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Abstract

We characterize the boundedness and compactness of weighted composition operators between weighted
Banach spaces of analytic functions H? and H2°. We estimate the essential norm of a weighted compo-
sition operator and compute it for those Banach spaces H? which are isomorphic to ¢y. We also show
that, when such an operator is not compact, it is an isomorphism on a subspace isomorphic to cg or £u.
Finally, we apply these results to study composition operators between Bloch type spaces and little Bloch

type spaces.

2000 Mathematics subject classification: primary 47B38; secondary 30D45, 46E15.

1. Introduction

Weighted Banach spaces have been widely studied. These spaces appear, in a natural
way, in the study of the increase of analytic functions. See, for example [1, 14, 15],
and references therein. In [2, 3], Bonet, Domaiiski, Lindstrom and Taskinen studied
composition operators between weighted Banach spaces of analytic functions. This
class of operators have been considered as defined on different classes of Banach
spaces of analytic functions. See, for example, the papers of Shapiro [20, 21], the
survey of Jarchow [11] and the monograph of Cowen and MacCluer [7].

Weighted composition operators C,,, (see Section 2 for the definition) have been
studied by different authors. For example, it is well known that all isometries of the
Hardy spaces H? (D) for 1 < p < oo, p # 2, are weighted composition operators (see
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[7, 10]). In this paper, we deal with the boundedness and compactness of weighted
composition operators between the weighted Banach spaces of analytic functions H?
and H> (see Section 2 for the definitions). We estimate the distance of a weighted
composition operator to the space of compact operators (the so-called essential norm)
and compute this distance for those Banach spaces H? which are isomorphic to co.
We also give some properties of these operators when they are not compact. Namely,
we show that they act as isomorphisms on subspaces isomorphic to ¢y or £,. This
property was obtained in [6] in the case of H*. In particular, we have that every
weakly compact weighted composition operator between the Banach spaces H? and
H_* is compact.

In the final section, we apply our previous results to study composition operators
between Bloch type spaces 48, and little Bloch type spaces Qg , including the Bloch
space (p = 1) and spaces of analytic Lipschitz functions (0 < p < 1) (see [5, 23, 24]).
We characterize the boundedness and compactness of a composition operator C, from
#, into B, (from .%2 into 932), compute its essential norm and show that it is
either compact or an isomorphism on a subspace isomorphic to £, (¢o). The results
we present in this section include previous ones due to Madigan [16], Madigan and
Matheson [17] and Montes-Rodriguez [18].

This paper is organized in six sections. In Section 2, we summarize preliminaries
on the spaces H® and H>. Section 3 and Section 4 are devoted to the boundedness and
compactness of weighted composition operators. In Section 5 we study properties of
non-compact weighted composition operators. The last section deals with composition
operators between Bloch type spaces.

2. The spaces H? and H° and notations

Let us denote by H (D) the set of analytic functions from D into C. A weight
is a function v : D — R, which is radial (that is, v(z) = v(|z]) for all z € D),
nonincreasing with respect to |z| and continuous. As we have commented, the aim
of this paper is to study weighted composition operators C, , given by C, ,(f) =
Y (f op), where ¢, ¥ € H(D) and ¢(D) < D, when they are considered as operators
between the spaces

H® = {f € H(D) : supv(2)|f ()| < 00 and

€D
H? = { f e HD): lim v@If @ =0 (uniform Iimit)} ,

endowed with the norm ||f ||, := sup,p v(2)|f (2)]. Iflimsup,,,_,, v(z) > O, then H*
is isomorphic to H*® and H? = {0}. On account of this, if lim,;_,, v(z) = 0, we call
v a typical weight.
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Many results on weighted spaces of analytic functions have to be formulated in
terms of the so-called associated weights which are defined by

@) = (sup {If @I : f € HZ, If I, <1))7".

We have that 7 is also a weight. If we take ¥ instead of v, both the spaces H® and H*®
and the norm [} - ||, do not change. We use the following properties of the associated
weights: v(z) < ¥(z); given z € D, the element §, of (H®)* defined by 8,(f) = f (2)
satisfies ||8,]|, = 1/9(z). If v is typical, then 7 is typical and

V@) = (sup{If @I : f € HLIf I, < 1))
A weight v is called essential if there exists a constant C > 0 such that
v(2) £9(z) < Cv(z) foreachz e D.

It is worth pointing out that 7, = v, whenever 0 < p < 00 and v,(z) = (1 — |z]?)?.
In particular, they are essential typical weights.

Let us recall (see [19]) that if v is typical, then (H?)* is isometric to L'(D)/N,
where

N = [g e L'(D): f 2@ f @v(z)dA(z) =0, forall f € H;’°}
D

and dA is the normalized Lebesgue measure on . Moreover, given f € H? and
[g] € L'(D)/N we have that the duality is given by

(L), f) = f 2@f V() dA).
D

We also have that (H,?)** is isometric to H2°, where the inclusion map is the canonical
injection from a Banach space into its bidual.

