
Can. J. Math., Vol. XXXIX, No. 1, 1987, pp. 1-7 

SOME SUPERCUSPIDAL REPRESENTATIONS OF 
Sp4(k) 

CHARLES ASMUTH 

1. The purpose of this paper is to produce explicit realizations of 
supercuspidal representations of Sp4(k) where k is a /7-adic field with odd 
residual characteristic. These representations will be constructed using the 
Weil representation of Sp4(k) associated with a certain 4-dimensional 
compact orthogonal group OQ over k. The main problem addressed in this 
paper is the analysis of this representation; we need to find how the 
supercuspidal summands decompose into irreducible pieces. 

The problem of decomposing Weil representations has been studied 
quite a bit already. The Weil representations of SL2(k) associated to 
2-dimensional orthogonal groups were used by Casselman [4] and Shalika 
[9] to produce all supercuspidals of SL2(k). The explicit formulas for these 
representations were used by Sally and Shalika ([10]) to compute the 
characters and finally to write down a Plancherel formula for that 
group. 

The ultimate object of this paper is to do the same for the group Sp4(k). 
To do this, we must consider the Weil representation of Sp4(k) associated 
to OQ. (The 2-dimensional compact orthogonal groups produce Weil 
representations with only a single supercuspidal component each [1].) The 
supercuspidals produced in the construction using OQ correspond nat­
urally to characters of Cartan subgroups contained in an imbedding of 
SL2(k) X SL2(k) in Sp4(k). It seems certain that there are classes 
of supercuspidals not included in this list, namely those that would 
correspond to characters of Cartan subgroups contained in SL2(E) 
imbedded in Sp4(k) where E is a quadratic extension of k. 

The decomposition methods of [9] and [4] are based on computation of 
certain Gauss sums which arise as matrix coefficients in those Weil 
representations. This method appears to be hopeless in the case of Sp4(k). 
In this paper, we take a rather indirect route to the same destination; we 
use the decomposition of the Weil representation of Sp$(k) associated to 
OQ to provide information about Sp4(k). This method gets around the 
computations entirely and also works for the decomposition problem for 
SL2(k) associated to the compact 2-dimensional orthogonal groups; here 
one would use decomposition information about the corresponding Weil 
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representations for Sp4(k). The main theorem of this paper can be found 
at the end of the second section following the introduction of notation 
and the statement of some known results. The third section uses the 
method mentioned above to show that the supercuspidal summands 
of the given Weil representation which correspond to representations of 
OQ are isotypic. The fourth and last section proves that the summands are 
irreducible. I would like to thank R. Howe for encouraging me to write up 
these results in the first place. I am particularly indebted to him for 
suggesting to me what the multiplicity of the isotypic summands should 
be. 

2. In this section we present the explicit formulas for the Weil 
representation. These will be more or less the same as used in [1] which in 
turn were adapted from [8]. Let k be a /7-adic field whose residual 
characteristic is odd. Let IT and e be respectively a prime element and a 
non-square unit in the ring of integers of k. 

Now set 

"l 0 0 0" 

0 - € 0 0 

0 0 -77 0 

0 0 0 €77 

so that Q is the matrix of the 4-dimensional anisotropic quadratic form 
over k. Let OQ be the corresponding orthogonal group. Let W be an 
irreducible finite dimensional representation of OQ with space V. Then for 
n = 1, 2, 3, . . . , we have a smooth representation Tn(W) of Sp2n(k). This 
representation is realized in the space Hn(W) consisting of smooth 
F-valued functions on M 4(k) satisfying the identity 

0 = 

f(Xa)=f(X)W(a) fora oQ. 
We now give formulas for T = Tn(W) on generators of Sp2n(k). Here 

the constant f is complex of modulus 1, and dY is an appropriately 
normalized measure on the additive group of Mn 4(k). 

(i) For .4 G GL„(k) 7 ^ ^ - , ] / ( * ) = |det ^ | 2 / ( ^ ) 

(2) F o r B n X w symmetric A1 Bj\f(X) = $(tr BXQ!X)f(X) 

(3) T [ ^ £ ] / ( * ) = ? jMJ(Y)<S>{tr YQ'X)dY. 

From [1] we know that all H4(W) are non-zero irreducible distinct 
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representations of Sp$(k). We also have: 

(a) Let P be a parabolic subgroup of Sp$(k) whose reductive part M 
consists of elements of the form 

H R o o o l 
0 A 0 B\ 

0 0 5 0 

I 0 C 0 D\ 
where R and S are 2 X 2 diagonal matrices such that RS = 1 and 

[c D\ G %(k). 

Then there exists an extension of T2(W) to P such that T4(W) is a 
subrepresentation of Indp r2(PF) where G = S/?8(k). F o r / e 7/4(H^), 
g G (7, and X e M2 4(k) the embedding v4 is given by 

[A(f)(g)](X) = [T4(g)f][°x]. 

