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ON THE FIELD OF RATIONALITY FOR
AN ABELIAN VARIETY

GORO SHIMURA

The purpose of this paper is to prove the following two facts:

(I) Every generic polarized abelian variety of odd dimension has a model
rational over its field of moduli.

(II)  No generic principally polarized abelian variety of even dimension has a
model rational over its field of moduli.

In both statements and throughout the paper, we assume that the
universal domain is of characteristic 0. We call a polarized abelian variety
generic if its field of moduli has the maximum transcendence degree (i.e.,
n(n + 1)/2 if the variety is of dimension n) over the rational number field.

It is well-known that an elliptic curve has a model rational over its
field of moduli. However, no general result, not even a counter-example,
seems to have been obtained in the higher-dimensional case. In a previous
paper [5], we have shown that a polarized abelian variety with sufficiently
many complex multiplications, under a certain condition, has a model rational
over its field of moduli. We discuss here the other extreme case in which
varieties are generic. A negative answer similar to (II) will be given also
for abelian varieties with a certain type of polarization which is not neces-
sarily principal, and for hyperelliptic curves of even genera.

It is still an open question to obtain a criterion under which an arbi-
trarily given polarized.abelian variety has a model rational over its field
of moduli. The above two statements combined together seem to indicate
a rather complicated nature of the problem, which almost defies conjecture.
A new viewpoint is certainly necessary to understand the whole situation.

Since the proofs are not so long, we do not try to explain the main
ideas at this point, except the following two general remarks.
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(A) The parity of dimensionality intervenes in the problem in the
following way. If o is a holomorphic n-form on an abelian variety of
dimension #, then the automorphism —1 sends o to (—1)"-w. Our proof
of (I) relies heavily on this fact. It is not clear, however, whether or not
this connection of differential forms with the problem is essential.

(B) The existence of a model is closely connected with the problem
of extending a given Galois extension to a larger Galois extension with a
preassigned Galois group. But our proof is rather implicit in this respect.
Actually we could make it more explicit at the cost of lengthening the
paper. It may be interesting to investigate this point in full generality.

1. Preliminaries

Since our treatment is restricted to the case of characteristic 0, we may
assume, without losing generality, that the universal domain is the complex
number field C. Let P= (A, W) be a polarized abelian variety, i.e., a
structure formed by an abelian variety A and a polarization W of A. Con-

sider a structure
Q = (Ay Wv th i ';tm)

with points #;, « + -, ¢, of A of finite order. Then we can define, in a natural
manner, the notion of an isomorphism of @ onto another structure of the
same type, and also the transform Q° of @ by an isomorphism ¢ of a field
of rationality for @ into C. For details, see [1], [2, II, 1.1]. By the field of
modult of @, we mean the subfield % of C which is characterized by the fol-
lowing property:

For every automorphism o of C, Q° is isomorphic to Q if and only if o is the
identity map on k.

Such a field ¥ always exists and is unique for @ (see [1, §2], [2, II, 1.4]).
Obviously the field of moduli depends only on the isomorphism-class of @,
and is contained in any field of rationality for Q. We identify (4, W) with
(4, W, 0), and define the field of moduli of (A, W) to be that of (4, W, 0).
We call any structure isomorphic to @ a model of Q. Our construction of
a model over a desired field is based on the following proposition which
follows immediately from the result of Weil [8].

ProrosiTION 1. Let @ be rational over a finite Galois extension K of a field
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F. Suppose there s, for each o= Gal (K/F), an isomorphism 2, of Q onto Q°,
satisfying 2,. = 250 2, for all o, r€Gal (K/F). Then there is a structure ' rational
over F and an isomorphism p of Q' onto Q rational over K such that p° = 2,0 p
Jor all oeGal (K/F).

ProposITION 2. Let Q be as above, and 2 an isomorphism of Q onto another
structure Q’. Suppose that Q has no automorphisms other than the identity map.
Then 2 is rational over any field of rationality for Q and Q'.

Progf. Let o be an automorphism of C over a field of rationality for
Q and @'. Then 27'02° is an automorphism of @, hence 27102 =1, so
that 2° = 1, q.e.d.

ProrosiTiON 3. If the identity map is the only automorphism of Q, then Q
has a model rational over its field of moduli.

For the proof, see [2, II, 1.5].
Let us now fix P= (A, W), and put, for a positive integer 7,

1) T, ={teAlrt =0}.

Let {#;, - - +,%,} beaset of generators of the module T,, and let K, denote
the field of moduli of @, = (4, W, ¢, -+ -,¢,). Then K, depends only on
P and r; it is independent of the choice of #,---,¢,. Moreover, K, is
normal over K;. Of course K; is the field of moduli of P.