Finally, we introduce some notations and agreements. If f € H(D), we note
M(f,r) .= sup,_, If (). If f is non-zero, we have that v(z) = M(f, rlisa
weight satisfying ¥ = v. As usual, we denote the norm of H® by || - [l.. We reserve
the letters v and w for weights. When A € RS is the empty set, we take supA = 0.
We always assume that given a weighted composition operator C, y, there exists a
point z such that ¥(z) # 0.

3. Boundedness of weighted composition operators

In this section we characterize the boundedness of weighted composition operators
defined on H® and H?. The proofs in this section are strongly inspired by [3].
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PROPOSITION 3.1. Let v and w be weights. Then the operator C, , : H® — HY
is bounded if and only if sup,.p |V (2)|w(2)/V(¢(z)) < 00. Moreover, the following
holds

" c, w" = sup |‘/’~(Z)| w(z) )
' b U (9(2))
If v is essential, then C, , : H?® — H_.° is bounded if and only if sup,.p |¥ (2)|w(z)/
v(p(z)) < oo

PROOF. Suppose that sup,.p [V (2)|w(z)/(V(p(2))) = oo. Then we can find a
sequence (z,) in D such that |y (z,)|w(z,) > nv(¢(z,)) for all n. For all n, there
exists f, € By such that |f,(¢(z,))| > 1/(29(¢(z,))). We have that

n
C n > n n n n n n — < > =
[Cov 0l Z w1 @I Vfa (0 @] > wan ¥ @)l s > 3
and hence the operator C, y : H* — H.’ is not bounded.

Conversely, if M = sup,p ¥ (2)|w(z)/v(¢(z)) < 00, we have that [ (2)|w(z) <
M7v(¢(z)) for all z € D. Thus

w(2) |Coy (@] = w@ Y @IIf (9(2))]

= W@ i @@l < MiflL.
v(p(2))

So the operator C, 4 : H® — H,° is bounded.
It remains to calculate ||C, 4 |l. On the one hand, the foregoing argument shows
that

W@ w(z)
C —_—
[Covll < sup =5

On the other hand, since (C, 4)*(8,) = ¥ (2)é,(, for each z € D, we have that

a - HCow) @],  lv@I#@)
= {(C. L=
" C‘P-W " " ( W'\l/) ” z ”‘Sz“w ’]}’((p(z))

forall ; € D. O

PROPOSITION 3.2. Let v and w be typical weights. Then the operator C, ,, : H? —
H? is bounded if and only if ¥ € HY and sup, .y | (2)|lw(z)/V(p(z)) < 00. In this
case, the following holds

_ Y @lw()
[Cosll = sup ==y

If the weight v is essential, then C, y : H® — H? is bounded if and only if ¥ € H?
and sup..p |¥ (2)lw(2)/v(p(2)) < oo.
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PROOF. When C, , : H? — H? is bounded we have that (C, ,)** = C,, : H® —
HZ. So, by Proposition 3.1, it is enough to show that ¥ € H?. But this is obvious
from the fact that C, 4 (1) must be in H?.

On the other hand, it suffices to show that C, ,(f) belongs to H? for each f
in H®. So, take f € H? = HY. Given ¢ > 0, there is r, €]0, 1[ such that
(@2)If (2)] < /M whenever |z| > r,. Moreover, there is r; € [r, 1[ such that
w(2) ¥ (2)| < &/ sup ., If ()] whenever |z| > r;. Now, if |¢(2)| > ry, then

¥ (@w(@)

w@)IY @IS (@) = T @) V(@@If (p(2)] < &.

And if |¢(z2)| < r, we have

w@)Y IIf (@) < w@lY ()| sup |f (2)] < e.

lzl<n

Thus w(z)|C, 4 (f )| < € for |z| = r,. O

In Proposition 3.1 and Proposition 3.2, when the weight v is not essential, it is
necessary to work with the associated weight as it was pointed out for composition
operators in [3].

