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Abstract

Transfer RNAs play a key role in protein synthesis. Following transcription, tRNAs are exten-
sively processed prior to their departure from the nucleus to become fully functional during
translation. This includes removal of 5′ leaders and 3′ trailers by a specific endo- and/or exo-
nuclease, 3′ CCA tail addition, posttranscriptional modifications and in some cases intron
removal. In this minireview, the critical factors of nuclear tRNA trafficking are described
based on studies in classical models such as yeast and human cell lines. In addition, recent
findings and identification of novel regulatory loops of nuclear tRNA trafficking in trypano-
somes are discussed with emphasis on tRNA modifications. The comparison between the
representatives of opisthokonts and excavates serves here to understand the evolutionary con-
servation and diversity of nuclear tRNA export mechanisms.

Introduction

Although tRNAs are smaller than the 40 kDa limit for passive diffusion, the export of tRNAs
through the nuclear pore complex (NPC) is an active process facilitated by export factors
belonging to the karyopherin-β family called exportins. It is now well accepted that tRNA sub-
cellular trafficking is not unidirectional from the site of transcription in the nucleus to the
cytoplasmic site of protein synthesis. Interestingly, tRNAs can traffic from the cytoplasm
back to the nucleus via the tRNA retrograde pathway and then again be re-exported to the
cytoplasm (for a recent review, see Hopper and Nostramo, 2019). The tRNA retrograde path-
way was discovered in yeast, where intron-containing tRNAs travel across the nuclear pore
complex to the outer mitochondrial surface where the splicing endonuclease complex is loca-
lized (Yoshihisa et al., 2003; Shaheen and Hopper, 2005; Takano et al., 2005). Once spliced in
the cytoplasm, tRNAs travel back to the nucleus to be further modified. They are then
re-exported to the cytosol, where they participate in protein synthesis (Yoshihisa et al.,
2007). This ‘shuttling’ mechanism has been documented in several model organisms, includ-
ing humans, but its biological significance is poorly understood. However, in the yeast
Saccharomyces cerevisiae, tRNA retrograde import was proposed as a level of tRNA quality
control, which monitors both the end processing and modification state of tRNAs (Kramer
and Hopper, 2013).

A key players in the nuclear tRNA export/import are exportins Los1 and Msn5 and their
homologs in vertebrates exportin-t (Xpo-t) and exportin 5 (Xpo-5) (Okamura et al., 2014). As
shown in previous work (Calado et al., 2002) and by a recent comprehensive study employing
a co-immunoprecipitation approach, these two proteins serve overlapping but distinct roles in
tRNA nuclear export (Huang and Hopper, 2015). Los1 interacts with both spliced and
unspliced tRNAs, regardless of whether they are aminoacylated or not, implying that Los1 par-
ticipates in primary nuclear export and re-export of tRNA to the cytosol. Whereas, Msn5 pref-
erentially binds with spliced and aminoacylated tRNAs establishing its role in tRNA nuclear
re-export (Huang and Hopper, 2015). In addition, translation elongation factor 1 α was iden-
tified in a complex with Msn5, possibly providing the specificity of Msn5 for aminoacylated
tRNAs (Calado et al., 2002; Huang and Hopper, 2015). In contrast, vertebrate Xpo-5 prefer-
entially exports miRNA, and thus its role in tRNA nuclear export is assumed to be minor
(Calado et al., 2002). Despite the prominent role of Los1 and Msn5 in the translocation of
tRNAs across the NPC, they cannot be the only nuclear exporters since double mutants of
these two proteins are viable, suggesting additional export pathways exist and remain unchar-
acterized (Huang and Hopper, 2015). Recently, a genome-wide screen in yeast revealed new
possible players in the tRNA nuclear export (Wu et al., 2015). This includes proteins described
for their function in rRNA, mRNA and protein export. One of these candidates is represented
by the heterodimeric complex of Mex67-Mtr2, well characterized for their essential role in
mRNA nuclear export. Inactivation of Mex67-Mtr2 leads to a rapid accumulation of end
matured unspliced tRNAs in the nucleus supporting their co-function with Los1 in the pri-
mary export pathway. Surprisingly, only four out of ten intron-containing tRNAs were
retained in the nucleus, which suggests substrate preference (Chatterjee et al., 2017).
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Nuclear export of tRNAs has been extensively studied in sev-
eral model systems, yet there are still key factors missing and
this essential pathway is not fully understood. Compared to
other eukaryotes, kinetoplastid parasites show unusual features
in nuclear and organellar gene expression. These include pro-
cesses such as mitochondrial RNA editing, mitochondrial tRNA
import and trans-splicing of polycistronic mRNAs. There is also
a general lack of transcriptional promoters; consequently, gene
expression in trypanosomatids is controlled mostly by posttran-
scriptional pathways (Daniels et al., 2010). Nucleo-cytoplasmic
tRNA pools may change under certain conditions such as nutri-
ent starvation and oxidative stress (Shaheen and Hopper, 2005;
Whitney et al., 2007; Chafe et al., 2011; Dhakal et al., 2019;
Schwenzer et al., 2019). The trafficking of tRNAs between the
nucleus and the cytoplasm might be an additional posttranscrip-
tional event involved in gene regulation with a great importance
in the complex life cycle, as these parasites have to face completely
different environments with distinct sources of nutrients during
the transition between the mammalian and insect stages (Fenn
and Matthews, 2007).