ProposiTION 4. Suppose that P has no automorphisms other than +1. Then,
Jor every integer v >1, Q, has a model rational over K.,.

Proof. If r> 2, this follows immediately from Prop. 3. To prove the
case » = 2, we start with a structure Q, = (4, W, #,, + - -, £,,) rational over K,.
Let G denote the group of all automorphisms a of the module T, such that
a(t) =1t if 2t =0. We see easily that a® =1 for every a€G. Therefore G
is a product of several cyclic groups of order 2. Therefore G = {+1}-H
with a suitable subgroup H not containing —1. (Of course —1 means the
element of G that maps ¢ onto —¢.) Let oeGal (K,/K;). Then there is an
isomorphism 2 of @, onto Q3. By Prop. 2, 2 is rational over K,. We observe
that 27(t°) = a(t) for all teT, with an element « of G. Changing 2 for —2
if necessary, we may assume that eeH. Under the condition a€H, 2 is
unique for o. Putting 2= 2, we can easily verify 2,, =202 for all ¢,
Gal (K,/K;). By Prop. 1. @, has a model rational over K,.
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ProrosiTiON 5. Let P be rational over a field F. Suppose that (i) P has no
automorphisms other than +1; (i) [F: K,NF], with an integer r>2, is odd.
Then P has a model rational over K. NF,

Proof. Put M= K,NnF. Since K,cM, K, is normal over M, so that K,
and F are linearly disjoint over M. For simplicity, let us hereafter write K
for K.. Consider Q@ = (A, W, t,, -+ +,t,) with (A, W) rational over F and
with a set of generators {#;, - --,%,} of T,. Let S be the smallest field of
rationality for @ containing F. Then KcS. By Prop. 4, @ has a model
Q = (A, W/, t{,- -, t;) rational over K. Let 2 be an isomorphism of @ onto
Q’. By Prop. 2, 2 is rational over S. Obviously S is normal over F. Put
L=F-K 1If oeGal(S/L), there is an isomorphism ¢ of @ onto @°. Since
P’ =P, we have ¢ = +1. It follows that [S:L]1<2. Now we divide our
discussion into two cases according to [S: L1

(I) S=L. In this case, Gal(S/F) can be identified with Gal (K/M).
Put P/ = (4, W) and g, = 2"c2"! for every o=Gal(S/F). Then g, is an
isomorphism of P’ onto P”°. By Prop. 2, g, is rational over K. Since g,

= plop for ¢, reGal (K/M), we obtain, by Prop. 1, a model rational over
M.

(IT) [S:Ll1=2. Let G=Gal(S/F), and let = be the generator of
Gal (S/L). Then G/{1, #} can be identified with Gal (L/F) and Gal (K/M).
Take an element v of S so that S=L(v), v*L. Put x, =0v"fv for every
oeG. Then 2,=—1, z,€L, and z,.=xx. Put y,=Nx(,), and z2=N.,x(v2).
Then y? =2°/z and y,.=yiy. Since [L:K] is odd, y,=—1. Let w be
a square root of z. We discuss two cases we K and we¢:K separately.

(I1,) Suppose weK. Put f(o) = y,w/w’. Since y? = (w’/w)?, we have
flo) = 1. Therefore 7 is a cocycle with values 41, so that it must be a
character of G. Furthermore f is non-trivial, since f(z) = —1. Let H be
the kernel of f. Then G = H-{l1, =}, and H can be identified with Gal
(KIM). For every o=H, put p, = 2’2 27'. We see again that g, is an iso-
morphism of P’ onto P’° rational over K, and g, = g o p.. Therefore P’
has a model rational over M.

(II,) Suppose weK. Extend an element of Gal (K/M) to an automor-
phism @ of C. If an element & of G coincides with « on K, then (w)?=zf
= yiu?, so that w* = 4+ yweKw). Therefore K(w)is normal over M. Now,
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for every s G, we can define an element [¢] of Gal (K(w)/M) by '’ = y,w,
and [¢]=0 on K. Then we see easily that ¢ +—[o] is an isomorphism of
G onto Gal (Kw)/M). Put p, =202 for every ¢€G. Then g, is an
isomorphism of P’ onto P’’, rational over K, and

Prower = 20270 = (270 271) o (X7 0 27Y) = pi}o pron.
Therefore, by Prop. 1, we obtain a model rational over M.