Our next result characterize the functions ¢ and y such that the operator C, ,
is bounded for every weight v. We need the following lemma which is a slight
generalization of [3, Lemma 2.5]. -~

LEMMA 3.3. For any two positive sequences (r,) — 1, (R,) — 1 such that ry <
Ry < rn < Ry <, <R, <--- and for every positive sequence (), there is a
Junction f € H (D) satisfying

M(f’ Rn) = anM(.fa rn)-

PROOF. Take fo = 1. Assume we have already found polynomials f, ... , fa._s
such that

@) |f:(@] < 1/2", for|z| <rnpandk=1,...,n—1,and
(b) M(fi,R\) > M fork=1,...,n— 1, where

k—1 k-1
M, = (M (Zfi, rk) + 1) o +2 (Z Ifilloo + 1) -
i=1 i=1

Take the function f,(z) = A/((1 + £)R, — z), where

A_2Mn(Rn_rn) an £ = R,—r,
- 2m+iIM 4+ 1 - R, 2+ M, + 1)'
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If |z] < r,, then

A A M, 1

£ < < = .
@] < 1+&)R,— |zl “ (1+&)R,—r, 2M,+1 = 2

Moreover, f,l (R,) = A/(eR,) = 2M,. Now, by Runge’s Theorem, we can approxi-
mate f,, on R,D by a polynomial f, satisfying (a) and (b). We define f = Iy
By (a), we have that f is an analytic function. Finally, by (a) and (b), we have that
M(f, R,) = a.M(f, ra). U

THEOREM 3.4. Let ¢, Y be two functions in H(D) such that ¢(D) C D. Then the
Jollowing statements are equivalent

(i) for every weight v the operator C, y is bounded on H°,
(ii) for every typical weight v, the operator C,  is bounded on H?,
(iit) the function yr belongs to H™® and there is a r €10, 1[ such that |p(2)| < |z|
forevery z € Dwith|z| > r.

PROOF. (i) implies (iii). For every weight v, we have that C, , (1) = ¥ belongs
to H®. If ¢ H™, then v(z) = M (¥, |z])~"/? is a weight satisfying ¢ ¢ H™. So
v e H®.

Assume that there is a sequence (z,,) in D such that|z,| — 1and |¢(z,)| > |z.|forall
n. Since ¥ # 0, we take z, such that [ (z,)| # 0. Define r, = |z,| and R, = |e(z.)|.
Without loss of generality we assume that ro < Ry < rp < Ry < nn < Ry <
Take o, = n/j¥(z,)|- By Lemma 3.3, there exists a function f € H(D) such that
M(f,R,) > a,M(f,r,) for all n. Take v(z) = M(f, |z|])~! and, for each n, choose
6, € R such that M(f, R,) = |f (e®¢(z,))|. It is easy to check that C,, ,, is
bounded on H* and that

” Cpo,,ow.llf " = ” Cmﬁ "

for all n, where py, (z) = € z. This implies that

1Cov | = || Carreo. L= W @) (s, (0()))|

MG R)
M(,r) ~ ’

1
M(f, |zl)
= ¥ (za)l

for all n and we have a contradiction.

(iii) implies (i). By [3, Theorem 2.4], the operator C, is bounded for every weight.
Moreover, since v € H™, the pointwise multiplication by i is also bounded. So
C,.y is bounded.

(iii) implies (ii). Bearing in mind Proposition 3.2, since v € H* we have to show
that C, , is bounded on H°. But this is true because (iii) implies (i).
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(ii) implies (iii). This implication can be obtained in a similar way as (i) implies
(iii), noting that the function f of Lemma 3.3 can be taken non-bounded. 0O

In [3], Bonet, Domarniski, Lindstrém, and Taskinen obtained some interesting char-
acterizations of the functions ¢ satisfying the following condition: there is r € JO, 1]
such that |¢(z)| < |z] for every z € D with |z] > r.

The results of this section were obtained for composition operators by Bonet,
Domariski, Lindstrom, and Taskinen in [3].

4. Compactness of weighted composition operators

We now characterize the compactness of weighted composition operators. In fact,
we estimate the essential norm of these operators. Recall that the essential norm of a
continuous linear operator T is defined by

IT), =inf {iT — K} : K is compact}.

Since | T}l = 0 if and only if T is compact, these estimations give us the conditions
in order to get that T is compact.

Define 7; : H® — H° (T, : H® — H®) by T,(f)(z) = f (kz/(k + 1)). By
[3, Theorem 3.3], 7, is a compact operator and [|T;|| < 1 and it is not difficult to
check that T, converges to the identit§ in the strong topology of operators on L(H?).
In particular, we have that ||Id — T;J] < 2. We do not know if ||Id — T;|| tends
to 1. Following the arguments given in [18], we infer that when H? is isomorphic to
o, the sequence (7)) can be replaced by a sequence (L) in order to obtain that the
distance to the identity tends to 1 and keeping the others properties. The existence of
this sequence of operators allows us to compute the essential norm of the weighted
composition operator when the space H? is isomorphic to ¢o. It is worth mentioning
that, in [14, 15], Lusky showed that under quite general assumptions over the weight
v, H? is isomorphic to co.

LEMMA 4.1. Let v be a typical weight such that H? is isomorphic to c,. Then there
exists a sequence of compact operators (L) such that

lim Ly(f) =f foralf € H and lim |7d — Lyl = 1.
n—00 —0C
In fact, for each k, the operator L, is a convex combination of {T, : n > k}.

