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Abstract

In many service, production, and traffic systems there are multiple types of customers
requiring different types of ‘servers’, i.e. different services, products, or routes. Often,
however, a proportion of the customers are flexible, i.e. they are willing to change their
type in order to achieve faster service, and even if this proportion is small, it has the
potential of achieving large performance gains. We generalize earlier results on the
optimality of ‘join the shortest queue’(JSQ) for flexible arrivals to the following: arbitrary
arrivals where only a subset are flexible, multiple-server stations, and abandonments.
Surprisingly, with abandonments, the optimality of JSQ for minimizing the number of
customers in the system depends on the relative abandonment and service rates. We
extend our model to finite buffers and resequencing. We assume exponential service.
Our optimality results are very strong; we minimize the queue length process in the weak
majorization sense.
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1. Introduction and literature review

In many service, production, and traffic systems there are multiple types of customers
requiring different types of ‘servers’, i.e. different services, products, or routes. Often, the
underlying infrastructure is expensive, and, hence, so are the opportunity costs incurred when
servers of one type are idle while others are congested. This cost can be reduced by introducing
flexible servers that can serve multiple types of customers, but the cost of providing this
flexibility may be very high. On the other hand, in many situations a proportion of the customers
may be flexible, i.e. may be willing to change their type in order to achieve faster service, and the
infrastructure to take advantage of this customer flexibility is often relatively inexpensive. This
latter setting can be thought as an example of the network topology known as ‘W ’ design [9].

This research is in part motivated by a call center which provides service in both English and
Spanish. Callers currently have the option of pressing ‘1’ for English and ‘2’ for Spanish, but
there are times when many Spanish speakers, for example, are on hold while all the Spanish
speaking agents are busy, and yet there are idle English-speaking agents. Because of the training
expense and high turnover of agents, the company policy is to train agents to handle calls in
only one language. The company would like to know the benefit of adding a ‘press 3’ option
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for bilingual customers willing to have their question answered in either language in exchange
for reducing their waiting time. Note that this option has a small incremental infrastructure
cost only, because it is taking advantage of flexibility that is already present in the customers.

Another important application of our model and analysis is to highway traffic, through
the Mobile Millennium project (see http://www.traffic.berkeley.edu/), in which user-generated
content on current highway speed, collected by GPS-enabled cell phones, is contributed to a
central system that provides information back to the user for personal use in choosing alternate
routes. A similar application is to communications and Internet routeing, in which some but
not all users have the ability to query alternate routes and use the shortest. In a make-to-order
manufacturing context, some customers may not care, for example, about the color of the
product they are ordering. Another application is to national boarder crossings with different
queues for different nationalities, and where some customers may have dual citizenship. This
will be important when a customer’s preferred server turns out to be congested, or in other
situations in which individual objectives and social welfare objectives are not aligned.

Note that the flexibility we are studying is customer flexibility, not server flexibility. The
latter has received a lot of attention in the operations management community, and in particular
for call centers. See, e.g. [3], [10], [14], [15], and [18]. However, such flexibility is still
generally expensive, particularly in terms of training costs. Customer flexibility, on the other
hand, is often already present, but may not be exploited. Generally, it is inexpensive to take
advantage of customer flexibility.

We study the effect of customer flexibility. We consider a queueing system with c parallel
multiple-server stations having exponentially distributed service times with the same rate µ.
All of these servers follow a nonidling arbitrary discipline (first-come–first-served (FCFS),
last-come–first-served, etc.). We assume arrivals to the system form an arbitrary process that is
independent of the state of the system. Some (dedicated) arrivals are obliged to use a particular
station, while others (flexible) have the ability to use any of the c stations. Dedicated arrivals
are equally likely to require a particular station. Let A be the set of arrival points, and let F ⊆ A

denote the time points where a flexible arrival occurs. Note that F is an arbitrary subset of A.
Routeing these flexible customers to the station with the least number of customers (ties

are broken arbitrarily) is known in the literature as the ‘join the shortest queue’ (JSQ) policy.
The optimality of JSQ, assuming that all customers are flexible (i.e. F = A) and assuming a
single server at each station, has been shown in a variety of contexts (see, e.g. [5], [6], [16],
[17], [19], [24], [27], [28], [29], [30], and [32]). Whitt [31] gave a counterexample that JSQ
is not necessarily optimal (even as an individual optimum rather than a social optimum) when
processing times are not exponential. More recently, Gupta et al. [12] studied JSQ in processor
sharing (PS) server farms for nonexponential service times. When both dedicated and flexible
arrivals are present, Menich and Serfozo [22] proved the optimality of JSQ for flexible customers
among interchangeable routeing policies when processing times are exponential and arrivals
are Poisson. Argon et al. [4] considered a model with nonidentical exponential service rates
and general delay costs and developed heuristic methods for routeing.

Only a few papers have addressed the marginal impact of customer flexibility. When a subset
of customers are flexible and flexible customers follow JSQ, Foley and McDonald [7] studied
the large deviations (rare event) behavior of the system, and gave conditions under which the rate
at which the total queue length reaches a large level is the same as the rate when all customers
are flexible. He and Down [13] showed, building on an earlier analysis of Reiman [25] using
diffusion limits, that in heavy traffic the full benefit of having some flexible customers can be
achieved with an arbitrarily small proportion of customers being flexible. In a follow-up paper
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we show that waiting times are convex in the proportion of customers who are flexible, which
we shorten to the proportion flexible [2]. Here we just consider monotonicity.

In Section 2 we study multiple stations having multiple identical servers. Johri [17] and
Sparaggis et al. [28] allowed service rates to depend on queue lengths, and showed the optimality
of JSQ without dedicated customers and under appropriate conditions on the service rates.
Multiple identical servers at a station is a special case. We extend this result to general arrivals
of both flexible and dedicated customers using weak majorization and by developing a new
approach for coupling potential service completions to prove sample-pathwise optimality. We
also show that, when flexible customers follow JSQ, the total number of customers in the
system is stochastically decreasing in the proportion flexible, so there is an advantage to having
customer flexibility. Note that minimizing the total number in the system is equivalent to
minimizing the mean waiting time from Little’s law. We also show that the waiting time
for dedicated customers is decreasing in the proportion flexible. That is, the monolingual
customers, on average, benefit from having bilingual customers.

In the remainder of the paper we consider several practically important extensions. In
Section 3 we consider customer abandonments, and show that when customers abandon only
from the queue, and the abandonment rate is greater than the service rate, even though JSQ
no longer minimizes the number of customers in the system, it still maximizes the service
completion process. In Section 4 we consider finite buffers, and in Section 5 we consider
several other extensions.

