = x. In the case where CG(φ) = 1 the
automorphism φ is called fixed-point-free. A famous result of Thompson [33] says
that a finite group admitting a fixed-point-free automorphism of prime order is
nilpotent. Higman proved that for each prime p there exists a number h = h(p)
depending only on p such that whenever a nilpotent group G admits a fixed-point-
free automorphism of order p, it follows that G has nilpotency class at most h [19].
Therefore a finite group admitting a fixed-point-free automorphism of order p is
nilpotent of class at most h. Khukhro obtained the following ‘almost fixed-point-
free’ generalization of this fact [21]: if a finite group G admits an automorphism φ
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of prime order p such that CG(φ) has order m, then G has a nilpotent subgroup
of p-bounded nilpotency class and (m, p)-bounded index. We will establish a prob-
abilistic variation of the above results. Recall that an automorphism φ of a finite
group G is called coprime if (|G|, |φ|) = 1.

Theorem 1.8. Let G be a finite group admitting a coprime automorphism φ of
prime order p such that Pr(CG(φ), G) � ε where ε is a positive number. Then G
has a nilpotent subgroup of p-bounded nilpotency class and (ε, p)-bounded index.

An even stronger conclusion will be derived about groups admitting an elemen-
tary abelian group of automorphisms of rank at least 2.

Theorem 1.9. Let ε > 0, and let G be a finite group admitting an elementary
abelian coprime group of automorphisms A of order p2 such that Pr(CG(φ), G) � ε
for each nontrivial φ ∈ A. Then G has a class-2-nilpotent normal subgroup R such
that both the index [G : R] and the order of [R,R] are (ε, p)-bounded.

Proposition 1.2, which is a key result of this paper, will be proved in the next
section. The other results will be established in § 3–5.

2. The key result

A group is said to be a BFC-group if its conjugacy classes are finite and of bounded
size. A famous theorem of B. H. Neumann says that in a BFC-group the commutator
subgroup G′ is finite [27]. It follows that if |xG| � m for each x ∈ G, then the order
of G′ is bounded by a number depending only on m. A first explicit bound for the
order of G′ was found by J. Wiegold [34], and the best known was obtained in
[16] (see also [28] and [31]). The main technical tools employed in this paper are
provided by the recent results [1, 6–8] strengthening B. H. Neumann’s theorem.

A well-known lemma due to Baer says that if A,B are normal subgroups of a
group G such that [A : CA(B)] � m and [B : CB(A)] � m for some integer m � 1,
then [A,B] has finite m-bounded order (see [30, 14.5.2]).

We will require a stronger result. Here and in the rest of the paper, given an
element x ∈ G and a subgroup H � G, we write xH for the set of conjugates of x
by elements from H.

Lemma 2.1. Let m � 1, and let G be a group containing normal subgroups A,B
such that [A : CA(y)] � m and [B : CB(x)] � m for all x ∈ A, y ∈ B. Then [A,B]
has finite m-bounded order.

Proof. We first prove that, given x ∈ A and y ∈ B, the order of [x, y] is m-bounded.
Let H = 〈x, y〉. By assumptions, [A : CA(y)] � m and [B : CB(x)] � m. Hence there
exists an m-bounded number l such that xl and yl are contained in Z(H) (e.g. we
can take l = m!). Let D = A ∩ B ∩ H and N = 〈D,xl, yl〉. Then H/N is abelian of
order at most l2. Both x and y have centralizers of index at most m in N . Moreover
every element of N has centralizer of index at most m in N . Indeed |dN | � |dA| � m
for every d ∈ D � A ∩ B. So, every element of H is a product of at most l2 + 1
elements each of which has centralizer of index at most m in N . Therefore each
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element of H has centralizer of m-bounded index in H. We conclude that H is a
BFC-group in which the sizes of conjugacy classes are m-bounded. Hence |H ′| is
m-bounded and so the order of [x, y] is m-bounded, too.