PROOF. First, we prove that (7;)* converges to the identity in the strong topology of
operators on L((H®)*). So, take [g] € L'(D)/N. We have to show that || (T:)*([g]) —
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[g1ll goesto zero. Fixe > Q, g € [g]. There exists ry such thatj; lg(z)|dA < ¢/6.

So, since v is ponincreasing, if f € Byo, we have that

k
/.z.m 8@ (f (k+lz) 'f‘Z))

By [2, proof of Theorem 4],

z[>ro

v(z)dA < €/3.

lim sup sup {(Id —T) (f) (@) =0.

k=00 f e Boo l2l<n

So, there exists n € N such that if £ > n, then

k
f (k+lz) -f©@

forall f € By~ and we obtain that

k
/mm g if (k+ 12> —-f(@

Thus, if £k > n we have

I(T)" (gD — (&l =fSl‘lgP K(T* (eI~ (8], f )]

k
/zeng(z) (f (k+ 12) —f(z))v(z) dA'

£
sSu < —
p 3 ligll, v(0)

lzl<ro

v(z)dA < €/3.

= sup
feﬂﬂg
= s / g()(f( k ) f(z)) v(2)dA <¢
< su z z) - .
fGBP:g zeD k+1
The rest of the proof is similar to [18, proof of Proposition 2.3]. O

THEOREM 4.2. Let v and w be weights. Suppose that the operator C,  : H* —
HZ is continuous. Then

_ ¥ (D)|w(z)
C 21 —
" 8] "e S rlil} W:glp)r U((O(Z))

If v is a typical weight, then we have

. ¥ (D) w(z)
1 ———F < |C .
R o 9@(2) [l

Moreover, if H? is isomorphic to c,, we have that

' ¥ (D)|w(z)
[ Coy, = tim wonr @)
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PROOF. First, we check the upper estimate. Fixing r € ]0, 1[, we have

ICovll. < |Coy — Cou T = sup swpw@WY @I~ )@

HE® ze
<Li+
where
I := sup sup w()Yy@Id - T)({ ) e@)l
feByw lp@)zr
and

Jrk:= sup sup w(2) ¥ (@)IId - T) (f) (p(2))].

S €Byg lp(lsr

Now we estimate I, and J,;. On the one hand, we have that

Ls sup s B s @)1d - T )
< W(Z)Izrlﬁ%%%-lfzgzw sup 7()|(Id — T ) ()| <2 Sup _ué_z(ipl_(ﬁ;_;ﬂ_
On the other hand, -
Jok £ llwllwfigaw Iigl(ld - TH(f )@
By [2, proof of Theorem 4]
klirgof:gzw sup |(d — T ) ()| =0.
Consequently,
w(2)|¥ (2) .

C <limsupl,; + limsup J,; <2 su —
[Cesll ok T e = ks 5(9(2)

The last inequality implies that

_ w()|¥(2)|
2 —_—
IConl. < lim ,;‘z‘},‘; V(e(2))

When v is a typical weight such that H? is isomorphic to c,, the above arguments
can be followed just replacing the sequence (T;) by the sequence (L) that we got in
Lemma 4.1.
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We now prove the lower estimate of the essential norm. We proceed by contradic-
tion. Assume we can find constants b > ¢ > 0, a compact operator K : H>® — H®
and, for each n, a point z, € D such that |¢(z,)| — 1 and

U(p(zn))

For each n, take a function f, € Bpyo such that |f,(¢(z.)|V(¢(z,)) = (c/b)'/?
and a(n) € N such that |p(z,)1*™ > (c/b)"? and a(n) goes to infinity. Define
8n(2) = "™ f,(z) for all n. Clearly, (g,) is a sequence in Byo and converges to
zero uniformly on the compact subsets of D. So, (g,) converges to zero in the weak
topology of H? and, thus, converges to zero in the weak topology of H>. Since K is
compact, we infer that || K g, |, — 0. Now, we have that

“C(,,,,,—-K|(<c<b§ for all n.

¢> |Gy~ K| 2 [(Cos = K) &a], 2 | Covan], = NKgul-

This inequality implies that

¢ > limsup | Cyyga ), > limsupw (za) 1V (22)]1gn (@ (za))]
n—o0o n—o0

= timsup ZE W@ e 5 0 @) Ifs (0 @)
o0 V(9 (24))

> limsup b (%)1/2 (.C_)m = ¢,

n—-oo b
which is a contradiction. O

Applying Theorem 4.2 we obtain a characterization of weighted composition op-
erators which are compact.

COROLLARY 4.3. Let v and w be weights. Then the operator C, , : H® — HZY is
compact if and only if y € HY® and

lim sup M =0
> lipisr V(9 (2)

When v is essential, v can be replaced by v.