2. Multiple-server stations

Sparragis et al. [28] showed that JSQ minimizes queue lengths in the weak majorization sense
when the service rate for each server is an identical increasing and concave function of the queue
length. For the case of multiple servers at a station (m servers at each of the c stations, all with
rate µ), we give a new coupling of the servers across stations to show the optimality of JSQ.

While having multiple servers is a special case of the concave model of Sparragis et al.
[28], they did not allow dedicated customers, whereas we do. Furthermore, we use the same
coupling in our proof here to show new results for impatient customers in the next section.

A detailed discussion about weak submajorization, denoted by ‘≺w’, is given in Appendix A.
The following lemma about the weak submajorization of integer-valued vectors is important
and will be referred to throughout. It extends the result of Fulkerson and Ryser [8], who showed
(1) below. The proof is similar to that of Marshall and Olkin [21, pp. 135–136], and is thus
omitted. Note that the proof is not trivial because adding or subtracting ei may change the
relative ordering of ai .

Lemma 1. Let a1 ≥ · · · ≥ ac and b1 ≥ · · · ≥ bc be integers. If a ≺w b then

a + ei ≺w b + ej for all i ≥ j,

a − ei ≺w b − ej for all i ≤ j, (1)

where ek is the kth unit vector.

The following corollary provides conditions under which we extend the previous lemma.

Corollary 1. Let a1 ≥ · · · ≥ ac ≥ 0 and b1 ≥ · · · ≥ bc ≥ 0 be integers, and fix i > j . If
a ≺w b and

s∑

k=1

ak <

s∑

k=1

bk (2)
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is true for all j ≤ s < i, then
a − ei ≺w b − ej .

Proof. See Appendix B.

Let N1(t) = (N1
1 (t), N1

2 (t), . . . , N1
c (t)) denote the number of customers at each station

when the JSQ policy is followed for the flexible customers. By shortest queue we mean the sta-
tion with the fewest number of customers. Let I 1(t) = (I 1

11(t), I
1
12(t), . . . , I

1
1m(t), I 1

21(t), . . . ,

I 1
cm(t)) denote the vector for the number of customers at each server for each station in

N1(t), I 1
ij (t) ∈ {0, 1}. Furthermore, let Q1(t) = (Q1

1(t), Q2
1(t), . . . , Qc

1(t)) be the vector
of queue lengths (excluding customers at servers) in N1(t). Hence, N1

i (t) = Q1
i (t) +∑m∗i

j=(m−1)i+1 I 1
ij . Define N2(t), I 2(t), and Q2(t) similarly, assuming that some arbitrary

policy is followed.
For convenience, let us label the stations under each policy at time t in decreasing order,

so that N1[i](t) = N1
i (t) and N2[i](t) = N2

i (t). Then Q1[i](t) = Q1
i (t) and Q2[i](t) = Q2

i (t). For

convenience, we will use a single index for components of I (t), i.e. we let I 1
k (t) = I 1

ij (t) and
I 2
k (t) = I 2

ij (t), where k = (m − 1) ∗ i + j .

Theorem 1. The process {N1(t)}∞t=0 is stochastically smaller than {N2(t)}∞t=0 in the sense of
weak submajorization:

{N1(t)}∞t=0 ≺w {N2(t)}∞t=0.

Proof. The proof uses coupling and forward induction. Suppose that {Ñ1(t)} and {Ñ2(t)}
are stochastic processes having the same stochastic laws as {N1(t)} and {N2(t)}. Define {Ĩ 1(t)},
{Ĩ 2(t)}, {Q̃1(t)}, and {Q̃2(t)} similarly. We will couple these processes so that

P({Ñ1(t)}∞t=0 ≺w {Ñ2(t)}∞t=0) = 1. (3)

To ease the notational burden, we will omit the tildes henceforth on the coupled versions and
just use {N1(t)}, {N2(t)}, {I 1(t)}, {I 2(t)}, {Q1(t)}, and {Q2(t)}.

We use induction on tn, where tn denotes the ordered arrival and potential service completion
times such that t1 < t2 < t3 < · · · and t0 = 0. Clearly, (3) holds for t = 0 because
N1(0) = N2(0). Assume that it is also true for t such that tn−1 ≤ t < tn. Then, because the
state does not change for tn ≤ t < tn+1, it is sufficient to show that (3) holds for tn. We consider
two cases separately.

Case 1: arrival. We couple the arrival times so that if a dedicated arrival occurs at the kth
largest queue in N1(t), the same thing happens to N2(t). For such an arrival, using Lemma 1
with k = j immediately yields N1(tn) ≺w N2(tn). Next consider the case where the arrival
is flexible and the arbitrary policy chooses to send the customer to the mth largest queue at
time tn. Since m ≤ c, again by Lemma 1, we obtain N1(tn) ≺w N2(tn).

Case 2: departure. It is intuitive to couple potential service completion times (a potential
service completion will result in an actual service completion if and only if the queue is not
empty) such that, for N1(t), if a potential service completion occurs at the kth largest station’s
lth largest server, where the server size within each station is ordered according to I (t), then the
same is true in N2(t). However, this coupling will not work. Consider the counterexample in
Table 1. If a potential service completion occurs in the second largest station’s smallest server
(I j

6 ), the majorization will not be valid anymore. Hence, we must define a new way of coupling
the potential service completions.

We label the busy servers in order from the largest station to the smallest station, whereas
idle servers will be ordered after the busy ones regardless of the station. Then the coupling will

https://doi.org/10.1239/aap/1324045695 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1324045695


Multiple-server system with flexible arrivals 989

Table 1: Two coupled systems at time t with c = 3 and m = 3.

System 1 System 2

I 1
1 I 1

2 I 1
3 I 1

4 I 1
5 I 1

6 I 1
7 I 1

8 I 1
9 I 2

1 I 2
2 I 2

3 I 2
4 I 2

5 I 2
6 I 2

7 I 2
8 I 2

9
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
1 0 0 1 0 0

Table 2: Sample server states and related ordering.

I
j
1 I

j
2 I

j
3 I

j
4 I

j

5 I
j
6 I

j
7 I

j
8 I

j
9 I

j
10 I

j
11 I

j
12

1 1 1 1 1 1 1 1 0 1 0 0

Q
j
1 Q

j
2 Q

j
3 Q

j
4

2 0 0 0

Server ordering

1 2 3 4 5 6 7 8 10 9 11 12

be done on this ordering accordingly, i.e. if a potential service completion occurs at the pth
server in this ordering in system 1, then a potential service completion occurs at the pth server
in system 2. See Table 2 for an ordering example.