Now we claim that for every x ∈ A, the subgroup [x,B] has finite m-bounded
order. Indeed, x has at most m conjugates {xb1 , . . . , xbm} in B, where b1, . . . , bm ∈
B, so [x,B] is generated by at most m elements. Let C be a maximal normal
subgroup of B contained in CB(x). Clearly C has m-bounded index in B and
centralizes [x,B]. Thus, the centre of [x,B] has m-bounded index in [x,B]. It follows
from Schur’s theorem [30, 10.1.4] that the derived subgroup of [x,B] has finite m-
bounded order. Since [x,B] is generated by at most m elements of m-bounded
order, we deduce that the order of [x,B] is finite and m-bounded.

Choose a ∈ A such that [B : CB(a)] = maxx∈A[B : CB(x)] and set n = [B :
CB(a)], where n � m. Let b1, . . . , bn be elements of B such that aB = {ab1 , . . . , abn}
is the set of (distinct) conjugates of a by elements of B. Set U = CA(b1, . . . , bn)
and note that U has m-bounded index in A. Given u ∈ U , the elements
(ua)b1 , . . . , (ua)bn form the conjugacy class (ua)B because they are all different and
their number is the allowed maximum. So, for an arbitrary element y ∈ B there
exists i such that (ua)y = (ua)bi = uabi . It follows that u−1uy = abia−y, hence

[u, y] = abia−y = [a, ba−1

i ][ya−1
, a] ∈ [a,B].

Therefore [U,B] � [a,B]. Let a1, . . . , as be coset representatives of U in A and
note that s is m-bounded. As each [x,B] is normal in B and [U,B] � [a,B], we
deduce that [A,B] = [a,B]

∏
[ai, B]. So [A,B] is a product of m-boundedly many

subgroups of m-bounded order. These subgroups are normal in B and therefore
their product has finite m-bounded order. �

In the next lemma the subgroup B is not necessarily normal. Instead, we require
that B is contained in an abelian normal subgroup. Throughout, 〈HG〉 denotes the
normal closure of a subgroup H in G.

Lemma 2.2. Let m � 1, and let G be a group containing a normal subgroup A and
a subgroup B such that [A : CA(y)] � m and [B : CB(x)] � m for all x ∈ A, y ∈ B.
Assume further that 〈BG〉 is abelian. Then [A,B] has finite m-bounded order.

Proof. Without loss of generality we can assume that G = AB. Set L = 〈BG〉 =
〈BA〉.

Let x ∈ A. There is an m-bounded number l such that x centralizes yl for every
y ∈ B. Since L is abelian, [x, y]i = [x, yi] for each i and therefore the order of [x, y]
is at most l. Thus [x,B] is an abelian subgroup generated by at most m elements
of m-bounded order, whence [x,B] has finite m-bounded order.

Now we choose a ∈ A such that [B : CB(a)] is as big as possible. Let b1, . . . , bm

be elements of B such that aB = {ab1 , . . . , abm}. Set U = CA(b1, . . . , bm) and
note that U has m-bounded index in A. Arguing as in the previous lemma, we
see that for arbitrary u ∈ U and y ∈ B, the conjugate (ua)y belongs to the set
{(ua)b1 , . . . , (ua)bm}. Let (ua)y = (ua)bi . Then u−1uy = abia−y and hence [u, y] =
abia−y ∈ [a,B]. Therefore [U,B] � [a,B].
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Let V = ∩x∈AUx be the maximal normal subgroup of A contained in U . We know
that [V,B] has m-bounded order, since [V,B] � [a,B]. Denote the index [A : V ]
by s. Evidently, s is m-bounded. Let a1, . . . , as be a transversal of V in A. As
[V,B] � L = 〈BA〉 is abelian, we have

〈[V,B]G〉 = 〈[V,B]A〉 =
s∏

i=1

[V,B]ai .

Thus [V,L] = [V,BA] = 〈[V,B]A〉 is a product of m-boundedly many subgroups of
m-bounded order, and hence it has m-bounded order. Write

L = 〈BA〉 � 〈BV ai | i = 1, . . . s〉 � [V,L]
s∏

i=1

Bai .

Thus, it becomes clear that L is a product of m-boundedly many conjugates of
B. Say L is a product of t conjugates of B. Then, every y ∈ L can be written as a
product of at most t conjugates of elements of B and consequently [A : CA(y)] � mt.
Moreover, as A is normal in G and |aB | � m for every a ∈ A, the conjugacy class xL

of an element x ∈ A has size at most mt. Now lemma 2.1 shows that [A,B] � [A,L]
has finite m-bounded order. �

We will now show that if K is a subgroup of a finite group G and N is a normal
subgroup of G, then Pr(KN/N,G/N) � Pr(K,G). More precisely, we will establish
the following lemma.