PROOF. Suppose that C, , is compact. Then it is continuous and ¢ = C, ,(1) €
He. Iflim, . sup, .., ¥ (2)|w(2)/v(p(z)) > & > 0, there exists a sequence (z,)
in D such that |¢(z,)| — 1 and |¥(z,)|w(z,) > €V(¢(z,)) for all n. Take, for each
n, a function f, € By~ such that |fn(@(z)(e(z,)) > 1/2 and a(n) € N such
that |¢(z,)|*™ > 1/2 and «(n) goes to infinity. Define g,(z) := z*™ f,(z) for all n.
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Clearly, (g,) is a sequence in By~ and converges to zero uniformly on the compact
subsets of D. Since C, y is compact, it is not difficult to check that || C,, y (g.)]l., — O.
But

[Cov @), = 1V @)l 18n (@ @) w(zn)

1 Y :
> ¥ @)l 10 Gl I (0 @) () = L L @AW €

)23 Tipz)) ~— 4

which is a contradiction.

Conversely, applying Theorem 4.2, it is enough to prove that C, y is continuous
providing that ¥ € HZ® and lim,_,, sup,,,,., [V (2)|w(2)/V(p(z)) = 0. Letr < 1
be such that sup,,,,,.., [¥(2)lw(2)/V(p(z)) < 1. Then sup,q | (2)lw(2)/V(p(2)) <
max{L, [|¥ [l /9(r)}. O

The proof of Theorem 4.2 can be also adapted to show the following result.

THEOREM 4.4, Let v and w be typical weights and suppose that the operator
C,.y : H® —> H? is continuous. Then

. ¥ (2)|w(z) ¥ () |w(z)
limsup =@y = 1Cesl. = 2limsup == 2.

If v is a typical weight such that H? issisomorphic to co, then

lw(z)lw(z)
C = limsup —————.
u (24 " r—»l | |>,- v((o(Z))

COROLLARY 4.5. Let v and w be typical weights. Then the operator C,y : H? —
H? is compact if and only if

¥ (@)]w(z)

ml_” 5@ @) =0 (uniform limit).

When v is essential, V can be replaced by v.

Now we characterize the pairs of analytic functions such that the weighted compo-
sition operator is always compact.

COROLLARY 4.6. Let ¢,  be two functions in H(D) such that p(D) € D. Then
the following statements are equivalent

(i) for every weight v, the operator C, , is compact on H®;
(ii) for every typical weight v, the operator C, , is compact on H?;
(iii) the function r belongs to H™ and the following statements hold
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(a) for every sequence (z,) in D such that ¢(z,) — b with b € T, then we have
¥ (z,) > 0;
(b) there exists ry €10, 1[ such that |¢(2)| < |z| for every z € D with |z]| > rp.

PROOF. (i) implies (iii) and (ii) implies (iii). By Theorem 3.4, ¢ belongs to H®
and satisfies (b).

Assume that (a) is false. Then, we are going to find a typical weight v such that
C,.y is not compact on H? and on HZ°.

Fix 6 > 0. There exist ¢ > 0 and a sequence (z,) in D such that |z,| — 1,
lpz)| = 1, [¥ (@) = ¢, 1zl < |zas1]’ and [2,] < |@(2a41)| for all n. Set r, = |za|.
We define an increasing function u : [0,1) — R, which is equal 1 on [0, r],
u(r,) = 2" and it is affine on each interval {r,_;, r,]. The weight is defined by
v(z) = 1/u(lz]). This weight v is essential (see the proof of [3, Theorem 3.7]). By
(b) and Theorem 3.4, C, , is continuous on Hf and H. On the other hand,

[V @)lv@)  ule@@)) - ulr-) _

>c c =
v(P(z)) ur) - ulr) 2

and C,, is not compact on H?. Moreover, (C, y)* = C,, : H® — H is not
compact. ~

(iii) implies (i). Note that it is enough to show that (i) holds for essential weights.
So, fix an essential weight v. We apply Corollary 4.3. Since i belongs to H™, we
only have to prove that

. W (2)|v(z)
im sup ———— =0
~liol>r V{(@(2))

Take a sequence (z,) in D such that |¢(z,)| — 1. By (b), we assume that |¢(z,)| < |z,],
50 v(|(zn) = v(|za]). This shows that | (z,)v(z,)/v(@(z)) < ¥ (z.)| and, by (a),
we have that | (z,)| goes to zero.