There are four cases. If no actual service completion occurs in either system, or if the
potential service completion is an actual service completion in system 1 but not in system 2,
then majorization continues to hold trivially.

Now, suppose that the potential service completion is an actual service completion in both
systems. Suppose that u is such that the actual service completion takes place in the uth largest
station in system 1, and define v for system 2 similarly. First, if u ≤ v then, by Lemma 1,
N1(tn) ≺w N2(tn). Now suppose that u > v (see Table 3), so, intuitively, to get the pth nonidle
server, more idle servers are skipped over in system 1 than in system 2. Formally, because of our
definitions of p, u, and v, stations up to r have more empty servers in system 1 for v ≤ r < u,
that is,

r∗m∑

k=1

I 1
k (t) < p ≤

v∗m∑

k=1

I 2
k (t) ≤

r∗m∑

k=1

I 2
k (t). (4)

Now, define q as the smallest indexed station in system 1 without an empty server (q = 0 if
all stations have at least one empty server, q = 1 in the example of Table 3). Then, by (4) and
because I 1

k (t) = 1 for k ≤ q ∗ m, we have
∑r∗m

k=q∗m+1 I 1
k (t) <

∑r∗m
k=q∗m+1 I 2

k (t). Hence,

r∑

k=1

N1
k (t) =

q∑

k=1

N1
k (t) +

r∗m∑

k=q∗m+1

I 1
k (t) <

q∑

k=1

N2
k (t) +

r∗m∑

k=q∗m+1

I 2
k (t) =

r∑

k=1

N2
k (t)

for v ≤ r < u. Therefore, by Corollary 1, we have N1(tn) = N1(t) − eu ≺w N2(t) − ev =
N2(tn). Now, suppose that the potential service completion is an actual service completion in
system 2, but not in system 1. See Table 4. Define v as the station where the actual service
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Table 3: (a) Server states at time t . A departure takes place from the (p = 6)th largest server in both
systems, so u = 3 and v = 2. (b) States after departure. Majorization is still valid.

(a)

System 1 System 2

I 1
1 I 1

2 I 1
3 I 1

4 I 1
5 I 1

6 I 1
7 I 1

8 I 1
9 I 2

1 I 2
2 I 2

3 I 2
4 I 2

5 I 2
6 I 2

7 I 2
8 I 2

9
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
2 0 0 2 0 0

Server ordering Server ordering

1 2 3 4 5 8 6 7 9 1 2 3 4 5 6 7 8 9

(b)

System 1 System 2

I 1
1 I 1

2 I 1
3 I 1

4 I 1
5 I 1

6 I 1
7 I 1

8 I 1
9 I 2

1 I 2
2 I 2

3 I 2
4 I 2

5 I 2
6 I 2

7 I 2
8 I 2

9
1 1 1 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
2 0 0 2 0 0

Table 4: (a) Server states at time t . A departure takes place from the (p = 8)th largest server in both
systems, so v = 3 is the last nonempty station in system 2. (b) States after departure. Majorization is still

valid.

(a)

System 1 System 2

I 1
1 I 1

2 I 1
3 I 1

4 I 1
5 I 1

6 I 1
7 I 1

8 I 1
9 I 2

1 I 2
2 I 2

3 I 2
4 I 2

5 I 2
6 I 2

7 I 2
8 I 2

9
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
2 0 0 2 0 0

Server ordering Server ordering

1 2 3 4 5 8 6 7 9 1 2 3 4 5 6 7 8 9

(b)

System 1 System 2

I 1
1 I 1

2 I 1
3 I 1

4 I 1
5 I 1

6 I 1
7 I 1

8 I 1
9 I 2

1 I 2
2 I 2

3 I 2
4 I 2

5 I 2
6 I 2

7 I 2
8 I 2

9
1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
2 0 0 2 0 0

completion in system 2 takes place. We will use the following definition to account for the
change in order after departure. Let v′ ≥ v be such that

N2
v (t) = N2

v+1(t) = · · · = N2
v′(t) and either N2

v′(t) > N2
v′+1(t) or v′ = c.
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Then
i∑

k=1

N2
k (tn) =

i∑

k=1

N2
k (t) − 1{i ≥ v′}.

Note that the total number of busy servers in system 1 is less than the number of busy servers
up to station v in system 2. This follows from

m∗c∑

k=1

I 1
k (t) < p ≤

m∗v∑

i=1

I 2
k (t).

Again, define q as the smallest station in system 1 without an empty server. Then,

c∑

k=1

N1
k (t) =

q∑

k=1

N1
k (t) +

m∗c∑

k=m∗q+1

I 1
k (t)

<

q∑

k=1

N2
k (t) +

m∗v∑

k=m∗q+1

I 2
k (t)

=
v∑

k=1

N2
k (t)

≤
v′∑

k=1

N2
k (t).

Hence,
∑i

k=1 N1
k (tn) ≤ ∑i

k=1 N2
k (tn), and this concludes the proof.

Remark 1. The weak majorization result also holds for the customers waiting in the queue,
that is, {Q1(t)}∞t=0 ≺w {Q2(t)}∞t=0. We also have the following immediate consequences of
our result. The total number of customers in the system, and, hence, the mean waiting time, is
stochastically minimized by JSQ for flexible arrivals. That is, letting N̄ i(t) = ∑c

i=1 Ni
i(t), i =

1, 2, we have {N̄1(t)}∞t=0≺st{N̄2(t)}∞t=0 and E[N̄1(t)] ≤ E[N̄2(t)], t ≥ 0. Also, the departure
process is stochastically maximized by JSQ for flexible arrivals. That is, letting Di(t) denote
the number of departures by time t in Ni(t), i = 1, 2, we have {D1(t)}∞t=0	st{D2(t)}∞t=0.

Another immediate result is that any increasing Schur convex function of N(t) is stochasti-
cally minimized by JSQ for flexible arrivals. An example is when the holding cost is a separable
increasing cost function, φ(N) = ∑

φi(Ni), where φi is increasing convex. Also, note that the
cost function could vary over time, or change randomly.

