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Elastoinertial turbulence (EIT) is a chaotic state that emerges in the flows of dilute polymer
solutions. Direct numerical simulation (DNS) of EIT is highly computationally expensive
due to the need to resolve the multiscale nature of the system. While DNS of two-
dimensional (2-D) EIT typically requires O(106) degrees of freedom, we demonstrate
here that a data-driven modelling framework allows for the construction of an accurate
model with 50 degrees of freedom. We achieve a low-dimensional representation of the
full state by first applying a viscoelastic variant of proper orthogonal decomposition
to DNS results, and then using an autoencoder. The dynamics of this low-dimensional
representation is learned using the neural ordinary differential equation (NODE) method,
which approximates the vector field for the reduced dynamics as a neural network. The
resulting low-dimensional data-driven model effectively captures short-time dynamics
over the span of one correlation time, as well as long-time dynamics, particularly the
self-similar, nested travelling wave structure of 2-D EIT in the parameter range considered.

Key words: machine learning, viscoelasticity

1. Introduction
Elastoinertial turbulence (EIT) is a chaotic state resulting from the interplay between
inertia and elasticity, and is suspected to set a limit on the achievable drag reduction in
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turbulent flows using polymer additives (Samanta et al. 2013; Shekar et al. 2019). Direct
numerical simulation (DNS) of EIT is computationally demanding due to the requirement
of resolving small-scale dynamics, which is essential to sustain EIT (Sid et al. 2018).
The dynamics of EIT is fundamentally two-dimensional (2-D) (Sid et al. 2018) and a
2-D numerical simulation of EIT requires O(106) degrees of freedom (DOF), making
the investigation of its dynamics challenging. A reduced-order model (ROM) of EIT
having fewer DOF not only would accelerate the investigation of the dynamics of EIT but
alsomay open the door to developing control strategies to suppress EIT, which would allow
turbulent drag reduction beyond the maximum drag reduction (MDR) limit (Linot et al.
2023b). It is also of fundamental interest for any complex flow phenomenon to know how
many DOF are actually required to describe its dynamics. Specifically, we have recently
shown that the dynamics of 2-D EIT in channel flow is dominated by a self-similar family
of well-structured travelling waves (Kumar & Graham 2024), and a natural question is how
many DOF are required to capture this structure.

In this study, we use data-driven modelling techniques for the time evolution of 2-D
channel flow EIT. We begin by considering the full-state data q, which resides in the
ambient space R

dN and evolves over time according to dq/dt = f (q), where the mesh
resolution and the number of state variables determine the size of dN . The foundation
of the data-driven reduced-order modelling approach applied here is that the long-time
dynamics of a dissipative system collapse onto a relatively low-dimensional invariant
manifold (Hopf 1948; Foias et al. 1988; Temam 1989). By mapping q to invariant manifold
coordinates h ∈R

dh (manifold dimension dh < dN ), we can describe the evolution of h
with a new equation dh/dt = g(h) in these manifold coordinates.

A classical approach to dimension reduction is principal component analysis (PCA)
(also known as proper orthogonal decomposition or POD in fluid dynamics) (Holmes
et al. 2012). However, PCA projects data onto a flat manifold because it is an inherently
linear technique, and thus may not adequately represent the generally non-flat invariant
manifold where data from a complex nonlinear system lies. To capture nonlinear manifold
structure, autoencoders are widely used (Kramer 1991; Milano & Koumoutsakos 2002;
Linot & Graham 2020), which is the approach we pursue here. In high-dimensional
systems, it can be beneficial to first apply PCA for linear dimension reduction, followed
by using an autoencoder for further reduction (Linot & Graham 2023; Young et al.
2023; Constante-Amores et al. 2024). Once a low-dimensional representation of the full
system state is identified, we can proceed with data-driven modelling of the dynamics
to find g. We use the framework, known as ‘neural ordinary differential equations
(NODEs)’ (Chen et al. 2018; Linot & Graham 2022) that represents the vector field g
as a neural network. It is important to note that the Markovian nature and continuous-
time framework inherent to NODEs are well-aligned with the underlying physics of the
nonlinear turbulent dynamics. This framework, which we denote DManD (data-driven
manifold dynamics), has been applied successfully to a wide variety of nonlinear turbulent
dynamics, including Kolmogorov flow, plane Couette flow and pipe flow (Pérez-De-Jesús
& Graham 2023; Linot & Graham 2023; Constante-Amores et al. 2024; Constante-
Amores & Graham 2024). The DManD models have proven capable of accurately tracking
short-term dynamics for at least one Lyapunov time and capturing key statistics of long-
term trajectories, such as Reynolds stresses and energy balance in wall-bounded flows.
Additionally, these models have been used to aid the discovery of new exact coherent
structures (ECSs), where the ECSs are direct solutions of the governing equations and
they have well-defined structures that organize dynamics in chaotic flows (e.g. travelling
waves, periodic orbits) (Linot & Graham 2023; Constante-Amores et al. 2024).
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Figure 1. Framework of VEDManD used to develop a ROM of EIT.