(iii) implies (ii). Again, it is enough to show that (ii) holds for essential weights.
So, fix an essential and typical weight v. We apply Corollary 4.5. We have to prove
that

; I¢(Z)IU(Z)_O
-1 v(p())

Take a sequence (z,,) in D such that |z,| — 1. Without loss of generality, we assume
that either |¢(z,)] — 1 or there exists a constant ¢ < 1 such that |¢(z,)| < ¢ for
all n. If |9(z,)] — 1, by (b), we have that |p(z,)| < |z.l, so v(le(z.)]) = v(lzal).
Thus | (z.)[v(zx) /v(@(z.)) < |¥(z.)]. But, by (a), we have that |y (z,)| goes to

zero. If |o(z,) < c, then | (2,)|v(2,) /v(90(24)) < |¥ loov(za)/v(c), but v(z,) tends
to zero. O
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In [6, Proposition 2.3], the first author and Diaz-Madrigal proved the following
result. A weighted composition operator C, y : H*® — H® is compact if and only if
¥ belongs to H* and for every sequence (z,) in D such that ¢(z,) > b withb € T,
we have that ¥ (z,) — 0. Since the statement (a) of Corollary 4.6 does not imply
statement (b), we have that the fact that C, , : H*® — H* is compact is not equivalent
to the fact that, for every weight v, the operator C, y is compact on H°. On the other
hand, it is worth mentioning that Bonet, Domariski, Lindstrém, and Taskinen proved
that C, : H*® — H®* is compact if and only if, for every weight v, the operator C, is
compact on H* [3, Corollary 3.8].

5. Non-compactness of weighted composition operators

In this section we prove that if a weighted composition operator is not compact,
then it acts as an isomorphism on a big subspace. We give the proof with the litrle
spaces because in the construction of the subspace where C, , is an isomorphism we
have to check that a series converges and it is easier to see this convergence in H>°
than in HY.

THEOREM 5.1. Let v and w be typical weights and suppose that the operator
Coy : H) = H) is continuous. Then C, , is either compact or an isomorphism on a
subspace isomorphic to c,.

PROOF. Suppose that C, , is not compact. Then, by Corollary 4.5, there exist
¢ > 0 and a sequence (z,) in D, with |z,] = 1, such that |} (z,)|w(z,) > cv(p(z,)).
Since the function ¥ belongs to H?, ¥(¢(z,)) — 0 and |¢(z,)| — 1. Thus, by [10,
Corollary, page 204], there exists a subsequence of (¢(z,)) (that we denote in the same
way) which is an interpolating sequence. Moreover, we take a function f,, € Byo such

that |f, (¢ (z.))| > 1/29(@(2x))-
By [22, proof of Theorem III.E.4], there exist a sequence (4;) in H* and a constant

M > 0 such that

he@(zn) = 8xn,  and D l()l <M forallz.
k=1

So fihe € HY. Note that for every sequence (£) in co, Y_,e; &xfxhu belongs to H™.
The fact that this function belongs to H? is not so evident. Given g € L'(D), we have

> ig il < 3 [ Iefuhul vdd < Mgl
k=1 k=1 /D
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In particular, given [g] € L'(D)/N we infer that
> L), fehidl < MILEII.
k=1
Thus, the series ) fh; is weakly unconditionally Cauchy in H?. Therefore, by [8,
page 44], the map T : ¢y — H? given by

T((E))(@ = ) &fe@h(@)
k=1

is well defined, linear and continuous. Further, we define a map S : H,?, — ¢g, by

S(f) = f @)/ (W (@) fa(9(za))). Now, [IS(f)II < 2|if llw/c forall f € HY, hence S
is well defined, linear and continuous. Finally, since So C, y o T = Id,,, C, y is an
isomorphism on the subspace isomorphic to ¢, generated by {f:h;: : k € N}. O

It is worth mentioning that the space H? has the property (V) [9, Examples III.1.4(i)
and Theorem II1.3.4]. That is, for every Banach space Y, each operator T : H — Y
is either weakly compact or an isomorphism on a subspace isomorphic to c,. Bourgain
showed that H* also enjoys the property (V) (see [4]), but we do not know if H° has
it for every weight.

THEOREM 5.2. Let v and w be weights. Suppose that the operator C,, : H*® —
HZ is continuous. Then C, is either compact or an isomorphism on a subspace
isomorphic to €.

Theorem 5.2 was obtained by Bonet, Domariski, and Lindstrém [2] for composition
operators and by the first named author and Diaz-Madrigal for weighted composition
operators defined on H™ [6].

6. Applications to composition operators on Bloch type spaces

In this section, weighted composition operators on H.* are used to solve questions
on composition operators on Bloch type spaces. We begin with some definitions. For
each 0 < p < 00, the Bloch type space is given by

{feH@)wam|v4u <w}

and the little Bloch type space is given by

= [ f eHD): lim If' @ (1 =1z*)’ =0 (uniform limit)] :
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It is a well-known fact that when endowed with the norm
I ll, = f )1 +sup IF'@| (1 -1z,
z€e

%, is a Banach space and ﬂg is a closed subspace of %,. The classical Bloch space
is the space &, and 4 is the little Bloch space. Moreover, for 0 < p < 1, 4, is the
analytic Lipschitz space of order 1 — p. That is, given f € H(D), f € %, if and
only if there exists a constant K > 0 such that |f (z) — f ¢)| < K|z — ¢|'? for all
z,¢ € D [7, Theorem 4.1].