As the subset of the arrivals that are flexible gets larger, which implies that the proportion
flexible increases, the number of customers in the system gets smaller in the weak submajoriza-
tion sense. This result follows from Theorem 1, since we can construct an arbitrary routeing
policy where a subset of the flexible arrivals are routed to the shortest queue and the rest are
routed arbitrarily. Similarly, the steady-state mean waiting time in the system for all customers
and the steady-state mean waiting time for dedicated customers decrease in the usual stochastic
order as the subset of the arrivals that are flexible gets larger. That is, not only are all customers
better off on average when there are more flexible customers, but the dedicated customers
as a group are better off when there are more flexible customers. To see this, note that, by
our construction, dedicated arrivals see fewer customers on average as the subset of flexible
customers increases, so their mean waiting times will also be smaller by the symmetry of the
queues.
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A special case of our nested arrival process is the case where some proportion of arrivals are
flexible. More rigorously, let each arrival be flexible with probability f , and dedicated with
probability 1 − f , where 0 ≤ f ≤ 1, independently of the other arrivals. We define Ni as
the vector of queue lengths when JSQ is followed for flexible customers and the proportion of
flexible customers is fi , where f1 ≥ f2. Then {N1}∞t=0 ≺w {N2}∞t=0 and both the steady-state
mean waiting time for all customers and steady-state waiting time for dedicated customers are
smaller in N1 for this setting.

3. Impatient customers

We suppose that the customers are impatient and abandon the system after waiting for some
exponentially distributed time at rate α. We consider only single-server stations for simplicity.
Define N1(t) = (N1

1(t), N2
1(t), . . . , Nc

1(t)) as the vector of queue lengths at time t ≥ 0 when
JSQ is followed for flexible customers, and define N2(t) as the vector of queue lengths when
an arbitrary policy is followed for flexible customers. Also, let A1(t) denote the total number
of abandonments and D1(t) the total number of service completions up to time t when JSQ
is followed for flexible customers. Define A2(t) and D2(t) similarly for the arbitrary routeing
policy.

Sparaggis et al. [28] showed the following results.

• For nondecreasing concave service rates, {N1(t)}∞t=0 ≺w {N2(t)}∞t=0.

• For nondecreasing convex service rates, {N1(t)}∞t=0 ≺w {N2(t)}∞t=0.

Here ‘≺w’denotes weak supermajorization. Again, detailed discussion about supermajorization
can be found in Appendix A. Note that customers abandoning both in queue and in service,
and customers abandoning only in queue with rate α ≤ µ are special cases of nondecreasing
concave service rates, whereas customers abandoning only in queue with rate α > µ is a
special case of nondecreasing convex service rates. However, the above result does not tell us
much about the overall system performance, because stochastically minimizing the number in
the system does not mean maximizing service completions, as the departures are due to both
service completions and abandonments.

Movaghar [24] also studied the JSQ policy with impatient customers. He assumed Poisson
arrivals, and gave conditions on the distribution of the patience time such that JSQ minimizes
the number of long-run abandonments.

The following result was shown to be true without dedicated arrivals in [27]. We prove it
using a new coupling procedure and use it for the proof of Theorem 2.

Corollary 2. Let each customer in queue (but not in service) abandon the system after waiting
an exponentially distributed time at rate α, where α ≤ µ. Then,

{N1(t)}∞t=0 ≺w {N2(t)}∞t=0, (5)

{A1(t)}∞t=0 ≺st {A2(t)}∞t=0, (6)

{D1(t)}∞t=0 	st {D2(t)}∞t=0. (7)

Proof. Again, we use induction on event times tn, so suppose that (5)–(7) hold for t < tn.
Now we separate the service completions into two types. We say that a customer finishing
service and departing the system will independently be tagged as type 1 with probability α/µ

and type 2 with probability 1 − α/µ. We couple the arrivals and potential service completions
of type 2 as in the proof of Theorem 1. Since we have single-server stations, potential service
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Table 5: Labeling of customers, where a 1 indicates the presence of a customer.

System 1 System 2

I 1
1 I 1

2 I 1
3 I 2

1 I 2
2 I 2

3
1 1 1 1 1

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
1 1 1 1 1 1 1 1 1 1

Labeling of customers Labeling of customers

5 6 7 5 6

1 2 3 4 1 2 3 4 7 8

completion coupling becomes trivial (if a potential service completion occurs at the kth largest
queue in N1(t) then a potential service completion occurs at the kth largest queue in N2(t)).
The weak majorization ordering for Ni(t) as well as the stochastic ordering for Ai(t) and Di(t)

will be preserved as before.
Now let us couple potential abandonments and potential service completions of type 1 as

follows. In broad terms, we first couple each abandonment in system 1 with an abandonment
in system 2, which we can do from Remark 1, because it tells us that the total number in queue
will be smaller in system 1. We then couple service completions in both systems as much as
possible, and then couple remaining customers. More rigorously, let us label the customers
in system 1 as follows. First label the customers in queue, from the largest to the smallest
queues. That is, customers 1, 2, . . . , Q1

1(t) are the customers in the first (largest) queue, then
customers Q1

1(t) + 1, . . . , Q2
1(t) are in the second queue, etc. We then label the customers

in service starting from station 1. See the first part of Table 5 for a three-station example,
where I i

j = 1{Ni
j (t) > 0} represents the customers in service. For system 2, label the first

Q1 := ∑
Q1

i (t) customers in the queues starting from those in queue 1 as we did for system 1.
Then label the customers in service in system 2, and, finally, label any remaining customers
in the queues in decreasing order of queue length. Again, see Table 5. Suppose that customer
p under the labeling above departs from both systems, 1 ≤ p ≤ N2 := ∑

N2
i (t), where, for

p > N1 := ∑
N1

i (t), there is no actual departure in system 1. We have the following cases.

(i) There is an actual abandonment or service completion of type 1 in system 2, but not in
system 1 (i.e. N1 < p ≤ N2; for example, p = 8 in Table 5). Let v be such that this
departure takes place in the vth largest queue in system 2, so

∑v
k=1 N2

k (t) ≥ p. Then to
account for an order change, let v′ ≥ v be such that

i∑

k=1

N2
k (tn) =

i∑

k=1

N2
k (t) − 1{i ≥ v′}.