In this study, we develop a data-driven model of EIT in 2-D channel flow. We introduce
the viscoelastic data-driven manifold dynamics (VEDManD) framework, which enables
the construction of low-dimensional models that faithfully capture the short-time tracking
and long-time statistics in the present case using only 50 DOF (figure 1). The remainder
of this article is organized as follows: § 2 outlines the methodological framework, § 3
discusses the results and § 4 concludes with final remarks.

2. Formulation and governing equations

2.1. Direct numerical simulation of EIT
The dimensionless momentum and incompressible mass conservation equations are

∂u
∂t

+ u · ∇u = −∇ p + β

Re
∇2u + 1 − β

Re
∇ · τ p + f (t)ex , ∇ · u = 0, (2.1)

where the non-dimensional velocity and pressure fields are denoted by u and p,
respectively. The unit vector along the streamwise direction is denoted ex . Lengths and
velocities are made non-dimensional using the channel half-width (H ) and the Newtonian
laminar centreline velocity (Uc), respectively. The Reynolds number Re = ρUc H/η,
where ρ and η are fluid density and total zero-shear rate viscosity. The solvent viscosity
is ηs and β = ηs/η. The polymer stress tensor τ p is modelled with the finitely extensible
nonlinear elastic with Peterlin closure (FEN-P) dumbbell constitutive equation:

∂α

∂t
+ u · ∇α − α · ∇u − (α · ∇u)T = −τ p + 1

ReSc
∇2α, (2.2)

τ p = 1
Wi

(
α

1 − tr(α)/b
− I

)
, (2.3)

where α is the conformation tensor, b is the maximum extensibility of the polymer
chains and I is the identity tensor. The Weissenberg number Wi = λUc/H , where λ is the
polymer relaxation time. To ensure numerical stability, we include a small diffusion term
in the evolution equation of the conformation tensor (2.2), whose strength is controlled
by the Schmidt number Sc = η/(ρD), where D is the diffusion coefficient of the polymer
molecules.

We solve the governing equations in 2-D channel flow using no-slip boundary conditions
at the channel walls, y = ±1. The introduction of diffusion requires boundary conditions
for α to evolve (2.2). As has been done elsewhere (e.g. Sid et al. 2018), at the walls, we
solve (2.2) with no diffusion term (i.e. 1/Sc = 0) and use the solution as the boundary
condition on α for (2.2) with finite Sc. We impose periodic boundary conditions in the
flow (x) direction. An external force in the streamwise direction ( f (t)ex ) drives the flow.
This forcing is chosen at each time step to ensure that the volumetric flow rate remains at
the Newtonian laminar value.

Direct numerical simulations are performed using Dedalus (Burns et al. 2020), an open-
source tool based on the spectral method. The channel has a length of 5 units and a
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height of 2 units, and the computational domain is discretized using 256 Fourier and
1024 Chebyshev basis functions with 3/2 dealiasing factor in the streamwise (x) and wall-
normal (y) directions, respectively. We consider a dilute polymer solution (β = 0.97) of
long polymer chains (b = 6400) at Re = 3000, Wi = 35. For polymer additives, such as
polyethylene oxide and polyacrylamide, this value of b corresponds to molecular weights
∼ 300 kDa and ∼ 500 kDa, respectively. The Schmidt number is Sc = 250, consistent with
previous studies (Sid et al. 2018; Kumar & Graham 2024).