Bloch type spaces are connected to the study of the growth conditions of analytic
functions and [24] is a good survey for results about these spaces. Composition
operators defined on Bloch type spaces have been used by Jarchow and Riedl to
characterize the nuclearity of composition operators between Hardy spaces [12].

We also work with the spaces defined by

B, = [f € H(D):f (0)=0, sup lf'@|(1-1zPP)" < oo}
and
B = [f €HD):f ©®=0, lm If'@| (1 -1z*)" =0 (uniform limit)}.

These spaces are also called Bloch type spaces in the literature.

Consider the weight v,(z) = (1 = |z|”P. It is well known that the weight Vp
is essential, in fact, it can be proved that 7, = v, and, by [15, page 311], H,f: is
isomorphic to ¢,. The map ¢, : g%,, - H,f given by ®,(f) = f’ is an isometry
(onto) and d>p,g,g is an isometry onto Hg . The aim of this section is to apply our
results from the previous sections to Bloch type spaces.

The proof of the following lemma is routine (and probably known), so we omit it.
We have to introduce some terminology. Given Banach spaces X and Y with norms
Il - Il and || - ||, respectively, we denote by X &, Y the Banach space X & Y endowed
with the norm [|(x, )| = llxll; + llyll2.

LEMMA 6.1. Let X and Y be Banach spaces with norms || - ||, and || - || respectively.
IfS:X — X isboundedand K : Y — Y is compact, then

ISs& Kil. = ISl
where S® K : X @, Y - X @, Y is defined by (S ® K)(x, y) = (Sx, Ky).

Given a € D, define

i—«

¢a(z) = 1
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It is straightforward to obtain the following lemma, which together with Lemma 6.1,
allows us to pass the results from 2, to %,,.

LEMMA 6.2. Given a € D, the composition operator Cy, : B, — B, is an
isomorphism, its inverse is Cy_, and Cy, g0 is also an isomorphism onto Qg.

THEOREM 6.3. Let ¢ : D — D be an analytic function.
(i) The operator C, : B, — B, is bounded if and only if

(1 —1zP)°
(1-lp@P)

(ii) Ifg>=p =1, then C,: B, - B, is always bounded.
(iii) The operator C, : By — 2B, is bounded if and only if p € B and

(1= l2F)° < 00
(1-le@P)
(iv) Ifq=p 21, then C,: B) — B, is bounded if and only if ¢ € B).

PROOF. (i). Take @ = ¢(0). By Lemma 6.2, C, : #, — %, is bounded if and
only if Cyop = Cp0 Cy, : B, — HB, is bounded. Since ¢, 0 (0) = 0, Cy_o, is
bounded if and only if C, ., 3, is bounded. Moreover, C,, ., 3, is bounded if and only
if @, 0 Cyopi, © (®,)7": Hy — H;? is bounded. But, ®; 0 Cy 3, © (®,)' =
Co.o0.0a0py and by Proposition 3.1, this weighted composition operator is bounded if
and only if

sup |¢'(2)|
€D

(1= 1zP)’
(1= 1@ 0 0) @F)
A straightforward computation shows that

(kP (=leP)” | | — Iz’
(1=1@a09) @QF) 11— |()|2)

Now, by (2), and the fact that 0 < 1 — |o| < |1 —@p(z)| < | + ||, we infer that (1)
is satisfied if and only if
(1—1z1%)’

— o0
-l @F

(iii). Arguing as in A}he proof of (i), (iii) follows from Proposition 3.2 and noting
that, by (2), ¢ 0 ¢ € &) if and only if ¢ € B).

(1) sup |(#a 0 0)' (2]

2) |6a0¢' @)

sup |¢'(2)]
el
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(i) and (iv). Suppose that ¢(0) = 0. We have that (1 — |z]*)/(1 — |¢(2)]*) < 1.
Moreover, the Schwarz-Pick lemma implies that |¢'(z)] < (1 — o))/ — |z|?).
So,

p-1

1-z]?)’ 1—|z? -
suplgo’(z)l _(___IZ_Q__ < sup (___IZ_'__Z) (1 — |Z|2)q 4 <1,
2eD (1—

lo @FF)" ~ zp \1 - lp(2)|

and we apply (i) and (iii) to finish the proof in this case.
If 9(0) # O, take @ = ¢(0). Then C, ., is bounded. Lemma 6.2 concludes the
proof. O

The boundedness of the operator C, : $, — 98, was studied by Madigan [16],
when p < 1 and by Madigan and Matheson, when p = 1 [17].