Note that

N1 :=
c∑

k=1

N1
k (t) < p ≤

v∑

k=1

N2
k (t) ≤

v′∑

k=1

N2
k (t),

so
∑i

k=1 N1
k (tn) ≤ ∑i

k=1 N2
k (tn) for all i and N1(tn) ≺w N2(tn).
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(ii) There is an actual abandonment in both systems (i.e. p ≤ Q1; for example, p = 2 in
Table 5). Let u(v) be such that the abandonment takes place in the uth largest queue
in system 1 and the vth largest queue in system 2. If u ≤ v then, by Lemma 1,
N1(tn) ≺w N2(tn). If u > v then, by the definition of p,

r∑

k=1

N1
k (t) ≤ r +

u−1∑

k=1

Q1
k(t) < r + p ≤ r +

v∑

k=1

Q2
k(t) ≤

r∑

k=1

N2
k (t)

for all v ≤ r < u. Therefore, by Corollary 1, N1(tn) ≺w N2(tn).

(iii) There is an actual service completion of type 1 in both systems (i.e. Q1 < p ≤ Q1 +
max{M1, M2}, whereMj = max{i : N

j
i (t) > 0}, the total number of customers in service

in system j ; for example, p = 5 in Table 5). Let u(v) be such that the service completion
takes place in the uth largest queue in system 1 and the vth largest queue in system 2. Then,
u = v because Q1 + u = p = Q1 + v. Therefore, by Corollary 1, N1(tn) ≺w N2(tn).

(iv) There is an actual abandonment in system 2 and an actual service completion of type 1 in
system 1 (i.e. M1 > M2 and Q1 +M2 < p ≤ Q1 +M1; for example, p = 7 in Table 5).
Let the service completion in system 1 take place in the uth largest queue, and let the
abandonment in system 2 take place in the vth largest queue in system 2, so v ≤ M2 < u.
Therefore, by the definition of p,

r∑

k=1

N2
k (t) ≥ p − (M2 − r)+ > p − (u − r) ≥

r∑

k=1

N1
k (t)

for all v ≤ r < u, and, again by Corollary 1, N1(tn) ≺w N2(tn).

Note that A1(t) changes only in case (ii). But in that case A2(tn) = A2(t)+1 ≥ A1(t)+1 =
A1(tn). Hence, (6) follows by induction. Similar reasoning as in the previous proof shows (7).

We now consider the case where µ < α. As mentioned at the beginning of the section, the
total number in the system will not be minimized under JSQ. Intuitively, since abandonments
occur only from the queue, and with a higher rate than the service rate, to minimize the number
in the system, it is better to have long queues, and, therefore, more abandonments.

We will make use of the following lemma and corollary, which are similar to our earlier
submajorization results, so we omit the proofs.

Lemma 2. Let a1 ≥ · · · ≥ ac and b1 ≥ · · · ≥ bc be integers. If a ≺w b then

a + ei ≺w b + ej for all i ≥ j,

a − ei ≺w b − ej for all i ≤ j,

where ek is the kth unit vector.

Corollary 3. Let a1 ≥ · · · ≥ ac ≥ 0 and b1 ≥ · · · ≥ bc ≥ 0 be integers, and fix i > j .
If a ≺w b and

c∑

k=s

ak >

c∑

k=s

bk

is true for all j < s ≤ i, then

a − ei ≺w b − ej .
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We also have the following corollary.

Corollary 4. Let a1 ≥ · · · ≥ ac ≥ 0 and b1 ≥ · · · ≥ bc ≥ 0 be integers, and let
∑c

k=1 ak >∑c
k=1 bk . If a ≺w b then

a − e1 ≺w b,

where ek is the kth unit vector.

Proof. See Appendix C.

Theorem 2. Let each customer in queue abandon the system after waiting an exponentially
distributed time at rate α, where α > µ. Then,

{D1(t)}∞t=0	st{D2(t)}∞t=0.

Proof. We show the stronger result, {N1(t)}∞t=0 ≺w {N2(t)}∞t=0, as well as {D1(t)}∞t=0	st
{D2(t)}∞t=0 by induction. We will couple the systems in a way that the weak supermajorization
is preserved at each t > 0. Note that

{N1(t)}∞t=0 ≺w {N2(t)}∞t=0 
⇒ {N̄1(t)}∞t=0	st{N̄2(t)}∞t=0,

where N̄j (t) denotes the number of customers at time t in system j .
First, we separate the abandonments into two types. We say that a customer abandoning the

system will independently be tagged as type 1 with probability µ/α and type 2 with probability
1 − µ/α. Next we couple the arrivals as in the proof of Theorem 1. In these cases the
weak supermajorization will be preserved by Lemma 2. Next we couple potential service
completions and potential abandonments of type 1. Let d = ∑c

k=1 N1
k (t) − ∑c

k=1 N2
k (t)

be the difference between the total number of customers in system 1 and system 2. By
induction we have N1(t) ≺w N2(t); hence, d ≥ 0. We will set these additional d customers
apart and couple the other ones together. In other words, departures for these additional
d customers will be coupled with dummy (nonactual) departures in system 2. To rigor-
ously define these customers, let V be an integer-valued c-dimensional vector and let eV

be the unit vector such that eV
i = 1 if Vi = V[1] and 0 otherwise. Then we will define a

sequence of vectors such that V n+1(t) = V n(t) − eV n(t) and V 0(t) = N1(t). By Corollary 4,
N1(t) ≺w V d(t) ≺w N2(t) and

∑c
k=1 V d

k (t) = ∑c
k=1 N2

k (t). Hence, V d(t) ≺w N2(t). If,
for the d customers in N1(t) − V d(t) there is a service completion or type-1 abandonment in
system 1, there is a dummy transition in system 2, so N1(tn) ≺w N2(tn). Let this customer be in
the kth largest queue in system 1. Then it is immediate that N1(tn) = N1(t) − ek ≺wV d(t) ≺w

N2(t) = N2(tn). Therefore, N1(tn) ≺w N2(tn). Also, D2(t) does not change in this case, still
satisfying D1(tn) ≥ D2(tn). For the remaining customers in V d(t), we couple the service com-
pletions and type-1 abandonments with those in N2(t), as in the proof of Corollary 2, which we
can do because V d(t) ≺w N2(t), so we obtain V d(tn) ≺w N2(tn) and D1(tn) ≥ D2(tn). Since∑c

k=1 V d
k (tn) = ∑c

k=1 N2
k (tn) and N1(tn) ≥ V d(tn), we also have N1(tn) ≺w V d(tn) ≺w

N2(tn).
Finally, we will look at the potential abandonments of type 2. In this case, the number of

service completions will not change, satisfying D1(tn) ≥ D2(tn). The coupling procedure is
similar to Theorem 1. However, this time we label the customers in queue as we see them from
the smallest station to the largest station in both systems. We couple the potential type-2 aban-
donments such that customer p abandons in both systems (which may correspond to a dummy
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Table 6: Labeling of customers for abandonments of type 2.