2.2. Linear dimension reduction: viscoelastic proper orthogonal decomposition
Due to the very high dimension of the EIT data (≈1.6 × 106), it is desirable to begin the
dimension reduction process with a linear step to reduce to a smaller (but still fairly large)
dimension at which the subsequent nonlinear step will be more tractable (figure 1). To do
so, we use a viscoelastic variant (Wang et al. 2014) of POD (Holmes et al. 2012), which
we will denote ‘VEPOD’. The aim of VEPOD is to find a function ψ(x) that maximizes
the objective function

E{|〈q(x),ψ(x)〉|2} (2.4)

given the constraint 〈ψ(x),ψ(x)〉 = 1, where x denotes the position and 〈·, ·〉 represents
an inner product (further discussed below). The expectation and modulus operations over
the ensemble of data are given by E{·} and | · |, respectively. Here, q(x) is a vector
containing instantaneous state variables and the ensemble we average over is a long time
series.

An appropriate inner product for VEPOD can be found by considering the total
mechanical energy of the fluid, which consists of the kinetic energy contribution (Uk)
from the velocity and the elastic energy contribution (Ue) from the stretching of the
polymer chains. For the FENE-P model, precisely computing the mechanical energy is
challenging because of the limitations introduced by Peterlin’s approximation. However,
an approximate mechanical energy can be given as

Utot = Uk + Ue = 1
2

∫
Ω

{
u · u + 1 − β

ReWi
θ : θ

}
dx, (2.5)

where θ · θ = α/(1 − (tr(α)/b)) (Wang et al. 2014) and Ω denotes domain volume.
For the Oldroyd-B model (b → ∞), (2.5) represents the exact mechanical energy.
Corresponding to this energy definition, an appropriate state variable q(x) is

q = [
u, T

]
, (2.6)

where T = √
(1 − β)/(ReWi)θ is the weighted symmetric square root of the conformation

tensor, which we call the stretch tensor. Consequently, the inner product used in (2.4) can
be defined as

〈q, ψ〉 =
∫

Ω

q(x) ·ψ(x)dx, (2.7)

so that the inner product of q with itself yields 2Utot . Maximization of the objective
function (2.4) gives a self-adjoint eigenvalue problem:∫

Ω

E{q(x)q∗( y)}ψ( y)d y = σψ(x), (2.8)

which leads to an infinite set of eigenmodes {σ j ,ψ j (x)} arranged in decreasing value of
the energy represented by the eigenvalue σ j . The eigenfunctions ψ j (x) are orthonormal
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with the given inner product. The vector of VEPOD coefficients a is given by a j =
〈q(x),ψ j (x)〉. The state variables can be reconstructed using VEPOD modes as

q̃(x) =
da∑

j=1

a jψ j (x), (2.9)

where da represents the number of VEPOD modes used in the reconstruction. To estimate
the VEPOD of a discrete dataset, we arrange the snapshots of the flow state as

Q = [q1, q2, . . . , q Nt
], (2.10)

where qi = q(ti ) and Nt represents the total number of snapshots. The eigenmodes of
VEPOD can be obtained by solving the following discretized eigenvalue problem:

QQ∗Wψ =ψσ , (2.11)

where σ is a diagonal matrix containing the eigenvalues, and W accounts for the numerical
quadrature necessary for integration on a non-uniform grid.

2.3. Non-linear dimension reduction and NODE
After projecting the data to the leading VEPOD modes, we perform a nonlinear dimension
reduction with a ‘hybrid autoencoder’ (Linot & Graham 2020) to determine the mapping
into the manifold coordinates h = χ(a), along with mapping back ã = χ̌(h). This hybrid
autoencoder uses two neural networks to learn the corrections from the leading VEPOD
coefficients, as h = χ(a; θE) = UT

dh
a + E(UT

da
a, θE), here Uk ∈R

dN ×k is a matrix whose
columns are the first k VEPOD eigenfunctions, and E is an encoding neural network
having weights θE . The mapping back to the full space is given by ã = χ̌(h; θE ) =
Uda ([h, 0]T +D(h; θD)), where D is a decoding neural network having weights θD. The
autoencoder minimizes the error

L= ||a(ti ) − χ̌(χ(a(ti ); θE ); θD)||2 + κ||E(UT
da

a(ti ); θE) +Ddh (h(ti ); θD)||2, (2.12)

where the second term is a penalty to enhance the accurate representation of the leading
dh VEPOD coefficients (Linot & Graham 2020) (in this study, κ = 1).