Lemma 2.3. Let N be a normal subgroup of a finite group G, and let K � G. Then
Pr(K,G) � Pr(KN/N,G/N)Pr(N ∩ K,N).

This is an improvement over [10, theorem 3.9] where the result was obtained
under the additional hypothesis that N � K.

Proof. In what follows Ḡ = G/N and K̄ = KN/N . Write K̄0 for the set of cosets
(N ∩ K)h with h ∈ K. If S0 = (N ∩ K)h ∈ K̄0, write S for the coset Nh ∈ K̄. Of
course, we have a natural one-to-one correspondence between K̄0 and K̄.

Write

|K||G|Pr(K,G) =
∑

x∈K

|CG(x)| =
∑

S0∈K̄0

∑

x∈S0

|CG(x)N |
|N | |CN (x)|

�
∑

S0∈K̄0

∑

x∈S0

|CḠ(xN)||CN (x)| =
∑

S∈K̄

|CḠ(S)|
∑

x∈S0

|CN (x)|

=
∑

S∈K̄

|CḠ(S)|
∑

y∈N

|CS0(y)|.

If CS0(y) �= ∅, then there is y0 ∈ CS0(y) and so S0 = (N ∩ K)y0. Therefore

CS0(y) = (N ∩ K)y0 ∩ CG(y) = CN∩K(y)y0, whence |CS0(y)| = |CN∩K(y)|.
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Conclude that

|K||G|Pr(K,G) �
∑

S∈K̄

|CḠ(S)|
∑

y∈N

|CN∩K(y)|.

Observe that
∑

S∈K̄

|CḠ(S)| =
|K|

|N ∩ K|
|G|
|N |Pr(K̄, Ḡ)

and
∑

y∈N

|CN∩K(y)| = |N ∩ K||N |Pr(N ∩ K,N).

It follows that Pr(K,G) � Pr(K̄, Ḡ)Pr(N ∩ K,N), as required. �

The following theorem is taken from [1]. It plays a crucial role in the proof of
proposition 1.2.

Theorem 2.4. Let m be a positive integer, G a group having a subgroup K such that
|xG| � m for each x ∈ K, and let H = 〈KG〉. Then the order of the commutator
subgroup [H,H] is finite and m-bounded.

A proof of the next lemma can be found in Eberhard [9, lemma 2.1].

Lemma 2.5. Let G be a finite group and X a symmetric subset of G containing the
identity. Then 〈X〉 = X3r provided (r + 1)|X| > |G|.

We are now ready to prove proposition 1.2 which we restate here for the reader’s
convenience:

Let ε > 0, and let G be a finite group having a subgroup K such that Pr(K,G) � ε.
Then there is a normal subgroup T � G and a subgroup B � K such that the indices
[G : T ] and [K : B] and the order of [T,B] are ε-bounded.

Proof of proposition 1.2. Set

X = {x ∈ K | |xG| � 2/ε} and B = 〈X〉.

Note that K \ X = {x ∈ K | |CG(x)| � (ε/2)|G|}, whence

ε|K||G| � |{(x, y) ∈ K × G | xy = yx}| =
∑

x∈K

|CG(x)|

�
∑

x∈X

|G| +
∑

x∈K\X

ε

2
|G|

� |X||G| + (|K| − |X|) ε

2
|G|.

Therefore ε|K| � |X| + (ε/2)(|K| − |X|), whence (ε/2)|K| < |X|. Clearly, |B| �
|X| > (ε/2)|K| and so the index of B in K is at most 2/ε. As X is symmetric
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and (2/ε)|X| > |K|, it follows from lemma 2.5 that every element of B is a product
of at most 6/ε elements of X. Therefore |bG| � (2/ε)6/ε for every b ∈ B.

Let L = 〈BG〉. Theorem 2.4 tells us that the commutator subgroup [L,L] has
ε-bounded order. Let us use the bar notation for the images of the subgroups of G
in G/[L,L]. By lemma 2.3,

Pr(K̄, Ḡ) � Pr(K,G) � ε.