THEOREM 6.4. Let ¢ : D — D be an analytic function such that the operator
C,: B, - B, is bounded.
(i) Ifp(0) =0, then the essential norm of C, is given by
(1—1zp)
G|l = hm sup ¢' () -—————.
I6.), =1 sup o'l
(ii) The operator C, is compact if and only if
—1z1?)*
lim sup |¢'(2) ——————— =
r—1 |¢(z)l>r| l - le@)P)’

(i) Ifg>p=1thenC,: %, > Qq is always compact.
(iv) The operator C, is either compact or an isomorphism on a subspace isomor-
phic to £.

PROOF. (i). The map ¥, : .%p @ C > B, givenby W,(f,1) = A+ f isan
isometry and satisfies \Ilq“ 0 G400 © ¥y = (Cy.op1@,., 1dc). So, by Lemma 6.1, we
have that

S, |,

° (d>,,)_1"e = " Co "e’

where C, , : Hu°’° - Hj’:’. Finally, using Theorem 4.2, we have that

(1-1zP?)°
Cow] =1i TERE
Gl =lim sup Il T

|

Note that

S, |, =
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(ii). Take @ = ¢(0) and consider the composition operator C; ., : B, — %,.
By Lemma 6.2, C, is a compact operator if and only if C, ., is compact and Cy ., is
compact if and only if it satisfies

(3) lim sup |(¢a 0 0) (2)] (1= laF)
1 iGon@isr (1= 1@ 00) @)

Using (2), an easy computation shows that (3) is equivalent to

, (1 —12P)’
lim su Q= =
’_’ll(fbaow)g)brl‘p 2| (1 - le@I?)

Now, since ¢, maps circles from D in circles in [, we have that

—1z?)* . — [z’
lim su 2)| ———< =lim sup |¢' (@)} ———5
"“|(¢ao¢)g)|>rl(p | | @Y ""lw(z)1p>r| ‘ ( ~le@I*)"

(iii). By Theorem 6.3, the operator C, : %, — 4, is continuous and it is enough
to show that the injection from %, into 98, is compact. But this injection is the
composition operator with the function v (z) = z and we have that

|Z|2)q 2\9-P
lim sup |¥'(2) —-————— = h sup 1 —|z| =0.
’*"w:(z)ﬁrl I Ilﬁ( ) Uizl> r( )

So, by (ii), Cy is compact.

(iv). If C, is not compact, C, .3, 1S also not compact. So the weighted composi-
tion operator @40 Cy 3, © (P R H>> — H.* is not compact and by Theorem 5.2,
Cy.op18, Must be an isomorphism on a subspace isomorphic to £,. But then, C, has
the same property. O

The compactness of the operator C, : #, — %, was studied by Madigan and
Matheson [17]. Montes-Rodriguez [18] obtained the essential norm of a composition
operator defined on the Bloch space. Let us point out that Shapiro obtained a different
characterization of the compactness of the composition operators C, : 8, — %,,
when 0 < p < 1 (see [21]).

A sufficient condition was obtained in [16, Theorem B] to assure that a compo-
sition operator C, : %, — 9B, is completely continuous (0 < p < 1). Using
Theorem 6.4(iv), we have that C, : 8, — %, is completely continuous if and only if

( ~ [2P)*
lim su Q) ———=
r=1 Itp(z)lp>r v | —lp@*)
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(compare with [16, Theorem B]). Moreover, Theorem 6.4(iv) implies that C, : %,
— 2, is compact if and only C, it is weakly compact. This result was obtained, for
p = q = 1, by Liu, Saksman, and Tylli in [13, Corollary 5].

The proof of Theorem 6.4 can be adapted to obtain the following result.

THEOREM 6.5. Let ¢ : D — D be an analytic function such that the operator
C, : B — B, is bounded.

() Ife(0) = O, the essential norm of C, is given by

1G], = timsup [o/ ] =)
Ple oy, (1 - @
(ii) The operator C, is compact if and only if
2\9
I‘P (z )I ___IZ—I)_ =0 (uniform limit).

le(2)1?)

(iii) Ifqg >p =1, then C, : B) — B} is always compact.
(iv) The operator C, is either compact or an isomorphism on a subspace isomor-
phic to co.

The compactness of the operator C, : B — %° was studied by Madigan and
Matheson [17]. Montes-Rodriguez [18] obtained the essential norm of a composition
operator defined on the little Bloch space. Again, by Theorem 6.5(iv), C, : gé’" - %"
is weakly compact if and only if C, is compact. This result was obtained in [17] for
thecase p =g =1.
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