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Abstract

Consider a sequence {Xk, k ≥ 1} of random variables on (−∞, ∞). Results on the
asymptotic tail probabilities of the quantities Sn = ∑n

k=0 Xk , X(n) = max0≤k≤n Xk , and
S(n) = max0≤k≤n Sk , with X0 = 0 and n ≥ 1, are well known in the case where the
random variables are independent with a heavy-tailed (subexponential) distribution. In
this paper we investigate the validity of these results under more general assumptions.
We consider extensions under the assumptions of having long-tailed distributions (the
class L) and having the class D ∩ L, where D is the class of distribution functions with
dominatedly varying tails. Some results are also given in the case where Xk , k ≥ 1, are
not necessarily identically distributed and/or independent.
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1. Introduction

The asymptotic tail behavior of sums of heavy-tailed random variables has been studied
by many authors. Recent applications cover areas from importance sampling [3], where
tail probabilities of sums are estimated, and queueing systems [5], [23], to nonparametric
regression [16].

Although there does not seem to be general agreement on the terminology, a common feature
of heavy-tailed random variables X (or the corresponding distribution function F ) which satisfy
F(x) = P{X > x} > 0, for any x ∈ (−∞, ∞), is the property E exp{γX} = ∞, for
any γ > 0.

Early asymptotic results for the tail probability of the convolution of random variables with
a regularly varying tail distribution (denoted by F ∈ RV), i.e. for which there exists an α > 0
such that

F(tx) ∼ t−αF (x), t > 0,

are due to Feller [9]. Here and henceforth, all limiting relationships are for x → ∞ unless
stated otherwise; by using the symbol ‘∼’ we mean that the ratio of the two sides tends to 1.
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The study of the asymptotic behavior of tail sums was (see [13] and references therein) sub-
sequently extended to the class of subexponential distributions, S. By definition, a distribution
function F on [0, ∞) is defined to be subexponential (denoted by F ∈ S) if

F
∗2

(x)

F (x)
→ 2, (1.1)

where F
∗2

(x) = P{X1 + X2 > x} is the tail probability of the convolution of two indepen-
dent and identically distributed (i.i.d.) random variables with distribution function F . More
generally, a distribution function F on (−∞, ∞) is said to be subexponential if F+(x) =
F(x) 1{0≤x<∞} is subexponential, where 1{·} is the indicator function.

In this case it is possible to prove basic results, for example the fact that (1.1) implies that

F
∗n

(x)

F (x)
→ n, for n ≥ 2, (1.2)

for random variables on the real line; see, e.g. [10], [15], and [22]. For background information
on subexponentiality and its applications, the reader is referred to [2], [4], [8], [18].

An important reason why subexponential distributions play a role in the fields of applied
probability and risk theory is that, for a sequence of i.i.d. random variables with common
distribution F ∈ S, from (1.2) it holds, for each n ≥ 2, that

P

{ n∑
k=1

Xk > x

}
∼ P

{
max

1≤k≤n
Xk > x

}
,

which makes it clear that the class S is useful in modeling large losses.
The class S is related to several other classes of functions. A well-known result is the inclusion

S ⊂ L, where L is the class of long-tailed distribution functions F satisfying F(x +a) ∼ F(x),
for a ∈ R. In this case, convergence is uniform on compact subsets of R.

There is a connection with functions of dominated variation as well: the inclusion
D ∩ L ⊂ S. We write F ∈ D if the tail function F is of dominated variation, i.e. if
lim supx→∞ F(ax)/F (x) < ∞, for 0 < a < 1. Convolution tails for dominatedly varying
distributions were studied by Tang and Yan [20].

We use the following notation. For a sequence {Xk, k ≥ 1} of random variables with
distribution functions on (−∞, ∞), using the convention X0 = 0, we write

X(n) = max
0≤k≤n

Xk, Sn =
n∑

k=0

Xk, S(n) = max
0≤k≤n

Sk.

In this paper, under the assumption that the random variables Xk , k ≥ 1, have heavy-tailed
distribution functions, we aim to formulate the asymptotic relations

P{S(n) > x} ∼ P{X(n) > x} ∼ P{Sn > x} ∼
n∑

k=1

Fk(x). (1.3)
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2. The case of independent random variables

Using the Pollaczek–Spitzer identity, Sgibnev [19] studied the asymptotic behavior of the
tail probability of S(n) in the case of i.i.d. summands. In particular, when F ∈ S, he proved
that P{S(n) > x} ∼ nF(x). Using a quantile inequality for Sn from [17], a simplified proof of
this equivalence was given in [14]. See also [13, Theorem 3.1] for the i.i.d. case.

Since (1.2) holds for distribution functions F ∈ S, we have

P{S(n) > x} ∼ P{Sn > x} ∼ nF(x).