System 1 System 2

I 1
1 I 1

2 I 1
3 I 2

1 I 2
2 I 2

3
1 1 1 1 1 1

Q1
1 Q1

2 Q1
3 Q2

1 Q2
2 Q2

3
1 1 1 1 1

Labeling of customers Labeling of customers

3 2 1 2 1

abandonment if p exceeds the number of customers). See Table 6. Again, let I i
j = 1{Ni

j (t) > 0}
represent the customers in service. It is immediate that

∑c
k=i I 1

k (t) ≥ ∑c
k=i I 2

k (t) for all i, as
N1(t) ≺w N2(t). The following are the possible cases.

(i) The potential abandonment is not an actual one in system 1, but there is an actual
abandonment of type 2 in system 2. Majorization is preserved trivially.

(ii) There is an actual abandonment in both systems. Let u(v) be such that the abandonment
takes place in the uth largest queue in system 1 and the vth largest queue in system 2.
If u ≤ v then, by Lemma 2, N1(tn) ≺w N2(tn). If u > v (e.g. p = 1 in Table 6, so
u = 2 and v = 1) then, by the definition of p,

∑c
k=u Q1

k(t) ≥ p and
∑c

k=v+1 Q2
k(t) < p

because Q2
v(t) > 0. Therefore,

c∑

k=r

Q2
k(t) ≤

c∑

k=v+1

Q2
k(t) < p ≤

c∑

k=u

Q1
k(t) ≤

c∑

k=r

Q1
k(t)

for all v < r ≤ u. Combining this with
∑c

k=i I 1
k (t) ≥ ∑c

k=i I 2
k (t) for all i shows that

c∑

k=r

N2
k (t) =

c∑

k=r

Q2
k(t) +

c∑

k=r

I 2
k (t) <

c∑

k=r

Q1
k(t) +

c∑

k=r

I 1
k (t) =

c∑

k=r

N1
k (t)

for all v < r ≤ u. So, by Corollary 3, N1(tn) ≺w N2(tn).

(iii) The potential type-2 abandonment is not an actual one in system 2, but there is an actual
abandonment of type 2 in system 1 (e.g. p = 3, u = 1 in Table 6). To account for an
order change, let u′ ≥ u be such that

c∑

k=i

N1
k (tn) =

c∑

k=i

N1
k (t) − 1{i ≤ u′}.

By the definition of p,

c∑

k=u

Q1
k(t) ≥ p and

c∑

k=1

Q2
k(t) < p.

For r ≥ u′,
∑c

k=r N1(tn) = ∑c
k=r N1(t) ≥ ∑c

k=r N2(t) = ∑c
k=r N2(tn). Now

suppose, by way of contradiction, for u′ ≥ r > u, that
∑c

k=r N1(tn) <
∑c

k=r N2(tn),
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i.e.
c∑

k=r

N1
k (t) =

c∑

k=r

N2
k (t). (8)

By induction we have
∑c

k=r+1 N1
k (t) ≥ ∑c

k=r+1 N2
k (t). Combining this with (8) yields

Q1
r (t) ≤ Q2

r (t). On the other hand,
∑c

k=r I 1
k (t) ≥ ∑c

k=r I 2
k (t). This with (8) gives∑c

k=r Q1
k(t) ≤ ∑c

k=r Q2
k(t). Therefore,

c∑

k=1

Q2
k(t) ≥

c∑

k=u

Q2
k(t)

=
r−1∑

k=u

Q2
k(t) +

c∑

k=r

Q2
k(t)

≥
r−1∑

k=u

Q2
r (t) +

c∑

k=r

Q2
k(t)

≥
r−1∑

k=u

Q1
r (t) +

c∑

k=r

Q1
k(t)

=
c∑

k=u

Q1
k(t)

≥ p,

which is a contradiction. Hence,
∑c

k=r N1
k (t) >

∑c
k=r N2

k (t) for u′ ≥ r > u. Finally,
for r ≤ u,

c∑

k=r

N1
k (t) =

c∑

k=r

Q1
k(t) +

c∑

k=r

I 1
k (t)

≥
c∑

k=u

Q1
k(t) +

c∑

k=r

I 1
k (t)

≥ p +
c∑

k=r

I 1
k (t)

>

c∑

k=1

Q2
k(t) +

c∑

k=r

I 1
k (t)

≥
c∑

k=1

Q2
k(t) +

c∑

k=r

I 2
k (t)

≥
c∑

k=r

Q2
k(t) +

c∑

k=r

I 2
k (t)

=
c∑

k=r

N2
k (t).

Thus,
∑c

k=r N1
k (t) >

∑c
k=r N2

k (t) for all r ≤ u′, so, N1(tn) ≺w N2(tn).
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4. Finite buffers

In the models studied earlier, each queue had infinite space for waiting. A more realistic
extension to this model is the case where queues have finite buffers. This problem is not an
immediate extension because the weak majorization will not be preserved upon arrival as in the
infinite buffer models. For instance, consider a system with two servers where each queue has a
capacity of four customers. Let N1(t) = (3, 3), and let N2(t) = (4, 2). Then a dedicated arrival
to the longest queue at tn will violate the weak majorization. Also, with infinite buffers we
know that JSQ minimizes the queue length vector process, {N(t)}∞t=0, in the weak majorization
sense, which implies stochastic maximization of the departure process, {Dt }∞t=0 (Remark 1),
but here JSQ will only be optimal in the latter sense.

The case where all the customers are flexible and queues might have unequal buffer capacities
was studied by Hordijk and Koole [16] and Sparaggis et al. [28]. They showed that JSQ (which
now means routeing customers to the shortest nonfull queue) stochastically maximizes Dt for
all t ≥ 0. Koole et al. [19] showed the same result for two queues with equal buffer capacities
when all customers are flexible and service times are drawn from an ‘increasing likelihood ratio’
(ILR) distribution. Here we extend these results by showing that JSQ stochastically maximizes
{Dt }∞t=0 for two or more queues with exponential service times when there is a mixture of
flexible and dedicated arrivals and all buffers have the same capacities. The result does not
hold for unequal capacities when there are dedicated customers (p < 1), as suggested by the
example in the prior paragraph.

First we need the following lemma, which also holds for our earlier models. A sample path
argument along the lines of Theorem 3 below proves the lemma; we omit the proof.