Once the low-dimensional representation of the full state is discovered, we use a
‘stabilized’ NODE to learn the dynamics in manifold coordinates, i.e. dh/dt = g(h) −
Ah, where g is a neural network, and A = γ IS(h) is a diagonal matrix, where S(h) is the
standard deviation of h and γ is a tuneable parameter. This term stabilizes the system by
preventing the dynamics from drifting away from the attractor (Linot et al. 2023a). The
NODE is trained to minimize the difference between the true state h(ti + �ts) and the
predicted state h̃(ti + �ts):

J = ||h̃(ti + �ts) − h(ti + �ts)||2, (2.13)

where h̃(ti + �ts) = h(ti ) + ∫ ti +�ts
ti

(g(h) − Ah)dt is a time forward prediction of the
NODE over time interval �ts . Details of the different neural networks are summarized
in table 1.

The ROM of EIT in the present study has been developed using a statistically stationary
dataset consisting of 1000 time units simulated using time step �t = 0.001 and sampled
at the interval of �ts = 0.025 time units, which leads to a total of 40 000 snapshots. The
correlation time of the dynamics of EIT is small (<1 time unit), so this dataset is sufficient
to develop our ROM. Here, 80 % of data have been used for training and 20 % data for
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Neural Network Architecture Activation Learning rate

Encoder (E) 4000 : 5000 : 1000 : 250 : dh ReLU:ReLU:ReLU:Lin [4 × 10−4, 10−4]
Decoder (D) dh : 250 : 1000 : 5000 : 4000 ReLU:ReLU:ReLU:Lin [4 × 10−4, 10−4]
NODE (g) dh : 500 : 500 : dh Sig:Sig:Lin [10−4, 10−5]

Table 1. Details of different neural networks used in the VEDManD framework. ‘Architecture’ represents the
dimension of each layer and ‘Activation’ refers to the types of activation functions used, where ‘ReLU’, ‘Sig’
and ‘Lin’ stand for Rectified Linear Unit, Sigmoid and Linear activation functions, respectively. ‘Learning
Rate’ represents the learning rates used during training.
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Figure 2. Mean profiles (solid lines) of the components of (a) velocity and (b) stretch tensor in EIT at Re =
3000 and Wi = 35. The dotted lines show the laminar profiles at the same parameter. The temporal mean profiles
of velocity in EIT are close to the laminar profiles as velocity fluctuations in EIT are weak (Sid et al. 2018).

testing. The losses used to train the neural networks (2.12) and (2.13) are the ensemble-
averaged over the training data. The DNS was performed in parallel mode on 24 processors
on a high-performance computing (HPC) cluster and it took ≈2 weeks to compute for 1000
time units. The VEDManD framework consists of three steps, and a single processor was
used to develop our ROM. The first step, the projection of the dataset on 4000 VEPOD
modes, takes ≈4 hours. The second step, the training of the autoencoder, takes ≈2 days.
The third step, the training of the NODE, takes 2−3 hours. Thus, the development of ROM
takes ≈2.5 days on a single processor. Once the model is developed, it evolves dynamics
for 1000 time units in seconds on a single processor.

3. Results and discussion

3.1. Dimension reduction of EIT
For statistically stationary dynamics, the instantaneous state variables can be written as
u = u + u′ and T = T + T′, where (·) and (·)′ are the temporal mean and perturbation,
respectively. Mean profiles and laminar profiles are shown in figures 2(a) and 2(b),
respectively. Here, we develop a ROM to capture the perturbations of the state variables:
q = [u′, T′].