Below we give a new proof which avoids the use of complicated technical results and is
valid for nonidentically distributed random variables as well.

Theorem 2.1. Suppose that Xk , k = 1, . . . , n, are independent random variables with distri-
bution functions F1, . . . , Fn on (−∞, ∞).

(i) If Fi ∈ L, for i = 1, . . . , n, then P{S(n) > x} ∼ P{Sn > x}.
(ii) Suppose that the convolution Fi ∗ Fj is a member of S, for all 1 ≤ i, j ≤ n, and one of

the following conditions holds:

(iia) there exists a c such that P{Xi > c} = 1, for 1 ≤ i ≤ n,

(iib) Fi ∈ L for i = 1, . . . , n.

Then the asymptotic relations in (1.3) hold.

For every real number x we write x+ = x ∨ 0 = max{x, 0}. To prove Theorem 2.1 we need
the following lemma.

Lemma 2.1. The following statements hold.

(i) If F1, F2 ∈ L then F1 ∗ F2 ∈ L.

(ii) If Xi ≥ 0 almost surely for i = 1, . . . , n and Fi ∗ Fj ∈ S for all 1 ≤ i, j ≤ n, then
Fk ∈ S and F1 ∗ F2 · · · ∗ Fk ∈ S for 1 ≤ k ≤ n, and P{Sn > x} ∼ ∑n

k=1 Fk(x).

(iii) If F1, F2 ∈ L then P{X+
1 + X2 > x} ∼ P{X1 + X2 > x}.

Proof. Part (i) is from [6]; see also [14]. The convolution closure of S is from [7]. The other
results of parts (ii) and (iii) are from [11] and [10], respectively.

Proof of Theorem 2.1. We use the notation f (x) � g(x) to mean lim sup f (x)/g(x) ≤ 1,
and define the reverse relation in the natural way. We use induction to prove that

P{S(n) > x} ∼ P{Sn > x}. (2.1)

Suppose that Fi ∈ L, for i = 1, . . . , n, and that (2.1) holds for all values of subscript less than
or equal to n − 1. The inequality P{S(n) > x} � P{Sn > x} is trivial, so we only need to find
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an upper estimate. Note that

P{S(n) ≥ x} =
n∑

k=1

P{S0 ≤ x, . . . , Sk−1 ≤ x, Sk > x}

≤
n∑

k=1

P{Sk−1 ≤ x, Xk + Sk−1 > x}

=
n∑

k=1

[P{Sk > x} − P{Sk−1 > x} + P{Sk−1 > x, Sk ≤ x}]

= P{Sn > x} +
n∑

k=1

P{Sk−1 > x, Sk ≤ x}.

Since the class L is closed under convolution by Lemma 2.1(i), we may apply Lemma 2.1(iii)
to find that

P{Sk−1 > x, Xk + Sk−1 ≤ x} = P{Sk−1 + X+
k > x} − P{Sk−1 + Xk > x} = o(P{Sk > x}).

Hence,

P{S(n) ≥ x} ≤ P{Sn > x} + o

( n∑
k=1

P{Sk > x}
)

. (2.2)

Since P{S(k) > x} is nondecreasing in k for all x, using the induction hypothesis P{Sk > x} ∼
P{S(k) > x} for k ≤ n − 1 it follows that

o

( n∑
k=1

P{Sk > x}
)

= o(P{Sn > x}) + o(P{S(n) > x}).

Combining this with (2.2) gives P{S(n) ≥ x} � P{Sn ≥ x}, completing the proof of part (i).
In order to prove part (ii) under the assumption given by part (iia), note that (2.1) holds,

since the assumption Fi ∗ Fj ∈ S, for all 1 ≤ i, j ≤ n, implies that Fi ∈ S ⊂ L (consider
Lemma 2.1(ii) applied to Xi − c).

Next we prove part (ii) under the assumption given by part (iib). Note that application of
Lemma 2.1(iii) gives P{X1 +X2 > x} ∼ P{X+

1 +X+
2 > x}, which implies that the distribution

function of X+
1 + X+

2 is subexponential (since the tail is asymptotic to P{S2 > x}). Using
part (iia) above, the right-hand side of (2.1) is asymptotic to

2∑
k=1

P{X+
k > x} =

2∑
k=1

P{Xk > x}.

The proof for n > 2 follows by induction.
In view of Lemma 2.1(ii) and P{X(n) > x} = 1 − ∏n

k=1(1 − Fk(x)) ∼ ∑n
k=1 Fk(x), the

proof is complete.

3. The case of negatively associated random variables

A finite family of random variables {Xk, 1 ≤ k ≤ n} is said to be negatively associated
(NA) if, for every pair of disjoint subsets A1 and A2 of {1, 2, . . . , n},

cov{f1(Xk1 , k1 ∈ A1), f2(Xk2 , k2 ∈ A2)} ≤ 0,
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whenever f1 and f2 are coordinatewise increasing such that the covariance exists. An infinite
family is NA if each of its finite subfamilies is NA.This dependence structure was first introduced
in [1] and [12].