2. The odd dimensional case

Let P= (4, W) and P’ = (A, W’) be two polarized abelian varieties of
dimension #z, rational over a field K, and 2 an isomorphism of P onto P/,
not necessarily rational over K. Take non-zero holomorphic differential #-
forms w on A and o’ on A4’, rational over K. Denote by o’ 2 the transform
of " by 2. Then o’ o2 =c-w with a constant ¢. If < is an automorphism
of C over K, we have o’ ol =c"-w, hence o’ o2 o2™!=cc"lo’. Now we
impose the following two conditions on P:

(2) P has no automorphisms other than =+ 1.
(8) = is odd.

Then 7o2'=4+1, and 0’ o (—1) = (—1)"0’ = —’. Therefore ¢ = + ¢, and
X =(c’lc)- 2. It follows that K(c) is the smallest field of rationality for 2
containing K, c?c K, and [K(c) : K]< 2. After this preliminary consideration,
we now prove

ProrposiTiON 6.  Suppose that P= (A, W) satisfies (2) and ‘(3). Let K be a
field of rationality for P, and o an automorphism of K of order 2 such that P° is
isomorphic to P. Then P has a model rational over the fixed subfield of K by o.

Proof. Let F = {zeKl|2’ =1}, and let 2 be an isomorphism of P onto
P°. Take a non-zero holomorphic n-form o on A rational over K, and put
w’0o2=c-o with a constant ¢. Extend ¢ to an automorphism of C, and
denote it againby . Thenwo i’ =¢"+0° and wo2 o2 =c’c-w. Since 2’02
is an automorphism of P, we have 27«2 = +1, and ¢’c = == 1. By the above
consideration, 2 is rational over K(c), and ¢’ K. Now Ng,r(c?) =1, so that
c? = b/b” with an element b of K. Let d be a square root of 4. Suppose
deK. Then c®=(d/d°)? so that ¢ =+ d/d°eK, hence c¢°c =1. Therefore 2
is rational over K, and 2’o2=1. By Prop. 1, P has a model rational over
F. Next suppose de¢K. Then we can find a polarized abelian variety P’
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= (A’, W’') rational over K and an isomorphism g of P to P’ rational over
K(d) such that p*= —p if « is the generator of Gal (K(d)/K). (This is
another application of Prop. 1.) Let o’ be a non-zero holomorphic z-form
on A’ rational over K. Then o’ oz =e¢-w with a constant e such that K(e)
= K(d) and e¢*=—e. Then dlecK. Changing o’ for (d/e)-o’, we may
assume that o’ o g =d-w. Put 2= p’020op". Then 2 is an isomorphism
of P’ onto P’ and ool =0 ocp’olopt=(dcd)-0'. Now (d°c/d)?
= ¢%°[b =1, hence d’c/d =+1. Therefore 2 is rational over K, and
' o (2o 2) =0, hence 2702’ =1. By Prop. 1, P’ has a model rational over
F. This completes the proof.

ProrosiTION 7. Suppose that P satisfies (2) and (3). Let K, be defined for
P oas in §1. Let r be a positive integer > 2, and F a finite normal extension of K,
over which P has a model. Then P has a model rational over K,NF.

Proof. Let H be a 2-Sylow subgroup of Gal (F/K;), and M the subfield
of F corresponding to H. The field F can be obtained from M by succes-
sive quadratic extensions. Therefore, by Prop. 6, P has a model rational
over M. Now K,.cMNK,cM, and [M: K;] is odd. By Prop. 5, P has a
model rational over K,NM, hence over K,NF, q.e.d.

As an immediate consequence, we obtain

ProrosiTioN 8. Suppose that P satisfies (2) and (3). Let v and s be positive
integers such that r > 2 and s>1. Then P has a model rational over K,NK,.

Let us now consider a generic P= (4, W) of even or odd dimension.
Define K, for P as above. The structure of Gal (K,/K;) has been deter-
mined in [2] and [4]. To explain the result, take a basic polar divisor X
belonging to W, let T, = {t€A|rt =0}, and define the symbol ey,,(s, ?)
for (s, )eT, x T, as in Weil [7, § XI]. Let G denote the group of all
automorphisms « of 7', such that

ex,r(a(s), a(t)) = ex,, (s, 1)@

with an integer c(a) prime to #. Further let L denote the algebraic closure
of K;. For every s=Gal (L/K;), take an isomorphism 2 of P onto P°. Then
t —> 271(t°) is an automorphism of T',, which can be shown to belong to G.
Writing it «,, we have

@) 1= e, (t)  (t€T,).
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The element @, of G is uniquely determined for ¢ by (4), up to the factor
—1. Then the map ¢ — +«, gives an injection of Gal (K,/K,) into G/{=+1}.
This much is true for any P, not necessarily generic, whose automorphisms
are 1. Suppose that 7 is prime to the degree of the polarization. (By
the degree of the polarization W, we understand the degree of the isogeny
of A onto its Picard variety associated with X.) Then G is isomorphic to
a group ®, defined by

&, = {(SeGL:,(ZIrZ)|'STS = ¢(S)] with ¢(S)eZ/[rZ},

0o -1,
]=[ }, n = dim (4).
1, 0

If P is generic, the map of Gal (K,/K,) into ®,/{41} is surjective. (For the
proof, see [2, II, §7], where a more general result is given with no restriction
on 7, nor on the type of polarization. See also [4, 9.5, 9.8].)