The VEPOD eigenvalue spectrum of the perturbations in state variables, figure 3(a),
shows that the energy content of higher VEPOD modes decreases approximately
exponentially for index j � 1500. We find that reconstruction of the flow state using
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Figure 3. (a) The VEPOD eigenvalue spectrum. (b) Normalized reconstruction error on the test dataset for
various latent dimensions of VEPOD and autoencoder. Leading VEPOD mode structure for (c) u′

y and (d) T ′
xx .

da = 4000 VEPOD modes captures ≈99.8 % of the total mechanical energy and yields an
accurate representation. Therefore, to develop our model we retain 4000 VEPOD modes.
We also visualize the leading VEPOD mode structure for u′

y and T ′
xx (figure 3c,d) and find

that they resemble the most dominant travelling wave underlying EIT (Kumar & Graham
2024).

Before training the neural networks, we first centre and scale the dataset by subtracting
the mean and then normalizing it with the maximum standard deviation. To find a low-
dimensional representation of the system, we train multiple autoencoders with varying
numbers of latent dimensions and visualize the reconstruction error of VEPOD coeffi-
cients on the test dataset (figure 3b). The reconstruction error initially decreases rapidly at
low dh , then shows only a marginal improvement in the reconstruction for latent dimension
dh > 30. The VEDManD model with dh = 30 struggles to quantitatively capture the
dynamics, so we do not report results for it and we use the latent dimension of the autoen-
coder dh = 50 in the present study. To illustrate the accuracy of the reconstruction, we com-
pare results for u′

y and T ′
xx fields using the autoencoder at dh = 50 (figure 4c,d) with the

corresponding DNS results (figure 4a,b). The autoencoder faithfully reconstructs the flow
state obtained from the DNS. Visual inspection of the autoencoder reconstruction reveals
a very close resemblance, while a quantitative comparison between DNS and autoencoder
results demonstrates differences at fine scales in the reconstruction (∼10 % for the worst-
case scenario and are confined only in a tiny region), resulting from the cumulative effects
of VEPOD truncation and autoencoder reconstruction (figure 4e,f ). Further analysis shows
that the error is dominated by VEPOD truncation to 4000 modes – the autoencoder error
is very small. The other components exhibit similar degrees of accuracy.

3.2. Low-dimensional dynamic model
Once the autoencoder maps the system on a low-dimensional representation, we train
the NODE to predict dynamics. We start the presentation of the NODE results with
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xx obtained from (a,b) DNS and (c,d) reconstruction with an
autoencoder with dh = 50. (e,f ) Difference between DNS and autoencoder reconstruction normalized with the
maximum values of respective fields.
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Figure 5. (a) Temporal autocorrelation of the VEPOD coefficients. (b) First several VEPOD coefficients up
to t/tc = 4 obtained using DNS and VEDManD with dh = 50 for two arbitrary initial conditions (IC1 and IC2).
(c) Ensemble-averaged relative error between the VEPOD coefficients obtained using DNS and VEDManD.

short-time tracking. It is expected that the VEDManD predictions should closely follow
DNS trajectories over a short time period before the dynamics diverges due to the
chaotic nature of the system. To estimate the correlation time of the dynamics, we
defined a temporal autocorrelation function (C(t)) for the VEPOD coefficients as C(t) =
(〈R(τ ) · R(τ + t)〉)/(〈R(τ ) · R(τ )〉), where 〈·〉 represents ensemble average. Here, the
parameter R stands for a and ã for DNS and VEDManD, respectively. The autocorrelation
functions from DNS and VEDManD are plotted in figure 5(a). The correlation time
of the dynamics is defined as tc = ∫ tz

0 C(t)dt , where tz represents the first zero of the
autocorrelation function. The computed values using DNS and VEDManD are tc = 0.67
and tc = 0.68, respectively, very close to each other. This time scale indicates when
trajectories starting from different initial conditions or with slightly different evolution
equations should start to diverge from one another. In figure 5(b), we show the time
evolution of the first several VEPOD coefficients for different initial conditions on the
attractor using the VEDManD model and DNS. For t < tc, the model accurately predicts
the EIT trajectory, deviating at longer times. In figure 6, we compare snapshots of the
state obtained from the model against DNS with the same initial condition and see that
for t < tc the results are very close. To quantify the deviation of the VEDManD prediction
of trajectories from the DNS results, we show in figure 5(c) the ensemble average of the
relative error of the VEPOD coefficients from VEDManD and DNS calculated over many

1007 R1-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.130


Journal of Fluid Mechanics

(a) (b) (c) (d)

(e) ( f ) (g) (h)