(b) For any irreducible W, T2(W) is supercuspidal if and only if both 
HX(W) = {0} and H2(W) ¥= {0}. This amounts to saying that a summand 
H2(W) is supercuspidal if and only if it is non-zero and any function/ 
therein is supported only on elements of rank 2. 

The behaviour of representations Tn(W) is illustrated by the orbits of 
the action of OQ on Mn4(k). Two elements X and Y are in the same orbit 
if and only if XQlX = YQlY. This means that the spectrum of a function/ 
in Hn(W) under the operators in formula (2) above depends only on 
which orbits suppor t / An eigencharacter of this unipotent group is given 
by a choice of a symmetric n X n matrix, namely some XQlX. Operators of 
formula (1) permute these eigencharacters but not transitively. Two 
eigencharacters are in the same orbit under this action if their 
corresponding symmetric matrices are equivalent. The irreducibility 
arguments for representations of SX2(k) in [9] and [4] use this structure to 
produce two inequivalent irreducible representations of the parabolic 
subgroup, each corresponding to a different class of 1-dimensional 
symmetric matrices (i.e., an element of kV(k*)2). Then an explicit 
computation shows that the Weyl element fuses these two into an 
irreducible representation of SL2(k) itself. In [1] the cases where n ^ 4 are 
considered. Here the operators of formulas (1) and (2) act irreducibly 
already and no calculation involving the Weyl elements was needed. There 
was only one supercuspidal summand in these cases (when n = 4) so the 
interesting case is when n = 2. 

We now state the main theorem of the paper. 
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THEOREM 2.1. Let an irreducible representation W of OQ be chosen so that 
T2(W) is supercuspidal Then T2(W) is irreducible; ifT2(W) and T2(W) are 
two such supercuspidal representations with W and W not equivalent then 
T2(W) and T2(W) are also not equivalent. 

This theorem suggests that this particular construction produces all or 
most of the supercuspidal representations which correspond to tori which 
are imbeddable in SL2 X SL2. One might look in Weil representations 
constructed with non-compact orthogonal groups for other types. 

3. In this section we prove that T2(W) is isotypic. We apply the fol­
lowing fact taken from the main theorem of [3]. Let rl and T2 be 
supercuspidal representations of M. Then the representations pi = 
Indp ri of G = Sp%(k) have a common subrepresentation if and only if r] 

and T2 are conjugate by some element^ = G. It is reasonably easy to see 
that in the present application we may take y to be of the form 

where 

R 0 s 0 

0 / 0 0 

T 0 u 0 

0 0 0 / 

R 
.T 

s' 
u. is a^ is a Weyl group element in Sp4(k). Let H be the subgroup 

of M isomorphic to Sp4(k). Then we can say more specifically that if the 
representations pt share a summand, then TX and T2 restricted to H are 
equivalent. Let V be any /f-subspace of H2{W). Let Ind^ V be the cor­
responding induced G-subspace of the representation space H2{W) of 
Ind£ T2(W). Let h e F and assume h(X0) = v ^ 0(v e CJ). Then one can 
construct by elementary means an arbitrarily small neighborhood U of X0 

and an element hv e V such that hu is supported in UL and hu = v on 
U. 

Let pv:H2(W)G -> Ind£ F be given by 

(Pv(f))(g) = K • / ) (*) 

where 7T:H2(W) —> V is the natural orthogonal projection. It is easily 
shown that pv is a G-homomorphism. To prove the first part of the main 
theorem, it now suffices to show that 

Pv(A(H4)(W)) # {0}. 

This would mean that all //-subspaces of H2(W) induce to contain a 
common irreducible summand, namely H4(W), and would therefore be 
equivalent by the above remarks. To show this, pick W G H4(W) SO 
that 
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C =v = h(X0). LX0J 

Thus [A(h')(I) ](X0) = v. We can certainly choose a neighborhood U of X0 

sufficiently small so that 

Therefore pv(A(hf) ) is non-zero and the result follows. 

4. To determine the decomposition of the isotypic space H2(W), we 
need to look more closely at the action of the orthogonal group OQ. 
We will make use of some properties of the representations of OQ. These 
will be based on results in [2] which were in turn derived from [7] and [5]. 
We use A the quaternions over k to construct OQ. Let D be considered as 
a 4-dimensional quadratic space over k with the quadratic form Q being 
just the reduced norm v. We let D* X D* act on D by (r, s):z —» r~~xzs. 
When v(r) = v(s) this transformation is orthogonal. Let SOQ be the 
quotient 

{ (r, s):p(r) = v(s) }/{ (x, x):x <= k* Q Dx). 