ProrposiTioN 9. Suppose P is generic. If v and s are relatively prime, and rs
is prime to the degree of the polarization, then K,NK, = K.

Proof. 1t can easily be seen that &,, =®, x ®,, and K,, as a subfield
of K.,, corresponds to the subgroup {#1} x &, of ®,,, and K to ®, x {1},
hence K, NK; = K.

(Note that [K,, : K,K,]= 2 if both » and s are >2.)
Combining Prop. 9 with Prop. 8, we obtain

THEOREM 1. Every generic polarized abelian variety of odd dimension has a
model rational over its field of moduli.

3. The even dimensional case

Let 9. denote the Siegel upper half space of degree #, i.e., the set of
all complex symmetric matrices with positive definite imaginary parts. Let
d be a diagonal matrix of degree n whose diagonal elements are non-zero
rational integers with no common divisors other than +1. For each z€9,,
we consider an (n X 2n)-matrix

2z) = (z 9)

and a lattice L(z) in C" generated by the column vectors of 2(z). Then the
complex torus C*/L(z) has a structure of an abelian variety. Moreover, we
obtain a Riemann form &, on it by
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2.(Q@)e, 2)y) = ‘2dy (@, y ER*™),
0 —o
4= .
) 0
Here we consider the elements of R?* as column vectors. Each point z of
$» determines in this way an isomorphism class of polarized abelian varieties

over C. We take any model in the class, and call it P, = (4,, W.). The
degree of W, coincides with det (4).

It is well-known that an arbitrary polarized abelian variety P is isomor-

o

phic to P, for some § and z; the invariant factors of 6 are completely de-
termined by P; z is unique for P modulo a certain discontinuous group
commensurable with Sp (2x, Z).

Now we assume that » is even, and put # =2m. Furthermore we
consider the following condition on the type of polarization.

(6) Each invariant factor of & occurs with an even multiplicity. In other words,
there exist two elements a and B of GLn(Z) such that adf = [g 2] with a diagonal
matrix d of size m.

If this is satisfied, we may assume, by transforming 4 by [z(‘)x g , that
o itself is of the form l:g 2:'

ProposrTioN 10.  Suppose that 6 = l:g 2] with a diagonal matrix d of size

m. Let j= [(1) —%)”‘], and let 9 be the set of all 2€9, such that jz = — 2°;.
Then, for every z€9), there is an isomorphism 2 of P, onto P} such that 2o 2 = — 1,

Here and henceforth, p denotes the complex conjugation.

Proof. Let f be a holomorphic map of C* onto A, which induces an
isomorphism of C"/L(z) onto A,. Then we can define a holomorphic map
f' of C™ onto A% with kernel L(z)* by f'(u) = f(u?)® for usC". Suppose
2€9. Then

i 0
ﬁmw=m—wf,f=[ }
0 7

Since L(z)* = L(— 2*), the automorphism of C" obtained from j gives an
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isomorphism of C"/L(z) onto C"/L(z)’. Therefore we can define an isomor-
phism 2 of A, onto A by A(f(u)) = f'(ju) for u€C". Then

2(f(u) = 2(f()) = f'(ju’) = f(ju),

so that 2°(A(f(n) = 2°(f'(ju)) = f(j°u) = — f(u), hence o2 = —1, Let X be
a polar divisor of A, corresponding to @, with respect to f. Define the
symbol ey, y(s, t) as in Weil [7, § XI] for every positive integer N. By [6,
p- 25, (7)], we have

ex,n(f(u), f(v) = exp[— 2ri- N-@,(u, v)] (4, v&€ N7'L(2)).
Applying p to this relation ,we obtain
exe . n(f' (), f/(v) = exp[2ni- N-0@,(u, v°)] (u, ve N"1L(—2).
Put S = [— %)” ?n] u=02(—2"x, v=2(—2")y with x, ye R*». Then u’=0(z)Sx,
v* = (2) Sy, so that
O, (uf, v*) = 'x-'SASy = — ‘xdy = — D, (u, v), w = — 2",
Therefore
exe,w(f'(u), f'(v) = exp[— 2ni+ N- @y (u, v)].