V
E

D
M

an
D

D
N

S y

y

u′ y 
(1

0
−

2
)

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

1

0

0 1 2 3 4 5
−1

2

0
−2

u′ y 
(1

0
−

2
)

2

0
−2

t/tc = 0 t/tc = 0.5 t/tc = 1.0 t/tc = 2.5

x x x x

Figure 6. Time series of u′
y obtained using (a−d) DNS and (e−h) VEDManD for IC1 in figure 5(b).

initial conditions. The difference between the model prediction and the DNS result is
small at short times, increasing on the time scale tc before saturating. In summary, the
VEDManD model with dh = 50 is capable of accurately capturing the dynamics of 2-D
EIT over time scales comparable to the flow correlation time.

We now turn to the long-time statistics of the timeevolution, focusing on the spectral
proper orthogonal decomposition (SPOD) (Towne et al. 2018), of the flow and stretch
fields. In short, SPOD is a temporal variant of POD that seeks the frequency-by-frequency
POD of a Fourier-transformed time-dependent flow, yielding for every frequency f a
spectrum of energies and modes. For a detailed description of SPOD in the context of EIT,
see Kumar & Graham (2024), where we used SPOD to show that the dynamics of 2-D
EIT in the parameter regime examined are dominated by a family of self-similar, nested
travelling waves. Here, we report the SPOD spectrum of u′

y , as this component gives the
cleanest spectrum. The SPOD energy spectra of u′

y obtained from DNS and VEDManD
are shown in figures 7(a) and 7(b), respectively. The leading modes of both spectra contain
most of the energy and exhibit peaks at the same frequencies, at least to the two significant
digits (red symbols) which is the frequency resolution in the present study. We visualize
the SPOD mode structures corresponding to the peaks in the SPOD spectra in figure 8.
The structures obtained from the VEDManD model closely resemble the structures of
travelling modes obtained from the DNS. (The mode structures are travelling waves,
therefore we align their spatial phases to make comparison easier.) The precise prediction
of wavenumbers and frequencies of different mode structures by the VEDManD model
gives an accurate prediction of their wave speeds. Thus, we have found a highly accurate
representation of EIT with O(10) dimensions commencing from an initial state dimension
of O(106). This dimension might not be the true dimension of the invariant manifold
where the dynamics lives (this quantity remains difficult to estimate precisely from data
for complex chaotic systems), but it is capable of providing models that faithfully capture
the short-time dynamics and long-time statistics of EIT.

4. Conclusion
Numerical simulations of EIT are computationally expensive due to the high number of
DOF (O(106)) required to resolve all spatial and temporal scales. In the present study,
we use data-driven methods to develop a ROM that has far fewer DOF (O(10)) yet
nevertheless captures these scales and the dynamics of EIT. To find the low-dimensional
representation of the full state, we first introduce a variant of VEPOD which reduces
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Figure 8. The SPOD mode structures of (a−j) u′
y and (k − t) T ′

xx from (a−e, k−o) DNS and (f −j, p−t)
VEDManD at the frequencies indicated with red symbols in figure 7.

the dimension of the EIT dataset from O(106) to O(103), and then use autoencoders to
perform nonlinear dimension reduction from O(103) to O(10). To evolve dynamics on
this low-dimensional representation, we use stabilized NODEs. A ROM with a dimension
of 50 accurately predicts both short-time dynamics and long-time statistics. This model
successfully captures the trajectory of the dynamics over the span of one correlation time.
To analyse the long-time statistics of the dynamics, we use SPOD and show that the ROM
accurately captures the complex nonlinear structures and the frequencies of the self-similar
travelling waves that underlie the chaotic dynamics observed in the DNS of 2-D EIT.

By accurately modelling EIT with significantly fewer DOF than DNS requires, manifold
dynamics models like those presented here make it possible to perform computationally
efficient analyses, such as calculating Floquet multipliers and local Lyapunov exponents.
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Such models can accelerate the discovery of new ECSs (e.g. periodic orbits, relative
periodic orbits) underlying EIT (Linot & Graham 2023). These models could also facilitate
the design of control strategies (such as patterning surfaces) using a reduced number of
DOF which would allow turbulent drag reduction using polymer additives beyond the
MDR limit.
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