Whereas mechanisms for rRNA and mRNA transport in these
parasites have been described, there is only limited knowledge
about tRNA nuclear export (Dostalova et al., 2013; Bühlmann
et al., 2015). Recent findings indicated that similar to other
eukaryotes, the canonical nuclear tRNA exporters TbXpo-t
and TbXpo-5 are not singularly essential for cell viability in
Trypanosoma brucei (Hegedűsová et al., 2019). Yet, contrary to
yeast, downregulation of both exportins did not result in nuclear

accumulation of mature tRNAs, nor did it abolish the export of
intron-containing tRNA. With the goal to identify an alternative
pathway, the general mRNA exporters TbMex67-TbMtr2 were
downregulated, which resulted in a significant increase of nucle-
arly localized tRNAs. However, contrary to yeast, TbMex67 and
TbMtr2 accumulated different subsets of tRNAs in the nucleus.
While the elimination of TbMtr2 prevented the export of all
tRNAs tested (except for the only intron-containing tRNATyr),
the silencing of TbMex67 resulted in nuclear accumulation of
tRNAs modified with queuosine (Q). In turn, inhibition of
tRNA nuclear export also affected the levels of queuosine tRNA
modification (Hegedűsová et al., 2019). An overlapping and dif-
ferent role of Mex67 and Mtr2 was also suggested for budding
yeast. This is however a different matter, considering that S. cere-
visiae lacks the gene for Q-tRNA modification enzyme (Nostramo
and Hopper, 2020). These data demonstrate the dynamic nature
of tRNA trafficking depending on their modification status and
vice versa.

Along these lines, in yeast, the process of the retrograde trans-
port pathway proved necessary for 1-methylguanosine (m1G) for-
mation at position 37 of tRNAPhe, a first step in the synthesis of
the hypermodified nucleotide wybutosine (yW). This is because
the first step of yW is catalysed by Trm5 methyltransferase that
acts only on spliced tRNAs and has a nuclear localization
(Ohira and Suzuki, 2011). Consequently, tRNAPhe must be first
exported to the cytoplasm by the primary nuclear export pathway
to be spliced on the surface of mitochondria, where the tRNA
splicing endonuclease is tethered (Fig. 1A). After intron removal,