Moreover, [K̄ : B̄] � [K : B] � ε/2 and |b̄Ḡ| � |bG| � (2/ε)6/ε. Thus we can pass to
the quotient over [L,L] and assume that L is abelian.

Now we set

Y = {y ∈ G | |yK | � 2/ε} = {y ∈ G | |CK(y)| � (ε/2)|K|}.

Note that

ε|K||G| � |{(x, y) ∈ K × G | xy = yx}|
�

∑

y∈Y

|K| +
∑

y∈G\Y

ε

2
|K|

� |Y ||K| + (|G| − |Y |) ε

2
|K| � |Y ||K| + ε

2
|G||K|.

Therefore (ε/2)|G| < |Y |.
Set E = 〈Y 〉. Thus |E| � |Y | > (ε/2)|G|, and so the index of E in G is at most

2/ε. As Y is symmetric and (2/ε)|Y | > |G|, it follows from lemma 2.5 that every
element of E is a product of at most 6/ε elements of Y . Since |yK | � 2/ε for every
y ∈ Y , we conclude that |eK | � (2/ε)6/ε for every e ∈ E. Let T be the maximal
normal subgroup of G contained in E. Clearly, the index [G : T ] is ε-bounded.

So, now |bG| � (2/ε)6/ε for every b ∈ B and |eB | � (2/ε)6/ε for every e ∈ T . As
L is abelian, we can apply lemma 2.2 to conclude that [T,B] has ε-bounded order
and the result follows. �

Remark 2.6. Under the hypotheses of proposition 1.2 the subgroup N = 〈[T,B]G〉
has ε-bounded order.

Proof. Since [T,B] is normal in T , it follows that there are only boundedly many
conjugates of [T,B] in G and they normalize each other. Since N is the product of
those conjugates, N has ε-bounded order. �

As usual, Zi(G) stands for the ith term of the upper central series of a group G.

Remark 2.7. Assume the hypotheses of proposition 1.2. If K is normal, then the
subgroup T can be chosen in such a way that K ∩ T � Z3(T ).

Proof. According to remark 2.6, N = 〈[T,B]G〉 has ε-bounded order. Let B0 =
〈BG〉 and note that B0 � K and [T,B0] � N . Since the index [K : B0] and the
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order of N are ε-bounded, the stabilizer in T of the series

1 � N � B0 � K,

that is, the subgroup

H = {g ∈ T | [N, g] = 1 & [K, g] � B0}
has ε-bounded index in G. Note that K ∩ H � Z3(H), whence the result. �

3. Probabilistic almost nilpotency of finite groups

Our first goal in this section is to furnish a proof of theorem 1.3. We restate it here.
Let G be a finite group such that Pr(F ∗(G), G) � ε. Then G has a class-2-

nilpotent normal subgroup R such that both the index [G : R] and the order of the
commutator subgroup [R,R] are ε-bounded.

As mentioned in the introduction, the above result yields a conclusion about G
which is as strong as in P. M. Neumann’s theorem.

Proof of theorem 1.3. Set K = F ∗(G). In view of proposition 1.2 there is a normal
subgroup T � G and a subgroup B � K such that the indices [G : T ] and [K : B],
and the order of the commutator subgroup [T,B] are ε-bounded. As K is normal
in G, according to remark 2.7 the subgroup T can be chosen in such a way that
K ∩ T � Z3(T ). By [20, corollary X.13.11(c)] we have K ∩ T = F ∗(T ). Therefore
F ∗(T ) � Z3(T ) and in view of [20, theorem X.13.6] we conclude that T = F ∗(T )
and so T � K. It follows that the index of K in G is ε-bounded. By remark 2.6 the
subgroup N = 〈[T,B]G〉 has ε-bounded order. Conclude that R = 〈BG〉 ∩ CG(N)
has ε-bounded index in G. Moreover R is nilpotent of class at most 2 and [R,R]
has ε-bounded order. This completes the proof. �

Now focus on theorem 1.4, which deals with the case where γi(G) � K. Start
with a couple of remarks on the result. Let G and R be as in theorem 1.4. The
fact that both the index [G : R] and the order of γi+1(R) are ε-bounded implies
that for any x1, . . . , xi ∈ R the centralizer of the long commutator [x1, . . . , xi] has
ε-bounded index in G. Therefore there is an ε-bounded number e such that Ge

centralizes all commutators [x1, . . . , xi] where x1, . . . , xi ∈ R. Then G0 = Ge ∩ R is
a nilpotent normal subgroup of nilpotency class at most i with G/G0 of ε-bounded
exponent (recall that a positive integer e is the exponent of a finite group G if e is
the minimal number for which Ge = 1).