This implies that X* is a divisor of A{ corresponding to @, with respect to

f'. Since j-2(z) =Q(—2°]" and ‘J’4]' = 4, we see that 21 sends W, onto
we, q.ed.

ProrosiTioN 11.  The set 9 of Prop. 10 is non-empty. Moreover, let g be a
holomorphic function defined on a connected domain D contained in H,. If g =0 on
a non-empty open subset of DNY), then g is identically O on D.

Proof. It can easily be verified that every point z of 9 can be written

in the form
v e
2=
b —a

with complex matrices ¢ and & of size m such that ‘a=a, ‘" =b. Con-
versely, such a z, whose imaginary part is positive definite, belongs to 9.

If we put a=2+ iy and b =7 + is with real matrices x, ¥, 7, s, then the
conditions become as follows:
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y s|. e .
{ } is positive definite.
tg y
Therefore 9 is non-empty. QOur second assertion follows from the following
well-known facts:

(i) A holomorphic function k(z) in one complex variable ¢ is identically
0, if h(x) = 0 for all real =.

(i1) A holomorphic function k(z, 2') in two complex variables z and
2’ is identically 0, if k(z, 2°) = 0 for all complex z.

Of course the function in each case must be defined on a connected
domain for which the condition 4(x) =0 or A(z, 2°) = 0 is meaningful.

Prorosition 12. If P, with 2€9), has no automorphisms other than =+ 1,
then P, has no model rational over its field of moduli.

Proof. Since P, is isomorphic to P, the field of moduli of P, is con-
tained in R. Assume that P, has a model P rational over R, and let ¢ be
an isomorphism of P onto P,, Then 27'o pfo p*!, with 2 as in Prop. 10, is
an automorphism of P,, so that 271o g?o g™ = 41, hence 2 = & o £~1. But
this contradicts the equality 2”02 = —1.

THEOREM 2. Let P be a generic polarized abelian variety of even dimension.
If the polarization satisfies the condition (5), then P has no model rational over its
Sield of moduls.

Proof. As mentioned above, there is a discrete subgroup I' of Sp(2x, R)
such that P, is isomorphic to P, if and only if 7(z) =w for some 7er.
Moreover $,/I" is isomorphic to a Zariski open subset V of a projective
variety. Let ¢ be a holomorphic map of $, onto V which induces an iso-
morphism of $./[" onto V. By [3], we can take V and ¢ so that the follow-

ing conditions are satisfied:

(1) Vs defined over the rational number field Q;
(i1)  Q(¢(2) us the field of moduli of P, for every 2€9,;
(iii) For an automorphism o of C, P, is isomorphic to Py if and only if

»(z) = p(w).

Thus P, is generic if and only if ¢(z) is generic on V over Q. Therefore if
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P, and P, are generic, there is an automorphism ¢ of C such that P, is
isomorphic to P;. For this reason and by virtue of Prop. 12, to prove our
theorem, it is sufficient to find a generic P, with z in 9. This can be done
as follows. Let S be the set of all homogeneous polynomials with rational
coefficients viewed as functions in the projective space in which V is situated.
Let S’ be the subset of S consisting of all the f€S such that fe¢ is not
identically 0. Put, for each feS’,

Xy = {2€9|f(p(z)) = 0}.

Then X, is a closed subset of 9, which contains no non-empty open subset
of 9 by Prop. 11. Since S’ is a countable set, 9 cannot be covered by
the X;. Therefore 9 has a point z for which f(¢()#0 for all feS’.
Then ¢(z) is generic on V over Q, q.e.d.

A counter-example of the same nature can be obtained also for hyperel-
liptic curves of even genera. In fact consider a hyperelliptic curve U of
genus m — 1 defined by

m
y*=aw" + 3 (a@n T+ (= Draian), an =1,
r=

where @, is a real number and a, « + -, a,-; are complex numbers. Suppose
m is odd. Then we can define a birational map ¢ of U onto U’ by

pr, y) = (—a™, i-xz7my).

We see that ## o pmaps (x, y) onto (x, —y). Take the «, so that ay, a, - - -,
G-y, G5, -+« +,ah-, are algebraically independent over Q. Then U has no
automorphisms other than the obvious two. Therefore, for the same reason
as in the proof of Prop. 12, U cannot have a model rational over R. Thus
waobtain

TuEOREM 3.  No generic hyperelliptic curve of even genus has a model rational
over its field of moduli.
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