Lemma 3. For any policy that idles a server when customers are present in its queue, we can
construct a nonidling policy for which {Dt }∞t=0 is stochastically larger.

Theorem 3. Let each queue have equal finite buffer capacity. The nonidling join the shortest
queue policy, which routes the flexible customers to the shortest of the queues with free capacity,
stochastically maximizes {Dt }∞t=0.

Proof. We show that, for an arbitrary policy � that does not follow JSQ at an arbitrary
decision epoch, we can construct a policy that does follow JSQ for that decision and has
stochastically earlier departures. Let t be the first time that � disagrees with JSQ and routes a
customer to some queue, A, which is not the shortest nonfull queue. We tag this customer and
give it preemptive lower priority compared to other customers, i.e. it always stays at the back
of the queue. This is legitimate, since the priority policy within a queue does not affect the
departure process, because service times are exponential. Let �′ be a policy that agrees with
� before time t , but routes the arrival at time t to the shortest queue, B. Consider two systems
where � and �′ are used respectively as routeing policies. We couple the arrival process for
these systems so that each customer has the same arrival epoch in both systems. We also couple
the service times so that each specific customer has the same service time in both systems.

First, assume that A is full before routeing, so that the tagged customer is lost under �. Now,
due to coupling, the tagged customer will either be served under �′ when � idles server B,
so we have one extra departure under �′, or the tagged customer will be lost due to an arrival
when queue B is full, so both systems will be in the same state and the departure processes will
be the same for both policies.
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Now assume that A is not full before routeing the tagged customer. Let T be the first time
any of the following happens:

(i) queues A and B (excluding the tagged customer) are the same length,

(ii) the tagged customer leaves under �′,

(iii) � routes to queue A when A is full.

Note that B will not overflow under �′ before one of (i)–(iii) occurs, because it starts with a
shorter queue. Now, if (i) occurs first, after interchanging the labels of A and B, both systems
are in the same state and the departure processes will be the same for both policies. If (ii) occurs
first then, while server B is serving the tagged customer under �′, server B is idle under �. Let
�′ continue to agree with � until the tagged customer is being served under � on A, and let
�′ idle queue A during that time. Then the systems will agree from the point that the tagged
customer leaves under �, but departures will be stochastically earlier under �′ than under �

because the tagged customer leaves earlier under �′. If (iii) occurs first, the tagged customer
will be lost under �, as in the case above where � initially routes the tagged customer to a full
queue, so the rest of the argument follows as in that case.

In all cases �′ is as good as �, and, from Lemma 3, there is a nonidling policy that is as
good as �′. Repeating the argument each time � deviates from JSQ gives us the result.

When there is a finite shared buffer and when dedicated arrivals are present, we do not
have the majorization result. For instance, consider a system with two servers and the shared
capacity is 6. Let N1(t) be the vector of queue lengths under the shortest nonfull queue policy,
and define N2(t) similarly for an arbitrary routeing policy. Suppose that N1(t) = (3, 2), and let
N2(t) = (3, 3). Then a dedicated arrival to the longest queue will violate weak majorization.
On the other hand, when all arrivals are flexible, the shortest nonfull queue policy is optimal
in the weak majorization sense, that is, {N1(t)}∞t=0 ≺w {N2(t)}∞t=0. This result can easily be
shown again using forward induction and considering the cases where an arrival might be lost
due to capacity insufficiency.

5. Other extensions

In this section we present some easy extensions of our results.

5.1. Slotted service

Suppose that all service times are geometrically distributed, and slotted so that services start
and end at integer time points. A special case of this model will be deterministic service times.
JSQ will again minimize the queue length vector process in the weak majorization sense. To
prove this, we couple an arbitrary routeing policy with JSQ so that, if there is a potential service
completion in the kth largest queue in one system at time n, n ∈ {0, 1, 2, . . .}, the same is
true for the other system. Note that we might have more than one departure at a single epoch.
However, treating these potential service completions one by one (starting from the smallest
queue so that ordering changes will not affect other couplings), we can conclude that the weak
majorization will be preserved at departure.

5.2. Random service rate

Our results will also hold when the instantaneous service rate (the failure rate of the service
times), which is common for all the servers, µ(t), varies according to an arbitrary stochastic
process, as long as the process is independent of the queue lengths and routeing policy.
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For example, servers could go online and offline according to a random process. Because
the servers are still identical at each point in time, we can still couple service completions so
that our majorization and stochastic orderings are preserved.

5.3. Random yield

We can also handle models in which service may not be successful, as long as the probability
that a service is a success is independent of the state and policy, and of the number of times
the service has been repeated. If the customer returns to the same queue upon an unsuccessful
completion, and the success probability is constant, our results continue to hold trivially because
a geometric sum of exponential service times is exponential. For a varying success probability,
or if an unsuccessfully completed customer is treated as a new arrival and all arrivals are flexible,
the coupling to preserve our results is easy.

5.4. Power of two choices

Suppose a flexible customer does not have full information about all the queue lengths upon
arrival. Instead, two (or more) queues are randomly chosen and the customer learns their queue
lengths and joins one of the those queues. For example, suppose that the facility is multilingual,
but customers are at most bilingual, and all combinations of bilingualism are equally likely.
Mitzenmacher [23] showed that JSQ among two queues yields almost as much advantage as
JSQ among all of the queues.

Again, all of our results will hold, where now JSQ means join the shortest of the subset of
queues that the customer has available. The proof is a trivial extension of the full information
case.

5.5. Resequencing

Suppose that a customer cannot depart from the system until all the customers that arrived
before it finish service, i.e. customers are forced to depart in order of arrival. Out-of-order
customers wait in a resequencing buffer until earlier arrivals complete service. For this model,
we assume that service within a queue is FCFS (and it is easy to see that this is the optimal
service order to minimize departure times under resequencing). These kinds of systems are
common in telecommunications where jobs (e.g. packets of a video) arrive as a stream, and
they should leave in the same order as they arrived. For prior research on the topic, we refer
the reader to [1], [11], and [20].