If G is additionally assumed to be m-generated for some m � 1, then G has
a nilpotent normal subgroup of nilpotency class at most i and (ε,m)-bounded
index. Indeed, we know that for any x1, . . . , xi ∈ R the centralizer of the long
commutator [x1, . . . , xi] has ε-bounded index in G. An m-generated group has
only (j,m)-boundedly many subgroups of any given index j [18, theorem 7.2.9].
Therefore G has a subgroup J of (ε,m)-bounded index that centralizes all commu-
tators [x1, . . . , xi] with x1, . . . , xi ∈ R. Then J ∩ R is a nilpotent normal subgroup
of nilpotency class at most i and (ε,m)-bounded index in G.

These observations are in parallel with Shalev’s results on probabilistically
nilpotent groups [32].
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Our proof of theorem 1.4 requires the following result from [7].

Theorem 3.1. Let G be a group such that |xγk(G)| � n for any x ∈ G. Then
γk+1(G) has finite (k, n)-bounded order.

We can now prove theorem 1.4.

Proof of theorem 1.4. Recall that K is a subgroup of the finite group G such
that γk(G) � K and Pr(K,G) � ε. In view of [10, theorem 3.7] observe that
Pr(γk(G), G) � ε. Therefore without loss of generality we can assume that
K = γk(G).

Proposition 1.2 tells us that there is a normal subgroup T � G and a subgroup
B � K such that the indices [G : T ] and [K : B] and the order of [T,B] are ε-
bounded. In particular, |xB | is ε-bounded for every x ∈ T . Since B has ε-bounded
index in K, we deduce that |xγk(G)| is ε-bounded for every x ∈ T . Now theorem 3.1
implies that γk+1(T ) has ε-bounded order. Set R = CT (γk+1(T )). It follows that R
is as required. �

Our next goal is a proof of theorem 1.5. As mentioned in the introduction, a
group-word w implies virtual nilpotency if every finitely generated metabelian group
G where w is a law, that is w(G) = 1, has a nilpotent subgroup of finite index. A
theorem, due to Burns and Medvedev, states that for any word w implying virtual
nilpotency there exist integers e and c depending only on w such that every finite
group G, in which w is a law, has a nilpotent of class at most c normal subgroup
N with Ge � N [4].

Proof of theorem 1.5. Recall that w is a group-word implying virtual nilpotency
while K is a subgroup of a finite group G such that w(G) � K and Pr(K,G) � ε.
We need to show that there is an (ε, w)-bounded integer e and a w-bounded integer
c such that Ge is nilpotent of class at most c.

As in the proof of theorem 1.4 without loss of generality we can assume that
K = w(G). Proposition 1.2 tells us that there is a normal subgroup T � G and a
subgroup B � K such that the indices [G : T ] and [K : B] and the order of the
commutator subgroup [T,B] are ε-bounded. According to remark 2.7 the subgroup
T can be chosen in such a way that K ∩ T � Z3(T ). In particular w(T ) � Z3(T ).
Taking into account that the word w implies virtual nilpotency, we deduce from
the Burns–Medvedev theorem that there are w-bounded numbers i and c such that
the subgroup generated by the ith powers of elements of T is nilpotent of class at
most c. Recall that the index of T in G is ε-bounded. Hence there is an ε-bounded
integer e such that every eth power in G is an ith power of an element of T . The
result follows. �

If [xi, y1, . . . , yj ] is a law in a finite group G, then γj+1(G) has {i, j}-bounded
exponent (the case j = 1 is a well-known result, due to Mann [24]; see [5, lemma
2.2] for the case j � 2). If the j-Engel word [x, y, . . . , y], where y is repeated j
times, is a law in a finite group G, then G has a normal subgroup N such that the
exponent of N is j-bounded while G/N is nilpotent with j-bounded class [3]. Note
that both words [xi, y1, . . . , yj ] and [x, y, . . . , y] imply virtual nilpotency.
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Therefore, in addition to theorem 1.5, we deduce

Theorem 3.2. Assume the hypotheses of theorem 1.5.