Fig. 1. Conservation and diversity of retrograde nuclear trafficking in S. cerevisiae and T. brucei. (A) Model of the retrograde nuclear transport of tRNAPhe in
S. cerevisiae. Transfer RNAs are synthesized as primary tRNAs (pre-tRNAs) in the nucleus and undergo 5′ and 3′processsing, modifications and CCA addition .
In this example, pre-tRNAPhe is subsequently exported from the nucleus to the cytoplasm by Los1 and Mex67-Mtr2 in a step called primary nuclear export.
tRNAPhe contains an intron, which is removed by splicing endonuclease (SEN) located at the surface of the mitochondria. Spliced tRNA is then modified by several
modification enzymes (not shown) and trafficked back to the nucleus with the help of Mtr10 by a process termed tRNA retrograde import. Ssa2 is also involved in
this process only under amino acid starvation. In the nucleus, tRNAPhe is the substrate for the methyltransferase Trm5, which methylates G37 (m1G) (in green). In
the final step, both Mex67 and Crm1 mediate the constitutive re-export of tRNAPhe to the cytoplasm, where wybutosine (yW) (in yellow) is added to m1G in a
sequential series of reactions by Tyw1-4. Notably, the canonical exporters Los1 and Msn5 are dispensable in this transport step (Chatterjee et al., 2018;
Hopper and Nostramo, 2019; Nostramo and Hopper, 2020). (B) A model for subcellular trafficking and maturation of the tyrosyl-tRNA (tRNATyr) in T. brucei. The
tRNA is transcribed in the nucleus containing an 11-nucleotide long intron. In the nucleus, the intron undergoes non-canonical editing prior to the primary export
in the cytoplasm (not shown). Only the edited intron-containing tRNATyr is spliced by the SEN complex. After cleavage, tRNATyr undergoes retrograde transport to
the nucleus to get modified with queuosine (Q) (in blue) by the nuclear enzyme TbTGT1/2. Finally, Q-containing tRNATyr is re-exported by TbMex67–TbMtr2 to
cytoplasm to serve in cytoplasmic translation. Compared to approximately 50% of Q-containing tRNATyr in the cytosol, mitochondria of T. brucei contain nearly
fully modified tRNATyr, which could be explained by its preferential import from the cytosol, possibly to play a role in the translation of U-rich tRNAs. The question
mark stands for unknown transporter. Note: Except for the only intron-containing (tRNATyr), TbMtr2 serves as a general exporter in the primary tRNA export, while
TbMex67 is responsible for the nuclear export of Q-modified tRNAs (Kessler et al., 2017; Hegedűsová et al., 2019; Kulkarni et al., 2021, under revision in NAR).
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tRNA travels back to the nucleus with the help of the protein
Mtr10 to get m1G37 and finally is re-exported to the cytoplasm
where the remaining four enzymes (Tyw1-4) for wybutosine
biosynthesis reside (Ohira and Suzuki, 2011; Nostramo and
Hopper, 2020).

An analogous pathway affecting queuosine (Q) modification of
the anticodon of tRNATyr in T. brucei was reported (Kessler et al.,
2017) (Fig. 1B), where like in yeast, tRNA splicing occurs in the
cytoplasm (Yoshihisa et al., 2003). Notably, the tRNA-guanine
transglycosylase (TGT), the modification enzyme responsible for
Q-tRNA formation, resides in the nucleus and it is not able to
add Q to an intron-containing tRNA. Therefore, after transcrip-
tion, processing of the 5′ and 3′ ends and non-canonical intron
editing (Rubio et al., 2013), the intron-containing tRNATyr is
exported from the nucleus to be spliced in the cytoplasm by
SEN (complex of tRNA splicing endonuclease). After ligation of
both exons, tRNATyr is imported back to the nucleus to obtain
Q and subsequently re-exported to the cytoplasm to fulfil its func-
tion in protein synthesis (Kessler et al., 2017; Kulkarni et al., 2021,
under revision in NAR).

However, the situation in T. brucei is even more complicated
given the fact that the mitochondrial genome is entirely devoid
of tRNA genes and all tRNA molecules in the cell have a nuclear
origin (Tan et al., 2002). Surprisingly, compared to approximately
50% of Q-containing tRNATyr in the cytosol, the level of Q modi-
fication in the mitochondria is almost 100%, which could be jus-
tified by the preferential import of Q-tRNAs and also their ability
to translate the mitochondrial predominantly U-rich mRNAs
resulting from U-insertion editing (Kulkarni et al., unpublished
manuscript, under revision in NAR) (Fig. 1B). To elucidate the
mechanism of mitochondrial tRNA import, a recent study
revealed that tRNAs and proteins may use the same import path-
way across the mitochondrial outer membrane but it seems that
these two import pathways are not linked (Niemann et al.,
2017). Still the factors involved in preferential import of
Q-modified tRNAs remain to be identified. In addition, the role
of tRNA fragments in translation modulation and/or a shortening
of the bulk of cellular tRNAs as a result of nutritional stress was
recently reported in vertebrate cells as well as in trypanosomes
(Fricker et al., 2019; Schwenzer et al., 2019; Cristodero et al.,
2021).

Clearly, the complex tRNA biology of kinetoplastid parasites
has the potential to provide additional control steps of regulation
of gene expression. In conclusion, T. brucei provides an ideal
model to study the crosstalk between the tRNA trafficking and
modification. Nevertheless, further studies based on differences
in tRNA pools after silencing of the export factors or facing dif-
ferent nutritional and stress environment together with more
complex analyses such as ribosome profiling could identify poten-
tial regulatory loops important for the complex lifecycle of these
parasites.
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