Let Dt be the number of service completions by time t , without considering resequencing,
and let Et be the number of departures actually exiting from the resequencing buffer by time t .
From Remark 1 we know that {Dt }∞t=0 is stochastically maximized by JSQ for an arbitrary
arrival process, but the same will not be true for {Et }∞t=0. However, we can show the weaker
result that Êi is stochastically minimized by JSQ for all i, where Êi is the time at which the ith
customer exits the resequencing buffer. Note that JSQ stochastically minimizes {D̂i}∞i=0 from
Remark 1, where D̂i is the ith service completion time, and where, unlike in the case for Êi ,
the ith service completion time may not correspond to the completion time of the ith customer
to arrive. Let Ĉi be the completion time of the ith customer to arrive, so Êi = maxj=1,...,i Ĉj .
Let us fix i, and consider a new arrival process that is identical to our original arrival process
for the first i arrivals, but in which no customers arrive after the ith arrival. Let D̃j be the
time of the j th completion, and let C̃j be the service completion time for the j th arrival,
j = 1, . . . , i, for the system with the new arrival process. Because of our FCFS assumption
within queues, the completion time of the j th arrival is unaffected by any arrivals after it,
i.e. C̃j = Ĉj for j = 1, . . . , i. From Remark 1, D̃i is stochastically minimized by JSQ, but
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D̃i = maxj=1,...,i C̃j = maxj=1,...,i Ĉj = Êi , so Êi is also stochastically minimized by JSQ
for any i.

Appendix A. Majorization

Weak submajorization is a preordering of Rec denoted by ‘≺w’ and is defined as follows.
For x, y ∈ Rec,

x ≺w y if
k∑

1

x[i] ≤
k∑

1

y[i], k = 1, . . . , c,

where x[i] denotes the components of x in decreasing order. Similarly, weak supermajorization,
denoted by ‘≺w’, is defined as

x ≺w y if
k∑

1

x(i) ≥
k∑

1

y(i), k = 1, . . . , c,

where x(i) denotes the components of x in increasing order. In both cases x is said to be weakly
majorized by y. When

∑c
1 xi = ∑c

1 yi , x ≺w y and x ≺w y are equivalent, and we say that x

is majorized by y, denoted by x ≺ y.
Intuitively, if x ≺w y then x is better balanced and smaller than y; if x ≺w y then x is better

balanced and larger than y; and if x ≺ y then x is better balanced than y.
Stochastic weak majorization is also defined analogously to the deterministic case. For two

random vectors X and Y , we say that X stochastically weakly submajorizes Y , X≺w.stY, or
supermajorizes Y , X≺w.stY , if and only if φ(X)≺stφ(Y ) for all increasing, or, respectively,
decreasing Schur-convex functions φ, where ‘≺st’ is the usual stochastic order [26, pp. 3–12]
and a Schur-convex function is defined to be a function that preserves the majorization ordering
[21]. The following definitions are equivalent:

(i) X≺w.stY (respectively X≺w.stY ),

(ii) φ(X)≺stφ(Y ) for all increasing (respectively decreasing) Schur-convex functions φ,

(iii) E[φ(X)] ≤ E[φ(Y )] for all increasing (respectively decreasing) Schur-convex func-
tions φ,

(iv) there exist random variables X̃ and Ỹ such that

(a) X =st X̃ and Y =st Ỹ ,

(b) X̃ ≺w Ỹ (respectively X̃ ≺w Ỹ ) almost surely.

For ease of notation, throughout the paper, we use ‘≺w’ and ‘≺w’ for stochastic weak
majorization. Next, let {X(t)}∞t=0 and {Y (t)}∞t=0 be stochastic processes. We say that {X(t)}∞t=0
is stochastically less than {Y (t)}∞t=0 in the sense of weak submajorization, denoted by

{X(t)}∞t=0≺w{Y (t)}∞t=0,

if we can couple the processes on the same probability space such that, for any sample path
realization and any n, X(ti) ≺w Y (ti) jointly for all ti , i = 1, . . . , n, with probability 1.
A similar definition holds for weak supermajorization.
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Appendix B. Proof of Corollary 1

Let i′ ≥ i be such that ai = ai+1 = · · · = ai′ and either ai′+1 < ai′ or i′ = c. Similarly, let
j ′ ≥ j be such that bj = bj+1 = · · · = bj ′ and either bj ′+1 < bj ′ or j ′ = c. Then

r∑

k=1

(a − ei)[k] =
r∑

k=1

(a − ei′)[k] =
r∑

k=1

(a − ei′)k =
r∑

k=1

ak − 1{r ≥ i′}

for all 1 ≤ r ≤ n. Similarly,
∑r

k=1(b − ej )[k] = ∑r
k=1 bk − 1{r ≥ j ′} for all 1 ≤ r ≤ n.

Therefore, if i′ ≤ j ′, a − ei ≺w b − ej is true trivially. For i′ > j ′, we need to show that

r∑

k=1

ak <

r∑

k=1

bk (9)

is true for j ′ ≤ r < i′. If j ′ < i then (9) is true for j ′ ≤ r < i by (2). Therefore, it is sufficient
to show that (9) holds for all i ≤ r < i′. Now suppose on the contrary that

∑r
k=1 ak = ∑r

k=1 bk

for some i ≤ r < i′. Then, because of our definition of i′,

i−1∑

k=1

ak + (r − i + 1)ai =
i−1∑

k=1

ak +
r∑

k=i

ak

=
r∑

k=1

ak

=
r∑

k=1

bk

≥
i−1∑

k=1

bk +
r∑

k=i

bk

≥
i−1∑

k=1

bk + (r − i + 1)br .

We have, by (2),
∑i−1

k=1 ak <
∑i−1

k=1 bk . This, together with the above, implies that ai > br .
Therefore,

r+1∑

k=i

ak =
r∑

k=i

ak + ai >

r∑

k=1

bk + br ≥
r∑

k=1

bk + br+1 =
r+1∑

k=1

bk,

which contradicts a ≺w b. Thus, we have shown that (9) is true for i ≤ r < i′, which concludes
the proof.

Appendix C. Proof of Corollary 4

Let i ≥ 1 be such that ai = ai−1 = · · · = a1 and either ai+1 < ai or i = c. It is
sufficient to show that

∑c
k=s ak >

∑c
k=s bk for 1 ≤ s ≤ i. Suppose on the contrary that∑c

k=s ak = ∑c
k=s bk for some 1 ≤ s ≤ i. Since a ≺w b, we have

∑c
k=s+1 ak ≥ ∑c

k=s+1 bk .
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Combining this with the contrary assumption, yields as ≤ bs . Hence,

c∑

k=1

ak =
c∑

k=s

ak + (s − 1)as =
c∑

k=s

bk + (s − 1)as ≤
c∑

k=s

bk + (s − 1)bs ≤
c∑

k=1

bk.

This contradicts the second assumption in the corollary. Therefore,
∑c

k=s ak >
∑c

k=s bk for
1 ≤ s ≤ i and the result follows.
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