• If w = [xn, y1, . . . , yk], then G has a normal subgroup T such that the index
[G : T ] is ε-bounded and the exponent of γk+4(T ) is w-bounded.

• There are k-bounded numbers e1 and c1 with the property that if w is the
k-Engel word, then G has a normal subgroup T such that the index [G : T ] is
ε-bounded and the exponent of γc1(T ) divides e1.

Proof. By [10, theorem 3.7], without loss of generality we can assume that K =
w(G). Proposition 1.2 tells us that there is a normal subgroup T � G and a sub-
group B � w(G) such that the indices [G : T ] and [w(G) : B] and the order of [T,B]
are ε-bounded. Since K is normal in G, according to remark 2.7 the subgroup T
can be chosen in such a way that w(G) ∩ T � Z3(T ). If w = [xn, y1, . . . , yk], then
[xn, y1, . . . , yk+3] is a law in T , whence the exponent of γk+4(T ) is w-bounded. If
w is the k-Engel word, then the (k + 3)-Engel word is a law in T and the theorem
follows from the Burns–Medvedev theorem [3]. �

4. Sylow subgroups

As usual, Op(G) denotes the maximal normal p-subgroup of a finite group G. For
the reader’s convenience we restate theorem 1.6:

Let P be a Sylow p-subgroup of a finite group G such that Pr(P,G) � ε. Then
G has a class-2-nilpotent normal p-subgroup L such that both the index [P : L] and
the order of the commutator subgroup [L,L] are ε-bounded.

Proof of theorem 1.6. Proposition 1.2 tells us that there is a normal subgroup T �
G and a subgroup B � P such that the indices [G : T ] and [P : B] and the order of
the commutator subgroup [T,B] are ε-bounded. In view of remark 2.6 the subgroup
N = 〈[T,B]G〉 has ε-bounded order. Therefore C = CT (N) has ε-bounded index in
G. Set B0 = B ∩ C and note that [C,B0] � Z(C). It follows that B0 � Z2(C) and
we conclude that B0 � Op(G). Let L = 〈B0

G〉. As B0 � L � Op(G), it is clear that
L is contained in P as a subgroup of ε-bounded index. Moreover [L,L] � N and so
the order of [L,L] is ε-bounded. Hence the result. �

We will now prove theorem 1.7.

Proof of theorem 1.7. Recall that G is a finite group such that Pr(P,G) � ε when-
ever P is a Sylow subgroup. We wish to show that G has a nilpotent normal
subgroup R of nilpotency class at most 2 such that both the index [G : R] and the
order of the commutator subgroup [R,R] are ε-bounded.

For each prime p ∈ π(G) choose a Sylow p-subgroup Sp in G. Theorem 1.6 shows
that G has a normal p-subgroup Lp of class at most 2 such that both [Sp : Lp]
and |[Lp, Lp]| are ε-bounded. Since the bounds on [Sp : Lp] and |[Lp, Lp]| do not
depend on p, it follows that there is an ε-bounded constant C such that Sp = Lp

and [Lp, Lp] = 1 whenever p � C. Set R =
∏

p∈π(G) Lp. Then all Sylow subgroups

https://doi.org/10.1017/prm.2021.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.68


1562 E. Detomi and P. Shumyatsky

of G/R have ε-bounded order and therefore the index of R in G is ε-bounded.
Moreover, R is of class at most 2 and |[R,R]| is ε-bounded, as required. �

5. Coprime automorphisms and their fixed points

If A is a group of automorphisms of a group G, we write CG(A) for the centralizer
of A in G. The symbol A# stands for the set of nontrivial elements of the group A.

The next lemma is well-known (see e.g. [11, theorem 6.2.2 (iv)]). In the sequel
we use it without explicit references.