Let D consist of elements a 4 bi 4- ci + dk where a, b, c, and d are in 
2 2 

/c, / = ej = IT and //' = —ji = /c. We generate the rest of L by including 
the element a where 

{a 4- 6/ 4- c/ 4- d&)a = a — bi — cj — dk. 

Representations of SOQ are thus subrepresentations of tensor products 
I ® J oî Dx X Dx. In [2] we develop a system of labels for representa­
tions of SOQ of the form (R, S) where R and S are representations of 
various subgroups of D*\ It is known that if a representation W of OQ 
of degree > 1 contains (R, S) in its restriction to S£V>, then H}(W) is 
non-zero if and only if R = S. Since a sends (#, S) to (S, i?), we may 
conclude that for such W that H2(W) is supercuspidal if and only if it is 
irreducibly induced from SOQ. NOW let U be a representation of SOQ with 
representation space V0. Let 

//°(£/) = {/:M2j4(k) -> K0| for any y G S O Ô , 

/ (Ay) = / ( J Q t / ( Y ) } . 

LEMMA 4.1. If U induces irreducibly to a representation W of 00 then 
H%U) and H2(W) are isomorphic as Sp4-spaces. 

Proof. The representation space Y of Wmay be written as Y0 © V0W(o). 
Let p. Y —> Y0 be the natural projection. The map/—»/? • / i s clearly an 
S/?4-homomorphism from H2(W) to H\(JJ). The action of W(a) forces the 
kernel to be zero and the m a p / 0 —>/given by 
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fix) = (f0(X\f0(X)W(o)) 

is the inverse. 

We now finish the proof of the main theorem. If deg(W) = 1 we are 
done since the eigenspaces of the subgroup 

N = I Lo n3 symmQiric} Q %(k) 
would be one-dimensional. This is because functions transforming 
according to W are determined over an entire orbit by their scalar value at 
one point in that orbit. Since T2(W) is isotypic this means it has 
multiplicity one. Let X be of rank two in M2 4(k). Let Ex be the span of w 
and z in k4 and E2 the orthogonal complement of Ex. Let &(X) and Sf(X) 
be respectively the maximal abelian subgroups fixing E2 and Ex pointwise. 
Since Ex is thus ^(X)-invariant, we have an imbedding A :â?(X) —» GL2(k) 
having the property that for r e 0l(X) we have Xr = A(r)X. Now let 
J^(X) Q Sp4(k) consist of elements of the form 

^{r) ~ [ 0 A(r)-]\' 

Let [X] ç M24(k) be the orbit of X under SOQ. For / <= H2(W) let 
pf = f\ [X] so that p is an JT(X)-map from H2 to C^°( [X], Y0). Thus if 
Vx and V2 are isomorphic Sp4(k)-spaces of H2(U), then pVx and pV2 are 
^(X)-isomorphic spaces of C^°( [Z], 70). L e t / G H2(U) and le t / (X) = v 
in Y0. Then necessarily v is fixed by U(S(X) ). Suppose, also, that v is an 
eigenvector of R(X) with eigencharacter \p. Then for r e 7£(X) we have 

[ r ( ^ ( r ) / ) ] (X Y ) = Mr)RXy). 

Thus p / is in the \p-space of J^(Jf). The argument now comes down to 
two facts. First, if F i s an irreducible S/?4(k)-space of H2(U), the decom­
position of pV into ^(X)-eigenspaces depends only on the isomorphism 
class of V. This can be seen by looking at the basic operators of the Weil 
representation itself. Second, the multiplicity of a i//-eigenspace can never 
exceed the multiplicity of \p 0 1 in U restricted to R(X) X S(X). A key 
fact here is that this restriction applies for any ^ ® 1 occurring in the 
restriction of U. Given any JF satisfying the conditions of 2.1, we may take 

X to be for some z in Dx. Then 

R(X) = { (a, a) e SOQ:a e k(z)x} 

S(X) = { ( a - 1 , a) e SOQ:a e k(z)x}. 

Let £/ = (R, S) as described above. We know from work of Howe and 
Corwin (see [5], [6], and [7] ) that representations of various subgroups of 
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Dx can be classified corresponding to quadratic extensions of k. Let z 
generate a quadratic extension of k different from those corresponding to 
R or S. Then the character of R when restricted to the torus corresponding 
to z is zero outside the kernel of R. The same is true for S. This implies 
that there is a choice of \p such that the multiplicity in question is exactly 
one. Since all summands of H2(W) must share equally the various 
^(X)-eigenspaces we see that there must be exactly one such summand. 
Finally, a survey of these same formulas gives us that for Wx and W2 

distinct, the characters occurring in the representations of 3tif(X) in 
C™([X], Y0) are different. This means that H2(WX) and H2(W2) 
since C^°( [X], Y0) is an entire eigenspace of N (defined above) the 
character of which depends only on X and not on W. 
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