Theorem 3.1. Suppose that the random variables Xk , k = 1, . . . , n, are NA with distribution
functions

Fk ∈ D ∩ L, k ≥ 1,

and there exists a constant c > −∞ such that P{Xk > c} = 1, k = 1, . . . , n. Then (1.3) holds.

Wang and Tang [21] established the same result under the additional conditions that
X1, . . . , Xn are identically distributed and E Xr

1 < ∞, for some r > 1.
A closer look at the proof of Theorem 3.1 shows that it is sufficient to assume the asymptotic

version of the NA property given below, because the inequalities need to be satisfied for
large values of x only. A finite family of random variables {Xk, 1 ≤ k ≤ n} is said to be
asymptotically NA if there exists a constant c0 such that, for every pair of disjoint subsets A1
and A2 of {1, 2, . . . , n},

cov{f1(Xk1 , k1 ∈ A1), f2(Xk2 , k2 ∈ A2)} ≤ 0,

for functions f1 and f2 which have support (c0, ∞) and are coordinatewise increasing such
that the covariance exists.

Proof of Theorem 3.1. The proof consists of three parts.

(i) We start by proving that P{Sn > x} ∼ ∑n
k=1 Fk(x), which amounts to a conjunction of the

two asymptotic relations

P{Sn > x} �
n∑

k=1

Fk(x) and P{Sn > x} �
n∑

k=1

Fk(x). (3.1)

Choose functions ak(x) ↑ ∞ such that Fk(x ± ak(x)) ∼ Fk(x), for k = 1, . . . , n. It follows
that, with a(x) = min1≤k≤n ak(x),

Fk(x ± a(x)) ∼ Fk(x), k = 1, . . . , n. (3.2)

Note that

P{Sn > x} ≥ P{Sn > x, X(n) > x + a(x)}

≥
n∑

k=1

P{Sn > x, Xk > x + a(x)}

−
∑

1≤k<l≤n

P{Sn > x, Xk > x + a(x), Xl > x + a(x)}

=: J1 − J2.

Since P{Xk > c} = 1, for k = 1, . . . , n, it holds for x sufficiently large that

J1 ≥
n∑

k=1

P{Sn − Xk > −a(x), Xk > x + a(x)} =
n∑

k=1

Fk(x + a(x)).
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In view of (3.2), we have J1 �
∑n

k=1 Fk(x). Using the NA property, it follows that

J2 ≤
∑

1≤k<l≤n

P{Xk > x + a(x), Xl > x + a(x)} ≤
∑

1≤k<l≤n

F k(x + a(x))F l(x + a(x));

hence, J2 = o(
∑n

k=1 Fk(x)). This proves the first relation in (3.1).
To prove the second relation in (3.1) in terms of the function a(x) in (3.2), we derive

P{Sn > x} ≤ P

{ n⋃
k=1

Xk > x − a(x)

}
+ P

{
Sn > x,

n⋂
k=1

[Xk ≤ x − a(x)]
}

≤
n∑

k=1

P{Xk > x − a(x)}

+ P

{
Sn > x,

n⋃
k=1

[
Xk >

x

n

]
,

n⋂
k=1

[Xk ≤ x − a(x)]
}
.

By the choice of the functiona, the first term on the right-hand side is asymptotic to
∑n

k=1 Fk(x).
Clearly, the second term is dominated by

∑n
k=1 P{Sn −Xk > a(x), Xk > x/n}. Using the NA

property, it follows that this expression is further dominated by

n∑
k=1

P{Sn − Xk > a(x)} P

{
Xk >

x

n

}
= o

( n∑
k=1

Fk(x)

)
,

the last equality being true since Fk ∈ D, for 1 ≤ k ≤ n. This proves the second relation
in (3.1).

(ii) Next we prove that

P{X(n) > x} ∼
n∑

k=1

Fk(x).

The inequality P{X(n) > x} ≤ ∑n
k=1 Fk(x), for all x, is trivial. To prove the reverse relation,

by the NA property we have

P{X(n) > x} ≥
n∑

k=1

P{Xk > x} −
∑

1≤k �=l≤n

P{Xk > x, Xl > x} ∼
n∑

k=1

Fk(x).

(iii) Finally we prove (2.1). Note that part (i) of this proof implies that

P{S(n) > x} ≤ P

{ n∑
i=1

X+
i > x

}
�

n∑
i=1

P{X+
i > x} =

n∑
i=1

F i(x).

Since P{S(n) > x} ≥ P{Sn > x}, the proof is complete.
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