Lemma 5.1. Let A be a group of automorphisms of a finite group G such that
(|G|, |A|) = 1. Then CG/N (A) = NCG(A)/N for any A-invariant normal subgroup
N of G.

Proof of theorem 1.8. Recall that G is a finite group admitting a coprime auto-
morphism φ of prime order p such that Pr(K,G) � ε, where K = CG(φ). We
need to show that G has a nilpotent subgroup of p-bounded nilpotency class and
(ε, p)-bounded index.

By proposition 1.2 there is a normal subgroup T � G and a subgroup B � K
such that the indices [G : T ] and [K : B] and the order of the commutator subgroup
[T,B] are ε-bounded. Let T0 be the maximal φ-invariant subgroup of T . Evidently,
T0 is normal and the index [G : T0] is (ε, p)-bounded. Since 〈[T0, B]G〉 � 〈[T,B]G〉,
remark 2.6 implies that M = 〈[T0, B]G〉 has ε-bounded order. Moreover, M is φ-
invariant. Set D = CG(M) ∩ T0 and D̄ = D/Z2(D), and note that D is φ-invariant.

In a natural way φ induces an automorphism of D̄ which we will denote by
the same symbol φ. We note that CD̄(φ) = CD(φ)Z2(D)/Z2(D), so its order is
ε-bounded because B ∩ D � Z2(D). The Khukhro theorem [21] now implies that
D̄ has a nilpotent subgroup of p-bounded class and (ε, p)-bounded index. Since
D̄ = D/Z2(D) and since the index of D in G is (ε, p)-bounded, we deduce that G
has a nilpotent subgroup of p-bounded class and (ε, p)-bounded index. The proof
is complete. �

A proof of the next lemma can be found in [14].

Lemma 5.2. If A is a noncyclic elementary abelian p-group acting on a finite p′-
group G in such a way that |CG(a)| � m for each a ∈ A#, then the order of G is
at most mp+1.

We will now prove theorem 1.9.

Proof of theorem 1.9. By hypotheses, G is a finite group admitting an elementary
abelian coprime group of automorphisms A of order p2 such that Pr(CG(φ), G) � ε
for each φ ∈ A#. We need to show that G has a nilpotent normal subgroup R of
nilpotency class at most 2 such that both the index [G : R] and the order of the
commutator subgroup [R,R] are (ε, p)-bounded.

Let A1, . . . , Ap+1 be the subgroups of order p of A and set Gi = CG(Ai) for
i = 1, . . . , p + 1. According to proposition 1.2 for each i = 1, . . . , p + 1 there is a
normal subgroup Ti � G and a subgroup Bi � Gi such that the indices [G : Ti] and
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[Gi : Bi] and the order of the commutator subgroup [Ti, Bi] are ε-bounded. We let
Ui denote the maximal A-invariant subgroup of Ti so that each Ui is a normal
subgroup of (ε, p)-bounded index. The intersection of all Ui will be denoted by U .
Further, we let Di denote the maximal A-invariant subgroup of Bi so that each Di

has (ε, p)-bounded index in Gi. Note that a modification of remark 2.6 implies that
Ni = 〈[Ui,Di]G〉 is A-invariant and has ε-bounded order. It follows that the order
of N =

∏
i Ni is (ε, p)-bounded. Let V denote the minimal (A-invariant) normal

subgroup of G containing all Di for i = 1, . . . , p + 1. It is easy to see that [U, V ] � N .
Obviously, U has (ε, p)-bounded index in G. Let us check that this also holds

with respect to V . Let Ḡ = G/V . Since V contains Di for each i = 1, . . . , p + 1 and
since Di has (ε, p)-bounded index in Gi, we conclude that the image of Gi in Ḡ has
(ε, p)-bounded order. Now lemma 5.2 tells us that the order of Ḡ is (ε, p)-bounded
and we conclude that indeed V has (ε, p)-bounded index in G. Also note that since
N has (ε, p)-bounded order, CG(N) has (ε, p)-bounded index in G. Let

R = U ∩ V ∩ CG(N).

Then R is as required since the subgroups U, V,CG(N) have (ε, p)-bounded index
in G while [R,R] � N � CG(R). The proof is complete. �
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